COLLES DE PHYSIQUE - MPI —2025-2026

Colle N°12 — Semaine pronote N°19 : 05 au 10 Janvier 2026

Joyeuses fétes a vous — tous mes vceux de bonheur et de réussite pour 2026

= Au programme des exercices

— Chapitre THM2 : Diffusion thermique (attention !! les ondes thermiques n’ont pas été abordées).

— Chapitre EM3 : Magnétostatique : Théoréme d’Ampeére (pas de dipdle magnétique)

— Chapitre EM5 : Equations de Maxwell, énergie électromagnétique et vecteur de Poynting

Questions de cours seules

@ Un conducteur cylindrique infini de rayon a est parcouru par un courant d’intensité I uniformément réparti dans
toute section du conducteur. Calculer le champ magnétique créé en tout point de I'espace.

@ On considére un solénoide d'axe Oz et de centre O, de longueur infinie, constitué de spires circulaires jointives
enroulées sur un cylindre de rayon R, parcourues par un courant d’intensité I. Soitn = T le nombre de spires par unité

de longueur du solénoide. On admet que le champ magnétique a I'extérieur du solénoide est nul. Etablir I'expression
du champ magnétique créé en tout point de I'espace.

@ Etablir I'équation de la diffusion thermique (équation de la chaleur) dans le cas a une dimension cartésienne en
I’'absence de source d’énergie thermique interne. Introduire la diffusivité thermique et I'interpréter.

a) Considérons un barreau métallique de diffusivité thermique D ~ 1075 m?.s~'. Déterminer le temps caractéristique
de diffusion sur 1 cm puis sur 1 m.

b) Un étourdi oublie sa cuillere dans I'eau de cuisson des pates. Jusqu’a quelle hauteur le manche va-t-il chauffer
pendant la cuisson ? Risque-t-il donc de se briler en la retirant lorsque les pates seront cuites ?

Donnée : diffusivité du fer D ~ 2 - 10> m?s™%.  diffusivité dusol D ~ 3 - 107" m?s™.,

5.

Rappeler I'’équation de la diffusion thermique et exposer le principe de la méthode des différences finies permettant sa
résolution numérique (Etablir la relation de récurrence de la résolution numérique).

@ Enoncer les 4 équations de Maxwell sous forme locale en indiquant la loi intégrale associée. Comment se simplifient-
elles dans le vide ? en régime stationnaire ? dans le cadre de ’ARQS magnétique ?

@ Rappeler I'équation de Poynting (bilan local d’énergie électromagnétique) en définissant soigneusement les
différents termes intervenant dans I'équation.

@ On considére une onde de la forme s(x,t) = A cos(wt — kx + ¢,). Indiquer les relations entre pulsation,

fréquence et période temporelle, puis celle entre pulsation spatiale et longueur d’onde, en rappelant les unités de ces
e P . . , 82 82 . .

différentes grandeurs. Cette onde vérifie I'équation de propagation de D’Alembert : ﬁ - Ciz 6_1,“; = 0. Etablir la relation

de dispersion associée en introduisant la notation complexe et en déduire la relation associée entre longueur d’onde et

période temporelle.






= Questions de cours avec éléments de réponse

1. @ Un conducteur cylindrique infini de rayon a est parcouru par un courant d’intensité I uniformément réparti dans
toute section du conducteur. Calculer le champ magnétique créé en tout point de I'espace.

Schéma , Choix des coordonnées cylindriques

Eude des symétries et invariances (a détailler soigneusement !) : B= B(r)ég
Contour d’Ampére : ici, cercle de rayon r passant par le point M étudié (attention ! I'orienter !) ;

calcul de la circulation :

jg B.dOM = jg B(r)éy.r dO €y = 2nrB(r)
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2. @ On considére un solénoide d'axe Oz et de centre O, de longueur infinie, constitué de spires circulaires jointives
enroulées sur un cylindre de rayon R, parcourues par un courant d’intensité I. Soitn = % le nombre de spires par unité
de longueur du solénoide. On admet que le champ magnétique a I'extérieur du solénoide est nul. Etablir I'expression
du champ magnétique créé en tout point de I'espace.

Symétries et invariances : B(M) = B,(r)é, = B(r)é,

Contour d’Ampere (attention ! 'orienter !) :ici, théoréeme d’Ampere deux fois de suite : rectangle de longueur L quelconque
passant par le point M étudié a I'intérieur du solénoide, de hauteur h telle que, dont les deux parties horizontales sont
repérées par les distances a l'axe 7; et 7; :

Le contour d’Ampére est entierement a I'intérieur du solénoide : circulation : 4;(61) B.dOM = (B(ry) — B(r))L et Loyjgce =

0 : conclusion : champ intérieur uniforme

Le contour d’Ampere est a cheval entre l'intérieur et I'extérieur du solénoide ; fﬁ(e )E.dOM = (Bint — Boxt)L = Bt L et
1

Ioniace = NLIL: conclusion : B = pgn I €.y, a l'intérieur du solénoide. Champ uniforme, lignes de champ paralléles a I'axe.

3. @ Etablir 'équation de la diffusion thermique (équation de la chaleur) dans le cas a une dimension cartésienne en
I’'absence de source d’énergie thermique interne. Introduire la diffusivité thermique et I'interpréter.

e Premier principe (bilan enthalpique) appliqué au systéme compris entre x et x + dx, entre t et t + dt en 'absence de

travail autre que celui des forces de pression, & pression atmosphérique : d(§H) = d*H = §2Q
aT

e Dans le cas d’un systeme monophasé : d(H) = dmcdT = p Sdx ¢ dT ; x fixé : dT = (E) dt;
X

e 520 : flux entrant moins flux sortant, soit §2Q = (fD(x, t) — &(x + dx, t)) dt = — (Z—j) dx dt
t
— c , 9jqx
o Avec®(x) = ffsection]Q (x)dS :]st' SZQ - (g—Qx)t §dxdt

e Loide Fourier : Jo(x) = —A grad(T),d'ou j,,, = —2 (Z_Z) 2
t
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e finalement : équation de la chaleur (E)x o (ﬁ)t =0avecD = e diffusivité, telle que © 5

4. a) Considérons un barreau métallique de diffusivité thermique D = 107> m?.s~ . Déterminer le temps caractéristique
de diffusion sur 1 cm puis sur 1 m.

b) Un étourdi oublie sa cuillere dans I'eau de cuisson des pates. Jusqu’a quelle hauteur le manche va-t-il chauffer
pendant la cuisson ? Risque-t-il donc de se brller en la retirant lorsque les pates seront cuites ?

Donnée : diffusivité du fer D ~ 2 - 10> m?s™t.  diffusivité du sol D ~ 3 - 1077 m?-s7%,

2
1) Temps de diffusion sur 1 cm T, ~ % 7, ~10s
R e L% 5 L2 4
Temps de diffusion sur 1 m T, & D T, ~ 10° s - ~ 10
1

2) L =+1D avec cuisson des pdtes : T = 10 min = 600 s d’ou L =+/tD = 10 cm : mieux vaut avoir pris une longue
cuillére, et des pdtes qui cuisent rapidement...

5. RappelerI’équation de la diffusion thermique et exposer le principe de la méthode des différences finies permettant sa
résolution numérique (Etablir la relation de récurrence de la résolution numérique) .
| Equation de la diffusion thermique :
aT 0%T
at  ox?
| On approxime alors les dérivées spatiales et temporelles aux taux de variations des fonctions sur Ax et At :

oT - T(Xj, ti + At) - T(x]',ti)

at At
aZT - T(XJ + Ax, tl) + T(x] - Ax, tl) -2 T(x] ) tl)
ox? Ax?

soit

T(Xj,ti + At) - T(x]-, tl) ~D T(XJ + Ax, tl) + T(x] - Ax, tl) -2 T(xj ) tl)
At a Ax?

On admet que cette méthode converge si DAt < %sz.

La température au cours du temps est stockée dans une liste de listes T

T|[i] est une liste donnant T (x, t = iAt), c’est-a-dire la température en tout point de I’'espace a I'instant iAt ;

T[i][j] est un flottant donnant T (x = j Ax,t = iAt) la température a I'instant iAt et a la position j Ax.

or _Tli +1)[j] - TLG)

ot At
0’7 Tl + 1] = TL][ — 1] = 2T[E][/]
axz (4x)?

‘ L’équation de la chaleur s’écrit alors dans cette méthode des différences finies :

T[i+ 1101 - THEIGT DT[i][f + 1] = T[i][j — 1] — 2T[i][/]
At B Ax?

‘ Relation de récurrence de la résolution numérique :

Tli-+ 110 = TEI) + AT + 1) - TG - 10 - 276D avee A= Do



6. W Enoncerles 4 équations de Maxwell sous forme locale en indiquant la loi intégrale associée. Comment se simplifient-
elles dans le vide ? en régime stationnaire ? dans le cadre de ’ARQS magnétique ?

Equation de Maxwell Gauss | Maxwell Thomson | Maxwell Faraday Maxwell Ampeére
. . P =y I 0B | . . R OE
Régimes variables div(E) = & div(B) =0 rot(E) = - rot(B) = uof + Hogo -
o . : e oz 0B oE
Régime variable dans le vide div(E) =0 div(B) =0 rot(E) = —— rot(B) = —
& iv(E) iv(B) rot(E) = rot(B) = uo&o =
Régimes stationnaires div(ﬁ) _Pr di (§) _ 0 _‘E(E) _ 5 _t’(§) o
(indépendants du temps) &o v B re - ro = HJ
» Loy P oz 0B — .
ARQS div(E) = — - —zy 0B ~
QS magnétique iv(E) o div(B) =0 rot(E) = > rot(B) = uoJ

7. 0 W Rappeler I'équation de Poynting en définissant soigneusement les différents termes intervenant dans I’équation.
Equation locale de Poynting

OUer (M, 1) PN g
emTz— dlv(l'l) — ]j

rayonnement  dissipation

Elle traduit le bilan local de conservation de I'énergie électromagnétique

Avec U,y (M, t) densité volumique d’énergie électromagnétique associée en un point M, a une date t, au champ

électromagnétique (E(M, t), §(M, t))

1 B2(M,t)

1
uem(M’t)ZESOEZ(M’t)‘i'E I
0

Telle que I'énergie électromagnétique U,,,, d’un systeme de volume (V) soit :

Ue (1) = Jﬂ;muem(M, t) dt

Tl vecteur de Poynting correspondant au vecteur densité de flux de puissance électromagnétique rayonnée en W.m~

P :duﬂ:ﬂ M.ds
em dt (2) "

Le flux du vecteur de Poynting Tou Ra travers une surface (£) quelconque représente la puissance rayonnée

2,

algébriquement a travers la surface (X) dans le sens de H§, et s’exprime en fonction de EetB
EAB
Ho

=

Le vecteur de Poynting donne la direction de propagation de I’énergie électromagnétique, qui coincide avec la direction de
propagation de I'onde électromagnétique si elle est progressive.

8. @ On considére une onde de la forme s(x,t) = A cos(wt — kx + ¢,). Indiquer les relations entre pulsation,

fréquence et période temporelle, puis celle entre pulsation spatiale et longueur d’onde, en rappelant les unités de ces
3%s 1 9%s
— — — — = 0. Etablir la relation
0x2  c% oat?

de dispersion associée en introduisant la notation complexe et en déduire la relation associée entre longueur d’onde et

période temporelle.

différentes grandeurs. Cette onde vérifie I'équation de propagation de D’Alembert :

Période Fréquence | Pulsation
Périodicité temporelle T fouv W
Périodicité spatiale A o k
Longueur d’onde Norme du vecteur d’onde




Unité (SI) s Rad. s st ‘ m Rad.m? m?

Notation complexe pour la solution s(x,t) = Aexp j(wt — kx + ¢)

a .
= =5 (xjw)

% = §(X (_jkx))

' . . . . . , . , , 92 1 92
Afin d’obtenir la relation de dispersion, on exploite I’équation d’onde de d’Alembert 6_x§ = a_t; =0

1
(—1h)%s = (+j)?s = 0

1
~k*s + S w?s =0
ST S
w? w?
s <—2 - k2> = 0 d’ou la relation de dispersion k? = —
c c
La relation de dispersion associée a I’équation de d’Alembert posséde deux solutions (w étant une pulsation définie
positivement) : k = + % La longueur d’onde et la période étant également définies positivement, on obtient alors a

partir de la relation de dispersion A = cT.

Ces deux solutions de k sont les deux composantes possibles du vecteur d’onde k le long de la direction de
propagation (Ox) qui correspondent aux deux sens de propagation possibles d’une onde progressive le long de la
corde

k=+

€x

ale

La direction et le sens du vecteur d’onde k nous renseigne sur la direction et le sens de propagation de I’'onde tandis

que la norme du vecteur d’onde k nous renseigne sur la période spatiale qu’est la longueur d’onde selon la valeur de

la fréquence de I'excitation ayant donné naissance a l'onde.



