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Colle N°12 – Semaine pronote N°19 : 05 au 10 Janvier 2026 
 

Joyeuses fêtes à vous – tous mes vœux de bonheur et de réussite pour 2026 
 

 Au programme des exercices  

→ Chapitre THM2 : Diffusion thermique (attention !! les ondes thermiques n’ont pas été abordées). 

→ Chapitre EM3 : Magnétostatique : Théorème d’Ampère (pas de dipôle magnétique) 

→ Chapitre EM5 : Equations de Maxwell, énergie électromagnétique et vecteur de Poynting 

 Questions de cours seules 

1.  Un conducteur cylindrique infini de rayon 𝑎 est parcouru par un courant d’intensité 𝐼 uniformément réparti dans 

toute section du conducteur. Calculer le champ magnétique créé en tout point de l’espace. 

2.  On considère un solénoïde d'axe 𝑂𝑧 et de centre O, de longueur infinie, constitué de spires circulaires jointives 

enroulées sur un cylindre de rayon 𝑅, parcourues par un courant d’intensité 𝐼.  Soit 𝑛 =
𝑁

𝐿
 le nombre de spires par unité 

de longueur du solénoïde. On admet que le champ magnétique à l’extérieur du solénoïde est nul. Etablir l’expression 

du champ magnétique créé en tout point de l’espace. 

3.   Etablir l’équation de la diffusion thermique (équation de la chaleur) dans le cas à une dimension cartésienne en 

l’absence de source d’énergie thermique interne. Introduire la diffusivité thermique et l’interpréter. 

4. a) Considérons un barreau métallique de diffusivité thermique  𝐷 ≈ 10−5 m2. s−1. Déterminer le temps caractéristique 

de diffusion sur 1 cm puis sur 1 m. 

b) Un étourdi oublie sa cuillère dans l’eau de cuisson des pâtes. Jusqu’à quelle hauteur le manche va-t-il chauffer 

pendant la cuisson ? Risque-t-il donc de se brûler en la retirant lorsque les pâtes seront cuites ? 

Donnée : diffusivité du fer 𝐷 ~ 2 · 10−5 m2·s−1.     diffusivité du sol 𝐷 ~ 3 · 10−7 m2·s−1. 

5. Rappeler l’équation de la diffusion thermique et exposer le principe de la méthode des différences finies permettant sa 

résolution numérique (Etablir la relation de récurrence de la résolution numérique). 

6.  Enoncer les 4 équations de Maxwell sous forme locale en indiquant la loi intégrale associée. Comment se simplifient-

elles dans le vide ? en régime stationnaire ? dans le cadre de l’ARQS magnétique ? 

7.  Rappeler l’équation de Poynting (bilan local d’énergie électromagnétique) en définissant soigneusement les 

différents termes intervenant dans l’équation. 

8.   On considère une onde de la forme 𝑠(𝑥, 𝑡) = 𝐴 cos(𝜔𝑡 − 𝑘𝑥 + 𝜑0). Indiquer les relations entre pulsation, 

fréquence et période temporelle, puis celle entre pulsation spatiale et longueur d’onde, en rappelant les unités de ces 

différentes grandeurs. Cette onde vérifie l’équation de propagation de D’Alembert : 
𝜕2𝑠

𝜕𝑥2
−
1

𝑐2
 
𝜕2𝑠

𝜕𝑡2
= 0. Etablir la relation 

de dispersion associée en introduisant la notation complexe et en déduire la relation associée entre longueur d’onde et 

période temporelle. 

 



  



 Questions de cours avec éléments de réponse 

1.  Un conducteur cylindrique infini de rayon 𝑎 est parcouru par un courant d’intensité 𝐼 uniformément réparti dans 

toute section du conducteur. Calculer le champ magnétique créé en tout point de l’espace. 

Schéma , Choix des coordonnées cylindriques 

Eude des symétries et invariances (à détailler soigneusement !)  : 𝐵⃗ = 𝐵(𝑟)𝑒 𝜃 

Contour d’Ampère : ici, cercle de rayon 𝑟 passant par le point M étudié (attention ! l’orienter !) ; 

 calcul de la circulation : 

∮ 𝐵⃗ . 𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  

(𝛤)

= ∮ 𝐵(𝑟)𝑒 𝜃 . 𝑟 𝑑𝜃

(𝛤)

 𝑒 𝜃 = 2𝜋𝑟𝐵(𝑟) 

Courant enlacé :    si 𝑟 ≥ 𝑎, 𝐼𝑒𝑛𝑙𝑎𝑐é = 𝐼 ;  

 si 𝑟 ≤ 𝑎 ∶  𝐼 = ∬ 𝑗 ⃗⃗ . 𝑑𝑆 ⃗⃗⃗⃗⃗⃗ 
(Σ)

= 𝑗𝑆 = 𝑗𝜋𝑎2, soit 𝑗 =
𝐼

𝜋𝑎2
 et 𝑗 ⃗⃗ =

𝐼

𝜋𝑎2
𝑒 𝑧 

On a alors  𝐼𝑒𝑛𝑙𝑎𝑐é = ∬ 𝑗 ⃗⃗ . 𝑑𝑆 ⃗⃗⃗⃗⃗⃗ 
(Σ)

=
𝐼

𝜋𝑎2
𝑒 𝑧. 𝜋𝑟

2𝑒 𝑧 =
𝐼𝑟2

𝑎2
 

théorème d’Ampère : ∮ 𝐵⃗ . 𝑑𝑀⃗⃗ 
(𝛤)

= 𝜇0 𝐼𝑒𝑛𝑙𝑎𝑐é 

si 𝑟 ≤ 𝑎, alors 𝐵⃗ =
𝜇0 𝐼

2𝜋

𝑟

𝑎2
𝑒 𝜃 ; si 𝑟 ≥ 𝑎, alors 𝐵⃗ =

𝜇0 𝐼

2𝜋𝑟
𝑒 𝜃. 

2.  On considère un solénoïde d'axe 𝑂𝑧 et de centre O, de longueur infinie, constitué de spires circulaires jointives 

enroulées sur un cylindre de rayon 𝑅, parcourues par un courant d’intensité 𝐼.  Soit 𝑛 =
𝑁

𝐿
 le nombre de spires par unité 

de longueur du solénoïde. On admet que le champ magnétique à l’extérieur du solénoïde est nul. Etablir l’expression 

du champ magnétique créé en tout point de l’espace. 

Symétries et invariances : 𝐵⃗ (𝑀) = 𝐵𝑧(𝑟)𝑒 𝑧 = 𝐵(𝑟)𝑒 𝑧 

Contour d’Ampère (attention ! l’orienter !) : ici, théorème d’Ampère deux fois de suite : rectangle de longueur 𝐿 quelconque 

passant par le point M étudié à l’intérieur du solénoïde, de hauteur ℎ telle que, dont les deux parties horizontales sont 

repérées par les distances à l’axe 𝑟𝑖  et 𝑟𝑗  :  

Le contour d’Ampère est entièrement à l’intérieur du solénoïde : circulation : ∮ 𝐵⃗ . 𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  
(𝒞1)

= (𝐵(𝑟1) − 𝐵(𝑟2))𝐿 et  𝐼𝑒𝑛𝑙𝑎𝑐é =

0 :  conclusion : champ intérieur uniforme 

Le contour d’Ampère est à cheval entre l’intérieur et l’extérieur du solénoïde ; ∮ 𝐵⃗ . 𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  
(𝒞1)

= (𝐵𝑖𝑛𝑡 − 𝐵𝑒𝑥𝑡)𝐿 = 𝐵𝑖𝑛𝑡𝐿 et  

𝐼𝑒𝑛𝑙𝑎𝑐é = nLI :  conclusion : 𝐵⃗  =  𝜇0𝑛 𝐼 𝑒 𝑎𝑥𝑒 à l’intérieur du solénoïde. Champ uniforme, lignes de champ parallèles à l’axe. 

 

3.   Etablir l’équation de la diffusion thermique (équation de la chaleur) dans le cas à une dimension cartésienne en 

l’absence de source d’énergie thermique interne. Introduire la diffusivité thermique et l’interpréter. 

• Premier principe (bilan enthalpique) appliqué au système compris entre 𝑥 et 𝑥 + 𝑑𝑥, entre 𝑡 et 𝑡 + 𝑑𝑡 en l’absence de 

travail autre que celui des forces de pression, à pression atmosphérique :  𝑑(𝛿𝐻) = 𝑑2𝐻 = 𝛿2𝑄  

• Dans le cas d’un système monophasé : 𝑑(𝛿𝐻) = 𝛿𝑚𝑐𝑑𝑇 = 𝜌 𝑆𝑑𝑥 𝑐 𝑑𝑇 ; 𝑥 fixé : 𝑑𝑇 = (
𝜕𝑇

𝜕𝑡
)
𝑥
𝑑𝑡 ;  

• 𝛿2𝑄 : flux entrant moins flux sortant, soit 𝛿2𝑄 = (𝛷(𝑥, 𝑡) − 𝛷(𝑥 + 𝑑𝑥, 𝑡)) 𝑑𝑡 = −(
𝜕𝛷

𝜕𝑥
)
𝑡
𝑑𝑥 𝑑𝑡 

• Avec 𝛷(𝑥) = ∬ 𝑗𝑄⃗⃗  ⃗(𝑥)𝑑𝑆 =𝑠𝑒𝑐𝑡𝑖𝑜𝑛
𝑗𝑄𝑥𝑆,      𝛿

2𝑄 = −(
𝜕𝑗𝑄𝑥 

𝜕𝑥
)
𝑡
𝑆 𝑑𝑥 𝑑𝑡  

• Loi de Fourier : 𝑗𝑄⃗⃗  ⃗(𝑥) = −𝜆 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑇), 𝑑′𝑜ù 𝑗𝑄𝑥 = −𝜆 (
𝜕𝑇

𝜕𝑥
)

t
 ; 



•  finalement : équation de la chaleur       (
𝜕𝑇

𝜕𝑡
)
𝑥
−

𝜆

𝜌𝑐
(
𝜕2𝑇

𝜕𝑥2
)
𝑡
= 0 avec 𝐷 =

𝜆

𝜌𝑐
 diffusivité, telle que 𝜏~

𝐿2

𝐷
 

 

4. a) Considérons un barreau métallique de diffusivité thermique  𝐷 ≈ 10−5 m2. s−1. Déterminer le temps caractéristique 

de diffusion sur 1 cm puis sur 1 m. 

b) Un étourdi oublie sa cuillère dans l’eau de cuisson des pâtes. Jusqu’à quelle hauteur le manche va-t-il chauffer 

pendant la cuisson ? Risque-t-il donc de se brûler en la retirant lorsque les pâtes seront cuites ? 

Donnée : diffusivité du fer 𝐷 ~ 2 · 10−5 m2·s−1.     diffusivité du sol 𝐷 ~ 3 · 10−7 m2·s−1. 

1) Temps de diffusion sur 1 cm 𝜏1 ≈
𝐿1
2

𝐷
 𝜏1 ≈ 10 s  

Temps de diffusion sur 1 m 𝜏2 ≈
𝐿2
2

𝐷
 𝜏2 ≈ 10

5 s 
𝜏2
𝜏1
≈ 104 

2) 𝐿 = √𝜏𝐷  avec cuisson des pâtes : 𝜏 ≈ 10𝑚𝑖𝑛 = 600 𝑠  d’où  𝐿 = √𝜏𝐷 ≈ 10 𝑐𝑚 : mieux vaut avoir pris une longue 

cuillère, et des pâtes qui cuisent rapidement… 

 

5. Rappeler l’équation de la diffusion thermique et exposer le principe de la méthode des différences finies permettant sa 

résolution numérique (Etablir la relation de récurrence de la résolution numérique) .  

Equation de la diffusion thermique : 

𝜕𝑇

𝜕𝑡
=  𝐷

𝜕2𝑇

𝜕𝑥2
  

On approxime alors les dérivées spatiales et temporelles aux taux de variations des fonctions sur 𝛥𝑥 et 𝛥𝑡 : 

𝜕𝑇

𝜕𝑡
≃
𝑇(𝑥𝑗 , 𝑡𝑖 +  𝛥𝑡) − 𝑇(𝑥𝑗 , 𝑡𝑖)

𝛥𝑡
 

𝜕2𝑇

𝜕𝑥2
≃
𝑇(𝑥𝑗 +  𝛥𝑥, 𝑡𝑖) + 𝑇(𝑥𝑗 −  𝛥𝑥, 𝑡𝑖) − 2 𝑇(𝑥𝑗  , 𝑡𝑖)

𝛥𝑥2
 

soit 

𝑇(𝑥𝑗 , 𝑡𝑖 +  𝛥𝑡) − 𝑇(𝑥𝑗 , 𝑡𝑖)

𝛥𝑡
≃ 𝐷

𝑇(𝑥𝑗 +  𝛥𝑥, 𝑡𝑖) + 𝑇(𝑥𝑗 −  𝛥𝑥, 𝑡𝑖) − 2 𝑇(𝑥𝑗  , 𝑡𝑖)

𝛥𝑥2
 

On admet que cette méthode converge si 𝐷𝛥𝑡 <
1

2
 𝛥𝑥2. 

La température au cours du temps est stockée dans une liste de listes 𝑇  

𝑇[𝑖] est une liste donnant 𝑇(𝑥, 𝑡 = 𝑖𝛥𝑡), c’est-à-dire la température en tout point de l’espace à l’instant 𝑖𝛥𝑡 ; 

𝑇[𝑖][𝑗] est un flottant donnant 𝑇(𝑥 = 𝑗 𝛥𝑥, 𝑡 = 𝑖𝛥𝑡) la température à l’instant 𝑖𝛥𝑡 et à la position 𝑗 𝛥𝑥. 

𝜕𝑇

𝜕𝑡
≃
𝑇[𝑖 + 1][𝑗] − 𝑇[𝑖][𝑗]

𝛥𝑡
 

𝜕2𝑇

𝜕𝑥2
≃≃

𝑇[𝑖][𝑗 + 1] − 𝑇[𝑖][𝑗 − 1] − 2𝑇[𝑖][𝑗]

(𝛥𝑥)2
 

L’équation de la chaleur s’écrit alors dans cette méthode des différences finies : 

𝑇[𝑖 + 1][𝑗] − 𝑇[𝑖][𝑗]

𝛥𝑡
= 𝐷

𝑇[𝑖][𝑗 + 1] − 𝑇[𝑖][𝑗 − 1] − 2𝑇[𝑖][𝑗]

𝛥𝑥2
 

Relation de récurrence de la résolution numérique : 

𝑻[𝒊 + 𝟏][𝒋] = 𝑻[𝒊][𝒋] + 𝑨(𝑻[𝒊][𝒋 + 𝟏] − 𝑻[𝒊][𝒋 − 𝟏] − 𝟐𝑻[𝒊][𝒋])       𝑎𝑣𝑒𝑐    𝑨 =  𝑫
𝛥𝑡

𝛥𝑥2
 

 



6.   Enoncer les 4 équations de Maxwell sous forme locale en indiquant la loi intégrale associée. Comment se simplifient-

elles dans le vide ? en régime stationnaire ? dans le cadre de l’ARQS magnétique ? 

Équation de Maxwell Gauss Maxwell Thomson Maxwell Faraday Maxwell Ampère 

Régimes variables div(𝐸⃗ ) =
𝜌

𝜀0
 div(𝐵⃗ ) = 0 rot⃗⃗ ⃗⃗  ⃗(𝐸⃗ ) =  −

𝜕𝐵⃗ 

𝜕𝑡
 rot⃗⃗ ⃗⃗  ⃗(𝐵⃗ ) =  𝜇0𝑗 + 𝜇0𝜀0

𝜕𝐸⃗ 

𝜕𝑡
 

Régime variable dans le vide div(𝐸⃗ ) = 0 div(𝐵⃗ ) = 0 rot⃗⃗ ⃗⃗  ⃗(𝐸⃗ ) =  −
𝜕𝐵⃗ 

𝜕𝑡
 rot⃗⃗ ⃗⃗  ⃗(𝐵⃗ ) =  𝜇0𝜀0

𝜕𝐸⃗ 

𝜕𝑡
 

Régimes stationnaires 

(indépendants du temps) 
div(𝐸⃗ ) =

𝜌

𝜀0
 div(𝐵⃗ ) = 0 rot⃗⃗ ⃗⃗  ⃗(𝐸⃗ ) =  0⃗  rot⃗⃗ ⃗⃗  ⃗(𝐵⃗ ) =  𝜇0𝑗  

ARQS magnétique div(𝐸⃗ ) =
𝜌

𝜀0
 div(𝐵⃗ ) = 0 rot⃗⃗ ⃗⃗  ⃗(𝐸⃗ ) =  −

𝜕𝐵⃗ 

𝜕𝑡
 rot⃗⃗ ⃗⃗  ⃗(𝐵⃗ ) ≅  𝜇0𝑗  

 

7.   Rappeler l’équation de Poynting en définissant soigneusement les différents termes intervenant dans l’équation. 

Équation locale de Poynting 

𝜕𝑢𝑒𝑚(𝑀, 𝑡)

𝜕𝑡
= − div(Π⃗⃗ )⏟  

𝑟𝑎𝑦𝑜𝑛𝑛𝑒𝑚𝑒𝑛𝑡

− 𝑗 . 𝐸⃗ ⏟
𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

 

Elle traduit le bilan local de conservation de l’énergie électromagnétique  

Avec 𝑢𝑒𝑚(𝑀, 𝑡) densité volumique d’énergie électromagnétique  associée en un point 𝑀, à une date 𝑡, au champ 

électromagnétique (𝐸⃗ (𝑀, 𝑡), 𝐵⃗ (𝑀, 𝑡))  

𝑢𝑒𝑚(𝑀, 𝑡) =
1

2
𝜀0𝐸

2(𝑀, 𝑡) +
1

2
 
𝐵2(𝑀, 𝑡)

𝜇0
 

Telle que l’énergie électromagnétique 𝑈𝑒𝑚  d’un système de volume (𝑉) soit : 

𝑈𝑒𝑚(𝑡) =∭ 𝑢𝑒𝑚(𝑀, 𝑡)
(𝑉)

 𝑑𝜏 

Π⃗⃗  vecteur de Poynting correspondant au vecteur densité de flux de puissance électromagnétique rayonnée en 𝑊.𝑚−2 ∶ 

𝒫𝑒𝑚 =
𝑑𝑈𝑒𝑚
𝑑𝑡

= ∬ Π⃗⃗ 
(Σ)

. d𝑆⃗⃗⃗⃗  

Le flux du vecteur de Poynting Π⃗⃗  ou 𝑅⃗  à travers une surface (Σ) quelconque représente la puissance rayonnée 

algébriquement à travers la surface (Σ) dans le sens de d𝑆⃗⃗⃗⃗ , et s’exprime en fonction de 𝐸⃗   et  𝐵⃗  

Π⃗⃗ =
𝐸⃗  ∧  𝐵⃗ 

𝜇0
 

Le vecteur de Poynting donne la direction de propagation de l’énergie électromagnétique, qui coïncide avec la direction de 

propagation de l’onde électromagnétique si elle est progressive. 

8.   On considère une onde de la forme 𝑠(𝑥, 𝑡) = 𝐴 cos(𝜔𝑡 − 𝑘𝑥 + 𝜑0). Indiquer les relations entre pulsation, 

fréquence et période temporelle, puis celle entre pulsation spatiale et longueur d’onde, en rappelant les unités de ces 

différentes grandeurs. Cette onde vérifie l’équation de propagation de D’Alembert : 
𝜕2𝑠

𝜕𝑥2
−
1

𝑐2
 
𝜕2𝑠

𝜕𝑡2
= 0. Etablir la relation 

de dispersion associée en introduisant la notation complexe et en déduire la relation associée entre longueur d’onde et 

période temporelle. 

 Période Fréquence Pulsation 

Périodicité temporelle 𝑇 𝑓 ou   𝜔 

Périodicité spatiale  
Longueur d’onde 

𝜎 𝑘 
Norme du vecteur d’onde 



 

 𝑇 𝜔   𝜆 𝑘  

Unité (SI) s Rad. s-1 s-1 
 m Rad.m-1 m-1 

 

𝝎 = 𝟐𝝅𝒇 =
𝟐𝝅

𝑻
            𝒌 =

2𝜋


 

Notation complexe pour la solution 𝑠(𝑥, 𝑡) = 𝐴exp j(𝜔𝑡 − 𝑘𝑥 + 𝜑)   

𝝏𝑠 

𝝏𝒕
= 𝑠 (× 𝒋𝝎) 

𝝏 𝑠

𝝏𝒙
= 𝑠(× (−𝒋𝒌𝒙)) 

Afin d’obtenir la relation de dispersion, on exploite l’équation d’onde de d’Alembert 
𝜕2𝑠

𝜕𝑥2
−
1

𝑐2
 
𝜕2𝑠

𝜕𝑡2
= 0.  

(−𝑗𝑘)2𝑠 −
1

𝑐2
(+𝑗𝜔)2𝑠 = 0 

−𝑘2𝑠 +
1

𝑐2
𝜔2𝑠 = 0 

𝑠 ቆ
𝜔2

𝑐2
− 𝑘2ቇ = 0 d′où la relation de dispersion  𝑘2 =

𝜔2

𝑐2
 

La relation de dispersion associée à l’équation de d’Alembert possède deux solutions (𝜔 étant une pulsation définie 

positivement) :  𝑘 = ±
𝜔

𝑐
. La longueur d’onde et la période étant également définies positivement, on obtient alors à 

partir de la relation de dispersion 𝜆 = 𝑐𝑇. 

Ces deux solutions de 𝑘 sont les deux composantes possibles du vecteur d’onde 𝑘⃗  le long de la direction de 

propagation (𝑂𝑥) qui correspondent aux deux sens de propagation possibles d’une onde progressive le long de la 

corde 

𝑘⃗ = ±
𝜔

𝑐
𝑒 𝑥  

La direction et le sens du vecteur d’onde 𝑘⃗  nous renseigne sur la direction et le sens de propagation de l’onde tandis 

que la norme du vecteur d’onde 𝑘⃗  nous renseigne sur la période spatiale qu’est la longueur d’onde selon la valeur de 

la fréquence de l’excitation ayant donné naissance à l’onde. 

 


