
COLLES DE PHYSIQUE - MPI – 2025-2026 
 
 

Colle N°13 – Semaine pronote N°20 : 12 au 17 Janvier 2026 
 

 Au programme des exercices  

→ Chapitre EM5 : Equations de Maxwell, énergie électromagnétique et vecteur de Poynting 

→ Chapitre ELEC3 : Portes logiques 

→ Chapitre OND1 : Propagation d’ondes électromagnétiques dans le vide  (attention ! l’étude énergétique et 

la polarisation n’ont pas encore été traitées) 

 Questions de cours seules 

1.  Enoncer les 4 équations de Maxwell sous forme locale en indiquant la loi intégrale associée. Comment se simplifient-

elles dans le vide ? en régime stationnaire ? dans le cadre de l’ARQS magnétique ? 

2.  Rappeler l’équation de Poynting (bilan local d’énergie électromagnétique) en définissant soigneusement les 

différents termes intervenant dans l’équation. 

3.   On considère une onde de la forme 𝑠(𝑥, 𝑡) = 𝐴 cos(𝜔𝑡 − 𝑘𝑥 + 𝜑0). Indiquer les relations entre pulsation, 

fréquence et période temporelle, puis celle entre pulsation spatiale et longueur d’onde, en rappelant les unités de ces 

différentes grandeurs. Cette onde vérifie l’équation de propagation de D’Alembert : 
𝜕2𝑠

𝜕𝑥2
−
1

𝑐2
 
𝜕2𝑠

𝜕𝑡2
= 0. Etablir la relation 

de dispersion associée en introduisant la notation complexe et en déduire la relation associée entre longueur d’onde et 

période temporelle. 

4.  On étudie le convertisseur logique tension-fréquence 

réalisé à l’aide du circuit ci-contre constitué de portes 

logiques idéales. On suppose que la porte NON bascule à 

𝐸/2 et on peut montrer que la sortie 𝑠 = 𝐸 correspond à 

un état stable du système. 

(a) Déterminer les caractéristiques des états stables de ce 

système. Comment qualifie-t-on un tel système ? 

(b) Partons d’un montage dans l’état stable correspondant à une entrée 𝑒(𝑡 < 0)  =  𝐸 depuis un temps très long. 

Supposons qu’à 𝑡 = 0, l’entrée 𝑒 bascule à 0 pendant une durée 𝑇0 (avant de revenir à 1). Que se passe-t-il à 𝑡 =

0+dans le montage ? On donnera les valeurs des différentes tensions aux instants 𝑡 = 0−et à 𝑡 = 0+. 

5. On reprend la question précédente, et on donne les valeurs des tensions initiales : 

𝑒(0−) = 𝐸, 𝑢(0−) = 0, 𝑢𝐶(0
−) = 0, 𝑣(0−) = 0, 𝑠(0−) = 𝐸  

𝑒(0+) = 0, 𝑢(0+) = 𝐸, 𝑢𝐶(0
+) = 0, 𝑣(0+) = 𝐸, 𝑠(0+) = 0 

ainsi que l’équation différentielle vérifiée : 
𝑑𝑣(𝑡)

𝑑𝑡
+
1

𝜏
𝑣(𝑡) =

𝑑𝑢(𝑡)

𝑑𝑡
. à l’instant 𝑇0, l’entrée 𝑒 bascule à nouveau avec 

𝑒(𝑇0) = 𝐸. Soit 𝑇𝑏  l’instant de basculement de la porte NON ; montrer que 𝑇𝑏 = 𝜏 × ln(2) . Déterminer les évolutions 

des différentes tensions entre 𝑡 = 0 et 𝑇0 en séparant  les deux cas 𝑇𝑏 > 𝑇0  et 𝑇𝑏 < 𝑇0 . Tracer les chronogrammes des 

différentes tensions. 
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6.   Etudier la stabilité du montage ci-contre. 

Comment qualifie-t-on ce type de montage ? 

 
 
 
 
 
 
 

7. ** Donner l’équation logique de cette bascule RS, montrer que les deux circuits proposés sont équivalents et expliquer 

son principe de fonctionnement.  

 

8.   Etablir l’équation de propagation (au choix de l’examinateur) du champ 𝐸⃗  ou du champ 𝐵⃗  associés à une onde 

électromagnétique se propageant dans un milieu assimilable au vide. 

9.  Considérons une OPPH de la forme  𝐸⃗ = 𝐸𝑂  cos(𝜔𝑡 − 𝑘𝑥 + 𝜑) 𝑒 𝑦 se propageant dans le vide en vérifiant une 

équation de propagation de d’Alembert. Etablir la relation entre 𝜔 et 𝑘, dite relation de dispersion (méthode au choix 

de l’examinateur, avec ou sans passage aux grandeurs complexes).  

10.   Donner l’expression des équations de Maxwell dans le vide en représentation complexe. En déduire la relation de 

structure entre 𝐸⃗   et 𝐵⃗ . 

11.   Le champ électrique d’une onde électromagnétique est donné par : 𝐸⃗ = 𝐸0 cos (𝜔 (𝑡 − 
𝑥

𝑐
)) 𝑒 𝑧.  Donner 

l’expression du champ magnétique associé à cette onde. 
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 Questions de cours avec éléments de réponse 

1.   Enoncer les 4 équations de Maxwell sous forme locale en indiquant la loi intégrale associée. Comment se 

simplifient-elles dans le vide ? en régime stationnaire ? dans le cadre de l’ARQS magnétique ? 

Équation de Maxwell Gauss Maxwell Thomson Maxwell Faraday Maxwell Ampère 

Régimes variables d  (𝐸⃗ ) =
𝜌

𝜀0
 d  (𝐵⃗ ) = 0 ro ⃗⃗ ⃗⃗  ⃗(𝐸⃗ ) =  −

𝜕𝐵⃗ 

𝜕𝑡
 ro ⃗⃗ ⃗⃗  ⃗(𝐵⃗ ) =  𝜇0𝑗 + 𝜇0𝜀0

𝜕𝐸⃗ 

𝜕𝑡
 

Régime variable dans le vide d  (𝐸⃗ ) = 0 d  (𝐵⃗ ) = 0 ro ⃗⃗ ⃗⃗  ⃗(𝐸⃗ ) =  −
𝜕𝐵⃗ 

𝜕𝑡
 ro ⃗⃗ ⃗⃗  ⃗(𝐵⃗ ) =  𝜇0𝜀0

𝜕𝐸⃗ 

𝜕𝑡
 

Régimes stationnaires 

(indépendants du temps) 
d  (𝐸⃗ ) =

𝜌

𝜀0
 d  (𝐵⃗ ) = 0 ro ⃗⃗ ⃗⃗  ⃗(𝐸⃗ ) =  0⃗  ro ⃗⃗ ⃗⃗  ⃗(𝐵⃗ ) =  𝜇0𝑗  

ARQS magnétique d  (𝐸⃗ ) =
𝜌

𝜀0
 d  (𝐵⃗ ) = 0 ro ⃗⃗ ⃗⃗  ⃗(𝐸⃗ ) =  −

𝜕𝐵⃗ 

𝜕𝑡
 ro ⃗⃗ ⃗⃗  ⃗(𝐵⃗ ) ≅  𝜇0𝑗  

 

2.   Rappeler l’équation de Poynting en définissant soigneusement les différents termes intervenant dans l’équation. 

Équation locale de Poynting 

𝜕𝑢𝑒𝑚(𝑀, 𝑡)

𝜕𝑡
= − d  (Π⃗⃗ )⏟  

𝑟𝑎𝑦𝑜𝑛𝑛𝑒𝑚𝑒𝑛𝑡

− 𝑗 . 𝐸⃗ ⏟
𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

 

Elle traduit le bilan local de conservation de l’énergie électromagnétique  

Avec 𝑢𝑒𝑚(𝑀, 𝑡) densité volumique d’énergie électromagnétique  associée en un point 𝑀, à une date 𝑡, au champ 

électromagnétique (𝐸⃗ (𝑀, 𝑡), 𝐵⃗ (𝑀, 𝑡))  

𝑢𝑒𝑚(𝑀, 𝑡) =
 

2
𝜀0𝐸

2(𝑀, 𝑡) +
 

2
 
𝐵2(𝑀, 𝑡)

𝜇0
 

Telle que l’énergie électromagnétique 𝑈𝑒𝑚  d’un système de volume (𝑉) soit : 

𝑈𝑒𝑚(𝑡) =∭ 𝑢𝑒𝑚(𝑀, 𝑡)
(𝑉)

 𝑑𝜏 

Π⃗⃗  vecteur de Poynting correspondant au vecteur densité de flux de puissance électromagnétique rayonnée en 𝑊.𝑚−2 ∶ 

𝒫𝑒𝑚 =
𝑑𝑈𝑒𝑚
𝑑𝑡

= ∬ Π⃗⃗ 
(Σ)

. d𝑆⃗⃗⃗⃗  

Le flux du vecteur de Poynting Π⃗⃗  ou 𝑅⃗  à travers une surface (Σ) quelconque représente la puissance rayonnée 

algébriquement à travers la surface (Σ) dans le sens de d𝑆⃗⃗⃗⃗ , et s’exprime en fonction de 𝐸⃗       𝐵⃗  

Π⃗⃗ =
𝐸⃗  ∧  𝐵⃗ 

𝜇0
 

Le vecteur de Poynting donne la direction de propagation de l’énergie électromagnétique, qui coïncide avec la direction de 

propagation de l’onde électromagnétique si elle est progressive. 

 
 

3.   On considère une onde de la forme 𝑠(𝑥, 𝑡) = 𝐴 cos(𝜔𝑡 − 𝑘𝑥 + 𝜑0). Indiquer les relations entre pulsation, 

fréquence et période temporelle, puis celle entre pulsation spatiale et longueur d’onde, en rappelant les unités de ces 

différentes grandeurs. Cette onde vérifie l’équation de propagation de D’Alembert : 
𝜕2𝑠

𝜕𝑥2
−
1

𝑐2
 
𝜕2𝑠

𝜕𝑡2
= 0. Etablir la relation 

de dispersion associée en introduisant la notation complexe et en déduire la relation associée entre longueur d’onde et 

période temporelle. 



 Période Fréquence Pulsation 

Périodicité temporelle 𝑇 𝑓 ou   𝜔 

Périodicité spatiale  
Longueur d’onde 

𝜎 𝑘 
Norme du vecteur d’onde 

 

 𝑇 𝜔   𝜆 𝑘  

Unité (SI) s Rad. s-1 s-1 
 m Rad.m-1 m-1 

 

𝝎 = 𝟐𝝅𝒇 =
𝟐𝝅

𝑻
            𝒌 =

2𝜋


 

Notation complexe pour la solution 𝑠(𝑥, 𝑡) = 𝐴𝑒𝑥𝑝 𝑗(𝜔𝑡 − 𝑘𝑥 + 𝜑)   

𝝏𝑠 

𝝏𝒕
= 𝑠 (× 𝒋𝝎)          et         

𝝏 𝑠

𝝏𝒙
= 𝑠(× (−𝒋𝒌𝒙)) 

Afin d’obtenir la relation de dispersion, on exploite l’équation d’onde de d’Alembert 
𝜕2𝑠

𝜕𝑥2
−
1

𝑐2
 
𝜕2𝑠

𝜕𝑡2
= 0.  

(−𝑗𝑘)2𝑠 −
 

𝑐2
(+𝑗𝜔)2𝑠 = 0 

−𝑘2𝑠 +
 

𝑐2
𝜔2𝑠 = 0 

𝑠 (
𝜔2

𝑐2
− 𝑘2) = 0 𝑑′𝑜ù 𝑙𝑎 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛  𝑘2 =

𝜔2

𝑐2
 

La relation de dispersion associée à l’équation de d’Alembert possède deux solutions (𝜔 étant une pulsation définie 

positivement) :  𝑘 = ±
𝜔

𝑐
. La longueur d’onde et la période étant également définies positivement, on obtient alors à 

partir de la relation de dispersion 𝜆 = 𝑐𝑇. 

Ces deux solutions de 𝑘 sont les deux composantes possibles du vecteur d’onde 𝑘⃗  le long de la direction de 

propagation (𝑂𝑥) qui correspondent aux deux sens de propagation possibles d’une onde progressive le long de la 

corde 

𝑘⃗ = ±
𝜔

𝑐
𝑒 𝑥  

La direction et le sens du vecteur d’onde 𝑘⃗  nous renseigne sur la direction et le sens de propagation de l’onde tandis 

que la norme du vecteur d’onde 𝑘⃗  nous renseigne sur la période spatiale qu’est la longueur d’onde selon la valeur de 

la fréquence de l’excitation ayant donné naissance à l’onde. 

 

4.  On étudie le convertisseur logique tension-

fréquence réalisé à l’aide du circuit ci-contre constitué 

de portes logiques idéales. On suppose que la porte 

NON bascule à 𝐸/2 et on peut montrer que la sortie 

𝑠 = 𝐸 correspond à un état stable du système. 

(c) Déterminer les caractéristiques des états stables de 

ce système. Comment qualifie-t-on un tel 

système ? 

(d) Partons d’un montage dans l’état stable correspondant à une entrée 𝑒(𝑡 < 0)  =  𝐸 depuis un temps très long. 

Supposons qu’à 𝑡 = 0, l’entrée 𝑒 bascule à 0 pendant une durée 𝑇0 (avant de revenir à 1). Que se passe-t-il à 𝑡 =

0+dans le montage ? On donnera les valeurs des différentes tensions aux instants 𝑡 = 0−et à 𝑡 = 0+. 

(a) Si un état stable de sortie existe, grandeurs indépendantes du temps, dont 𝑢𝐶.  

D’où 𝑖𝑅 = 𝑖𝐶 = 𝐶
𝑑𝑢𝐶

𝑑𝑡
= 0    ⟹ 𝑣(𝑡) = 𝑅𝑖𝑅 = 0.  

Alors,  d’après les caractéristiques d’une porte NON :   𝒔(𝒕) = 𝑬. 
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Pour que 𝑠(𝑡) reste égale à 𝐸, il faut que 𝑣(𝑡) n’évolue pas : 𝑣(𝑡) = 0,  

il faut donc 𝑢𝐶 = 𝑐𝑡𝑒, d’où 𝑢(𝑡) = 𝑐𝑡𝑒.  

2 cas possibles : 

si 𝒖(𝒕) = 𝑬, l’état de charge ne change pas si 𝑒(𝑡) r s   égal  à 0 car dans ce cas seulement : 

 𝑢(𝑡) = 𝑒. 𝑠 = 𝑒. 𝐸 = 𝐸 ⟹   𝑒 = 0. 

si 𝒖(𝒕) = 𝟎, l’état de charge ne change pas si 𝑒(𝑡) r s   égal  à 𝐸 car dans ce cas seulement : 

 𝑢(𝑡) = 𝑒. 𝑠 = 𝑒. 𝐸 = 0 ⟹   𝑒 = 𝐸. 

Ainsi, ∀𝑒(𝑡) maintenue constante (à 0 ou à 𝐸), 𝑠(𝑡) = 𝐸 = unique état stable du montage, qui est donc dit 

monostable. 

 

à 𝑡 = 0, l’entrée 𝑒 bascule à 0 pendant une durée 𝑇0.  

Dans ce cas, 𝑢(0+) = 𝐸 car au moins une des deux entrées de la porte NAND est désormais nulle ; 

𝑢(0+) = 𝑒. 𝑠 = 0. 𝑠 = 0 = 𝐸 

La tension aux bornes du condensateur étant continue, on a  

𝑣(0+) = 𝑢(0+) − 𝑢𝐶(0
+) = 𝑢(0+) − 𝑢𝐶(0

−) = 𝐸 − 0 = 𝐸 et 𝑠 = 𝑣 = 0, la sortie du système passe donc à 0 et les 

deux entrées de la porte NAND sont alors nulles. 

𝑒(0−) = 𝐸, 𝑢(0−) = 0, 𝑢𝐶(0
−) = 0, 𝑣(0−) = 0, 𝑠(0−) = 𝐸  

𝑒(0+) = 0, 𝑢(0+) = 𝐸, 𝑢𝐶(0
+) = 0, 𝑣(0+) = 𝐸, 𝑠(0+) = 0 

La sortie 𝑠 n’étant plus égale à 𝐸, le système n’est plus dans un état stable et va donc évoluer au cours du temps. 

 

5. On reprend la question précédente, et on donne les valeurs des tensions initiales : 

𝑒(0−) = 𝐸, 𝑢(0−) = 0, 𝑢𝐶(0
−) = 0, 𝑣(0−) = 0, 𝑠(0−) = 𝐸  

𝑒(0+) = 0, 𝑢(0+) = 𝐸, 𝑢𝐶(0
+) = 0, 𝑣(0+) = 𝐸, 𝑠(0+) = 0 

ainsi que l’équation différentielle vérifiée : 
𝑑𝑣(𝑡)

𝑑𝑡
+
1

𝜏
𝑣(𝑡) =

𝑑𝑢(𝑡)

𝑑𝑡
. à l’instant 𝑇0, l’entrée 𝑒 bascule à nouveau avec 

𝑒(𝑇0) = 𝐸. Soit 𝑇𝑏  l’instant de basculement de la porte NON ; montrer que 𝑇𝑏 = 𝜏 × ln(2) . Déterminer les évolutions 

des différentes tensions entre 𝑡 = 0 et 𝑇0 en séparant  les deux cas 𝑇𝑏 > 𝑇0  et 𝑇𝑏 < 𝑇0 . Tracer les chronogrammes des 

différentes tensions. 

la tension 𝑢𝐶(𝑡) = 𝑢(𝑡) − 𝑣(𝑡) = 𝐸 − 𝑣(𝑡) aux bornes du condensateur va évoluer avec  

𝑑𝑣(𝑡)

𝑑𝑡
+
 

𝜏
𝑣(𝑡) =

𝑑𝑢(𝑡)

𝑑𝑡
= 0 

La solution de cette équation est de la forme 𝑣(𝑡) = 𝐴𝑒− 𝑡/𝜏 = 𝐸𝑒− 𝑡/𝜏 en exploitant la C.I. 

La tension 𝑣(𝑡) diminuant de manière exponentielle au fur et à mesure de la charge du condensateur, elle va, à un moment, 

passer sous le seuil de basculement de la porte NON. Si on suppose que ce basculement a lieu lorsque  𝑣 =  𝐸/2, alors celui-

ci aura lieu à l’instant 𝑡 = 𝑇𝑏  tel que  

𝑣(𝑡 = 𝑇𝑏) = 𝐸𝑒
− 𝑇𝑏/𝜏 =

𝐸

2
     ⟹         𝑻𝒃 = 𝝉 × 𝐥𝐧 (𝟐) 

Cas n°1 : 𝑻𝟎 > 𝑻𝒃 

L’entrée 𝑒 est toujours à 0 alors que la sortie est passée de 0 à 𝐸 (état haut) au bout du temps 𝑇𝑏 , l 

a tension 𝑢 = 𝑒. 𝑠 = 𝐸 ne change donc pas et le condensateur continue de se décharger jusqu’à 𝑡 = 𝑇0 où 𝑒(𝑡) basculant à 

𝐸, 𝑢(𝑡) bascule également car on a désormais 𝑢 = 𝑒. 𝑠 = 𝐸. 𝐸 = 0. 
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La continuité de la tension aux bornes du condensateur impose alors que 𝑣(𝑡) subissent une discontinuité afin de vérifier 

𝑢(𝑇0
+) − 𝑣(𝑇0

+) = 𝑢(𝑇0
−) − 𝑣(𝑇0

−) ⟹ 0 − 𝑣(𝑇0
+) = 𝐸 − 𝑣(𝑇0

−) ⟹ 𝑣(𝑇0
+) = 𝑣(𝑇0

−) − 𝐸 et partant de cette valeur, le 

condensateur va poursuivre sa décharge vers 0. 

  

Cas n°2 : 𝑻𝟎 < 𝑻𝒃 

L’entrée 𝑒 est déjà repassée à l’état haut 𝑒 = 𝐸 alors que la sortie n’a pas encore basculé, mais cela n’entraine pas de 

modification de 𝑢 ni de la poursuite de la décharge du condensateur car 𝑢 = 𝑒. 𝑠 = 𝐸 (sortie à l’état bas). 

Ce n’est qu’au bout de la durée 𝑇𝑏  que 𝑠(𝑡) bascule à l’état haut 𝐸, entrainant alors celle de 𝑢 vers 0. 

La continuité de la tension aux bornes du condensateur impose alors que 𝑣(𝑡) subisse une discontinuité à l’instant 𝑇𝑏 afin de 

vérifier 𝑢(𝑇𝑏
+) − 𝑣(𝑇𝑏

+) = 𝑢(𝑇𝑏
−) − 𝑣(𝑇𝑏

−) ⟹ 0 −
𝐸

2
= 𝐸 − 𝑣(𝑇0

−) ⟹ 𝑣(𝑇0
+) = −𝐸/2 et partant de cette valeur, le 

condensateur va poursuivre sa décharge vers 0. 

L’état de sortie 0 est donc un état instable de durée 𝑇𝑏 , quelle que soit la durée du passage 𝑇0 à 0 de la tension d’entrée. 

 
 
 
 

6.   Etudier la stabilité du montage ci-contre. 

Comment qualifie-t-on ce type de montage ? 

Analyse générale : portes logiques idéales donc 

d’impédance d’entrée infinie : 𝑖 traversant 𝑅’ nul ; tension 

aux bornes de 𝑅’    =  0.  

D’après la loi des mailles :  𝑣 = 𝑣𝑒2.  

 s’il existe une tension stable, le condensateur se comporte comme un interrupteur ouvert, il n’y a donc pas d’intensité circulant 

dans 𝑅, soit 𝑣 = 𝑣𝑠2 = 𝑣𝑒1  or   𝑣 = 𝑣𝑒2  , mais d’après la caractéristique d’une porte NON, 𝑣𝑠2 = 𝑣𝑒2  : incohérent. 

Il n’existe aucune sortie stable d’un tel système, qui va osciller entre des états instables. Il s’agit d’un oscillateur astable. 

 
 

7. ** Donner l’équation logique de cette bascule RS, montrer que les deux circuits proposés sont équivalents et expliquer 

son principe de fonctionnement.  

 

 

 

 

 ( )

 ( )

 ( )

s( )   
 

  
0

cas où   
 
<  

0

 

 

 

 

 ( )

 ( )

 ( )

s( )   
 

  
0

  

 =0  =0

cas où   
 
>  

0

 
    

 
      2   2 

 

   

    



 

Pour le circuit (a) : On effectue la simple traduction des opérations en distinguant uniquement 𝑄𝑛+1 de 𝑄𝑛. On obtient  

𝑄𝑛+1 = 𝑆 + 𝑅. 𝑄𝑛 

Pour le circuit (b) : 𝑄𝑛+1 = 𝑆. 𝑄𝑛
′ , or d’après la loi de de Morgan : 

 𝑄𝑛+1 = 𝑆. 𝑄𝑛
′ = 𝑆. 𝑅. 𝑄𝑛 = 𝑆 + 𝑅. 𝑄𝑛 

 

Etude de la stabilité, en introduisant 𝐼𝑛 la sortie de la 2ème porte logique du circuit (a) : 

Cas n°1 : (𝑹, 𝑺) = (𝟎, 𝟏) 

Si 𝑄𝑛 = 0, alors 𝐼𝑛 = 𝑅.𝑄𝑛 = 0, donc 𝑄𝑛+1 = 𝑆 + 𝑅. 𝑄𝑛 =  + 0 =  . La sortie 𝑄 = 0 n’est donc pas stable et 

bascule à 𝑄 =  . 

Si désormais 𝑄𝑛 =  , alors 𝐼𝑛 = 𝑅.𝑄𝑛 =  , donc 𝑄𝑛+1 = 𝑆 + 𝑅. 𝑄𝑛 =  +  =  . La sortie 𝑄 =   est donc stable et 

se maintient. 

Il s’agit du cas d’inscription.  

 

Cas n°2 : (𝑹, 𝑺) = (𝟏, 𝟎) 

Si 𝑄𝑛 =  , alors 𝐼𝑛 = 𝑅.𝑄𝑛 = 0, donc 𝑄𝑛+1 = 𝑆 + 𝑅. 𝑄𝑛 = 0 + 0 = 0. La sortie 𝑄 = 0 n’est donc pas stable et 

bascule à 𝑄 =  . 

Si désormais 𝑄𝑛 = 0, alors 𝐼𝑛 = 𝑅.𝑄𝑛 = 0, donc 𝑄𝑛+1 = 𝑆 + 𝑅. 𝑄𝑛 = 0 + 0 = 0. La sortie 𝑄 = 0 est donc stable et 

se maintient. 

Il s’agit du cas d’effacement.  

 

Cas n°3 : (𝑹, 𝑺) = (𝟎, 𝟎) 

Si 𝑄𝑛 =  , alors 𝐼𝑛 = 𝑅.𝑄𝑛 =  , donc 𝑄𝑛+1 = 𝑆 + 𝑅. 𝑄𝑛 = 0 +  =  . La sortie 𝑄 =   est donc stable et mémorisée. 

Si 𝑄𝑛 = 0, alors 𝐼𝑛 = 𝑅.𝑄𝑛 = 0, donc 𝑄𝑛+1 = 𝑆 + 𝑅. 𝑄𝑛 = 0 + 0 = 0. La sortie 𝑄 = 0 est donc stable et mémorisée. 

Il s’agit de l’état de mémorisation.  

𝑺 𝑹 𝑸𝒏+𝟏 Action 
1 0 1 Mise à un (inscription-Set) 
0 1 0 Mise à zéro (effacement-Reset) 
0 0 𝑸𝒏 Mémoire 
1 1 1 État interdit – inscription prioritaire 

8.   Etablir l’équation de propagation (au choix de l’examinateur) du champ 𝐸⃗  ou du champ 𝐵⃗  associés à une onde 

électromagnétique se propageant dans un milieu assimilable au vide. 

Équation pour le champs électrique 𝑬⃗⃗   

ro ⃗⃗ ⃗⃗  ⃗ (ro ⃗⃗ ⃗⃗  ⃗ (𝐸⃗ )) = grad⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗ (d   (𝐸⃗ )) − ∆⃗⃗ 𝐸⃗       



Avec (MG) dans le vide :  d   (𝐸⃗ ) = 0  soit ro ⃗⃗ ⃗⃗  ⃗ (ro ⃗⃗ ⃗⃗  ⃗ (𝐸⃗ )) = −∆⃗⃗ 𝐸⃗   

Avec (MF) :     ro ⃗⃗ ⃗⃗  ⃗ (𝐸⃗ ) = −
𝜕𝐵⃗ 

𝜕𝑡
      soit       ro ⃗⃗ ⃗⃗  ⃗  (−

𝜕𝐵⃗ 

𝜕𝑡
) = −∆⃗⃗ 𝐸⃗  ou 

Indépendance des variables d’espace et de temps : on put inverser l’opérateur rotationnel et la dérivée temporelle 

ro ⃗⃗ ⃗⃗  ⃗  (
𝜕𝐵⃗ 

𝜕𝑡
) = ∆⃗⃗ 𝐸⃗ =

𝜕(ro ⃗⃗ ⃗⃗  ⃗ 𝐵⃗ )

𝜕𝑡
 

Or selon (MA) dans le vide : ro ⃗⃗ ⃗⃗  ⃗ (𝐵⃗ ) = 𝜇0𝜀0 
𝜕𝐸⃗ 

𝜕𝑡
   d’où    ∆⃗⃗ 𝐸⃗ = 𝜇0𝜀0 

𝜕2𝐸⃗ 

𝜕𝑡2
 

Finalement   ∆⃗⃗ 𝐸⃗ − 𝜇0𝜀0
𝜕2𝐸⃗ 

𝜕𝑡2
= 0⃗    

Équation pour le champ magnétique 𝑩⃗⃗  

ro ⃗⃗ ⃗⃗  ⃗ (ro ⃗⃗ ⃗⃗  ⃗ (𝐵⃗ )) = grad⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗ (d   (𝐵⃗ )) − ∆⃗⃗ 𝐵⃗       

Avec (MΦ) :  d   (𝐵⃗ ) = 0  soit ro ⃗⃗ ⃗⃗  ⃗ (ro ⃗⃗ ⃗⃗  ⃗ (𝐵⃗ )) = −∆⃗⃗ 𝐵⃗  

Avec (MA) dans l    d  : ro ⃗⃗ ⃗⃗  ⃗ (𝐵⃗ ) = 𝜇0𝜀0 
𝜕𝐸⃗ 

𝜕𝑡
   d’où    ro ⃗⃗ ⃗⃗  ⃗  (𝜇0𝜀0 

𝜕𝐸⃗ 

𝜕𝑡
) = −∆⃗⃗ 𝐵⃗  ou 

Indépendance des variables d’espace et de temps : on put inverser l’opérateur rotationnel et la dérivée temporelle 

𝜇0𝜀0ro ⃗⃗ ⃗⃗  ⃗  (
𝜕𝐸⃗ 

𝜕𝑡
) = −∆⃗⃗ 𝐵⃗ = 𝜇0𝜀0

𝜕(ro ⃗⃗ ⃗⃗  ⃗ 𝐸⃗ )

𝜕𝑡
 

Or selon (MF) : ro ⃗⃗ ⃗⃗  ⃗ (𝐸⃗ ) = − 
𝜕𝐵⃗ 

𝜕𝑡
   d’où    ∆⃗⃗ 𝐵⃗ = 𝜇0𝜀0 

𝜕2𝐵⃗ 

𝜕𝑡2
 

D’où    ∆⃗⃗ 𝐵⃗ − 𝜇0𝜀0
𝜕2𝐵⃗ 

𝜕𝑡2
= 0⃗      

Les champs vectoriels 𝐸⃗  et 𝐵⃗  vérifient des équations de la même forme  ∆⃗⃗ 𝑎 − 𝜇0𝜀0
𝜕2𝑎⃗ 

𝜕𝑡2
= 0⃗  :  

∆⃗⃗ 𝐸⃗ − 𝜇0𝜀0
𝜕2𝐸⃗ 

𝜕𝑡2
= 0⃗      et ∆⃗⃗ 𝐵⃗ − 𝜇0𝜀0

𝜕2𝐵⃗ 

𝜕𝑡2
= 0⃗  

 

9.  Considérons une OPPH de la forme  𝐸⃗ = 𝐸𝑂  cos(𝜔𝑡 − 𝑘𝑥 + 𝜑) 𝑒 𝑦 se propageant dans le vide en vérifiant une 

équation de propagation de d’Alembert. Etablir la relation entre 𝜔 et 𝑘, dite relation de dispersion (méthode au choix 

de l’examinateur, avec ou sans passage aux grandeurs complexes).  

Méthode N°1 (champs réel) 

calcul des dérivées partielles par rapport au temps et à 𝑥, qu’il faut injecter dans l’équation de d’Alembert 

  ∆𝐸⃗ =
1

𝑐2

𝜕2𝐸⃗ 

𝜕𝑡2
 

ici, ∆𝐸⃗ =
𝜕2𝐸⃗ 

𝜕𝑥2
=

1

𝑐2

𝜕2𝐸⃗ 

𝜕𝑡2
        avec    

𝜕2𝐸⃗ 

𝜕𝑥2
= −𝑘2𝐸𝑂  𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑥 + 𝜑) 𝑒 𝑦   et    

𝜕2𝐸⃗ 

𝜕𝑡2
= −𝜔2𝐸𝑂  𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑥 + 𝜑) 𝑒 𝑦 

En simplifiant, on trouve −𝑘2 +
1

𝑐2
𝜔2 = 0  soit en choisissant des grandeurs positives :  𝑘 =

𝜔

𝑐
 

Méthode N°2 (champs complexe) 

En introduisant la notation complexe :  𝐸⃗ = 𝐸0   xp  (𝜔𝑡 − 𝑘𝑥) 𝑒𝑦⃗⃗⃗⃗ ,   avec   𝐸0 = 𝐸0𝑒
𝑖𝜑  

équation de d’Alembert : ∆𝑬⃗⃗ =
𝝏𝟐𝑬⃗⃗ 

𝝏𝒙𝟐
=

𝟏

𝒄𝟐

𝝏𝟐𝑬⃗⃗ 

𝝏𝒕𝟐
 

Obtention de la relation de dispersion : 

𝐸⃗ = 𝐸0   xp  (𝜔𝑡 − 𝑘𝑥) 𝑒𝑦⃗⃗⃗⃗  

Dérivées spatiales : 
𝜕𝐸⃗ 

𝜕𝑥
= −𝑖𝑘𝐸⃗ = −𝑖𝑘𝐸0   xp  (𝜔𝑡 − 𝑘𝑥) 𝑒𝑦⃗⃗⃗⃗                     

𝜕2𝐸⃗ 

𝜕𝑥2
= −𝑘2𝐸⃗ = −𝑘2𝐸0   xp  (𝜔𝑡 − 𝑘𝑥) 𝑒𝑦⃗⃗⃗⃗     



Dérivées temporelles : 
𝜕𝐸⃗ 

𝜕𝑡
= 𝑖𝜔𝐸⃗ = 𝑖𝜔𝐸0   xp  (𝜔𝑡 − 𝑘𝑥) 𝑒𝑦⃗⃗⃗⃗                     

𝜕2𝐸⃗ 

𝜕𝑡2
= −𝜔2𝐸⃗ = −𝜔2𝐸0   xp  (𝜔𝑡 − 𝑘𝑥) 𝑒𝑦⃗⃗⃗⃗     

En injectant ces relations dans l’équation de propagation de d’Alembert : ∆𝑬⃗⃗ =
𝝏𝟐𝑬⃗⃗ 

𝝏𝒙𝟐
=

𝟏

𝒄𝟐

𝝏𝟐𝑬⃗⃗ 

𝝏𝒕𝟐
 

On trouve 

−𝑘2𝐸⃗ =
𝟏

𝒄𝟐
× (−𝜔2𝐸⃗ ) 

Soit 𝑘2 =
𝜔2

𝒄𝟐
, les grandeurs physiques étant définies positives, on retrouve bien la relation de dispersion : 

𝝎 = 𝒌𝒄         so       𝝀 = 𝒄𝑻 

10.   Donner l’expression des équations de Maxwell dans le vide en représentation complexe. En déduire la relation de 

structure entre 𝐸⃗   et 𝐵⃗  pour des ondes planes progressives. 

Pour un champ de la forme 𝐸⃗ = 𝐸0⃗⃗⃗⃗   xp  (𝜔𝑡 − 𝑘⃗ . 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  ) ∶ 

d  𝐸⃗ = −𝑖𝑘⃗ ⋅ 𝐸⃗ = 0     ⟹        𝒌⃗⃗ . 𝑬⃗⃗ = 𝟎

d  𝐵⃗ = −𝑖𝑘⃗ ⋅ 𝐵⃗ = 0     ⟹       𝒌⃗⃗ . 𝑩⃗⃗ = 𝟎
        

ro ⃗⃗ ⃗⃗  ⃗𝐸⃗ = −
𝜕𝐵⃗ 

𝜕𝑡
⟹ −𝑖𝑘⃗ ∧ 𝐸⃗ = −𝑖𝜔𝐵⃗              ⟹ 𝐵⃗ =

𝑘⃗ ∧ 𝐸⃗ 

𝜔

ro ⃗⃗ ⃗⃗  ⃗𝐵⃗ =
 

𝑐2
𝜕𝐸⃗ 

𝜕𝑡
⟹ −𝑖𝑘⃗ ∧ 𝐵⃗ = 𝑖

𝜔

𝑐2
𝐸⃗                       ⟹ 𝐸⃗ = −

𝑐2𝑘⃗ ∧ 𝐵⃗ 

𝜔

 

Equation de Maxwell-Faraday :  𝑘⃗ ∧ 𝐸⃗ = 𝜔𝐵⃗             so         𝐵⃗ =
𝑘⃗ ∧𝐸⃗ 

𝜔
       

𝑘⃗  et 𝜔 étant des constantes réelles, cette relation reste vraie pour les champs réels (linéarité de la partie réelle) : 

𝐵⃗ =
𝑘⃗ ∧ 𝐸⃗ 

𝜔
 

De plus, avec 𝑘⃗ = 𝑘𝑢𝑘⃗⃗⃗⃗   et la relation de dispersion 𝜔 = 𝑘𝑐 : 𝐵⃗ =
𝑘𝑢𝑘⃗⃗ ⃗⃗  ⃗∧𝐸⃗ 

𝑘𝑐
  

𝐵⃗ =
𝑢𝑘⃗⃗⃗⃗  ∧ 𝐸⃗ 

𝑐
 

Cette relation étant vraie pour toute OPPH, elle est également vraie pour toute OPP en tant que somme d’OPPH se 

propageant dans le même sens, donc de même vecteur 𝑢𝑘⃗⃗⃗⃗  . 

11.   Le champ électrique d’une onde électromagnétique est donné par : 𝐸⃗ = 𝐸0 cos (𝜔 (𝑡 − 
𝑥

𝑐
)) 𝑒 𝑧.  Donner 

l’expression du champ magnétique associé à cette onde. 

Variable 𝑡 − 
𝑥

𝑐
 : il s’agit d’une onde se propageant dans la direction (𝑂𝑥) dans le sens direct, soit selon le vecteur de 

propagation 𝑢⃗ 𝑘 = + 𝑒 𝑥. La norme du champ électrique ne dépend que de la variable d’espace 𝑥, le plan 𝑥 =  𝑐𝑡𝑒 est 

donc une surface d’onde : l’onde est plane.  

On peut alors utiliser la relation de structure des OemPP : 

𝐵⃗ =
𝑢⃗ 𝑘  ∧ 𝐸⃗ 

𝑐
=
𝑒 𝑥  ∧ (𝐸0 cos (𝜔 (𝑡 − 

𝑥
𝑐
)) 𝑒 𝑧)

𝑐
  

 𝐵⃗ = −
𝐸0

𝑐
cos (𝜔 (𝑡 − 

𝑥

𝑐
)) 𝑒 𝑦 

 


