COLLES DE PHYSIQUE - MPI —2025-2026

Colle N°13 — Semaine pronote N°20 : 12 au 17 Janvier 2026

= Au programme des exercices

— Chapitre EM5 : Equations de Maxwell, énergie électromagnétique et vecteur de Poynting

—> Chapitre ELEC3 : Portes logiques

— Chapitre OND1 : Propagation d’ondes électromagnétiques dans le vide (attention ! I’étude énergétique et

la polarisation n’ont pas encore été traitées)

Questions de cours seules

@ Enoncer les 4 équations de Maxwell sous forme locale en indiquant la loi intégrale associée. Comment se simplifient-
elles dans le vide ? en régime stationnaire ? dans le cadre de ’ARQS magnétique ?

W Rappeler I'équation de Poynting (bilan local d’énergie électromagnétique) en définissant soigneusement les
différents termes intervenant dans I’équation.

@ On considére une onde de la forme s(x,t) = A cos(wt — kx + ¢,). Indiquer les relations entre pulsation,

fréquence et période temporelle, puis celle entre pulsation spatiale et longueur d’onde, en rappelant les unités de ces
- P . . , 92 92 . .

différentes grandeurs. Cette onde vérifie I'équation de propagation de D’Alembert : ﬁ - ciZ 6_t; = 0. Etablir la relation

de dispersion associée en introduisant la notation complexe et en déduire la relation associée entre longueur d’onde et

période temporelle.

@ On étudie le convertisseur logique tension-fréquence \\ uc(t)
réalisé a I'aide du circuit ci-contre constitué de portes

& P

logiques idéales. On suppose que la porte NON bascule a —

E /2 et on peut montrer que la sortie s = E correspond a
un état stable du systéme. e(t)

(a) Déterminer les caractéristiques des états stables de ce R

systeme. Comment qualifie-t-on un tel systeme ? “{\\

(b) Partons d’un montage dans I'état stable correspondant a une entrée e(t < 0) = E depuis un temps trés long.
Supposons qu’a t = 0, I'entrée e bascule a 0 pendant une durée T, (avant de revenir a 1). Que se passe-t-ila t =
0*dans le montage ? On donnera les valeurs des différentes tensions aux instants t = 0"etat = 07.

On reprend la question précédente, et on donne les valeurs des tensions initiales : -
e(07)=E,u(07) =0,uc(07)=0,v(07)=0,s(07) =E

e(0") =0,u(0*) = E,uc(0") =0,v(0*) = E,s(0*) =0

. . . . . el dv(®) |1 du(t) . . . .
ainsi que I'équation différentielle vérifiée : %+;v(t) = d—i).a I'instant T, I'entrée e bascule a nouveau avec

e(T,) = E.Soit T, I'instant de basculement de la porte NON ; montrer que T, = 7 X In(2) . Déterminer les évolutions
des différentes tensions entre t = 0 et T, en séparant les deuxcas T, > T, et T, < T, . Tracer les chronogrammes des

différentes tensions.

e(t) B

s(t)



6. € Etudier la stabilité du montage ci-contre.
Comment qualifie-t-on ce type de montage ? R
C Rl
|  —
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7. ** Donner I'équation logique de cette bascule RS, montrer que les deux circuits proposés sont équivalents et expliquer

DD
R —QR D SQ

(a) Circuit directement issu de la fonction logique 1. (b) Circuit équivalent a portes NAND.

son principe de fonctionnement.

8. @ Etablir 'équation de propagation (au choix de I’examinateur) du champ E ou du champ B associés a une onde

électromagnétique se propageant dans un milieu assimilable au vide.

9. @ Considérons une OPPH de la forme E= E, cos(wt —kx + @) §y se propageant dans le vide en vérifiant une
équation de propagation de d’Alembert. Etablir la relation entre w et k, dite relation de dispersion (méthode au choix

de I'examinateur, avec ou sans passage aux grandeurs complexes).

10. @ Donner I'expression des équations de Maxwell dans le vide en représentation complexe. En déduire la relation de

structure entre E et §

-

11. € Le champ électrique d’une onde électromagnétique est donné par: E=EO cos (w (t—%)) €,. Donner

I’expression du champ magnétique associé a cette onde.



= Questions de cours avec éléments de réponse

1. € Enoncer les 4 équations de Maxwell sous forme locale en indiquant la loi intégrale associée. Comment se
simplifient-elles dans le vide ? en régime stationnaire ? dans le cadre de ’ARQS magnétique ?

Equation de Maxwell Gauss | Maxwell Thomson | Maxwell Faraday Maxwell Ampeére
. . oy _ P =y I 0B | . . R oE
Régimes variables div(E) = & div(B) =0 rot(E) = - rot(B) = uof + Hogo -
o , : oo oz 0B oE
Régime variable dans le vide div(E) =0 div(B) =0 rot(E) = —— rot(B) = —
g lV( ) 1V( ) rot(E) T rot(B) Ho&o T
Régimes stationnaires div(ﬁ) _Pr di (§) _ 0 ﬁ(ﬁ) _ 5 ﬁ(ﬁ) o
(indépendants du temps) &o v B - = HJ
» Loy P oz . aB —rmN s
ARQS magnétique div(E) = 8—0 div(B) =0 rot(E) = =— rot(B) = uoJ

2. @ ¥ Rappeler 'équation de Poynting en définissant soigneusement les différents termes intervenant dans I’équation.
Equation locale de Poynting

Ottom (M, ) _

5t — div(ﬁ) — ]l]?

rayonnement  dissipation

Elle traduit le bilan local de conservation de I'énergie électromagnétique

Avec U,y (M, t) densité volumique d’énergie électromagnétique associée en un point M, a une date t, au champ

électromagnétique (E(M, t), §(M, t))

1 B2(M,t)

1
Upy (M, ) = EEOEZ(M, t) + 24
0

Telle que I'énergie électromagnétique U,,,, d’un systeme de volume (V) soit :

Ue (1) = Jﬂ;muem(M, t) dt

Tl vecteur de Poynting correspondant au vecteur densité de flux de puissance électromagnétique rayonnée en W.m~

dUem =2 Ta
Pom = = I1.dS
==,

Le flux du vecteur de Poynting Tou Ra travers une surface (£) quelconque représente la puissance rayonnée

2,

algébriquement a travers la surface (X) dans le sens de ﬁ, et s’exprime en fonction de E et B
EAB
Ho

=

Le vecteur de Poynting donne la direction de propagation de I’énergie électromagnétique, qui coincide avec la direction de
propagation de I'onde électromagnétique si elle est progressive.

3. @ On considére une onde de la forme s(x,t) = A cos(wt — kx + ¢y). Indiquer les relations entre pulsation,

fréquence et période temporelle, puis celle entre pulsation spatiale et longueur d’onde, en rappelant les unités de ces
ees PP . . ) 92 1 92 . .

différentes grandeurs. Cette onde vérifie I'équation de propagation de D’Alembert : ﬁ -= a_tj = 0. Etablir la relation

de dispersion associée en introduisant la notation complexe et en déduire la relation associée entre longueur d’onde et

période temporelle.



Période Fréquence | Pulsation
Périodicité temporelle T fouv w
Périodicité spatiale A g k
Longueur d’onde Norme du vecteur d’onde
T W v ‘ A k o
Unité (SI) s Rad.s? st ‘ m Rad.m™ m!
2 2 K 2m
w = T = — = —
! T A

Notation complexe pour la solution s(x,t) = Aexp j(wt — kx + @)

as

ox

a—§—§(><joo) et

at = E(X (_]kx))

., . . . . . . , , a2 1 92
Afin d’obtenir la relation de dispersion, on exploite I’équation d’onde de d’Alembert H_xz -= 6—; =

1
(=k)%s = = (+jw)?s = 0

1
~k*s + S w?s =0
c
w? w?
s <c_2 - k2> = 0d’'ou la relation de dispersion k? = —

c2

La relation de dispersion associée a I’équation de d’Alembert posséde deux solutions (w étant une pulsation définie

positivement) : k = + % La longueur d’onde et la période étant également définies positivement, on obtient alors a

partir de la relation de dispersion A = cT.

Ces deux solutions de k sont les deux composantes possibles du vecteur d’onde k le long de la direction de
propagation (Ox) qui correspondent aux deux sens de propagation possibles d’une onde progressive le long de la

corde

k=1

ale

€y

La direction et le sens du vecteur d’onde k nous renseigne sur la direction et le sens de propagation de I’'onde tandis

o
que la norme du vecteur d’onde k nous renseigne sur la période spatiale qu’est la longueur d’onde selon la valeur de
la fréquence de I’excitation ayant donné naissance a l'onde.

4. @On étudie le convertisseur logique tension- L u.(t)
-« .
fréquence réalisé a I'aide du circuit ci-contre constitué [ =0
: . & P~ 1 p=——
de portes logiques idéales. On suppose que la porte — C 1.
NON bascule a E/2 et on peut montrer que la sortie . u(t) R v(t) s(t)
s = E correspond a un état stable du systeme. e(t) .
1
R

(c)

(d)

Déterminer les caractéristiques des états stables de

ce systéme. Comment qualifie-t-on un tel
systeme ?

Partons d’un montage dans I'état stable correspondant a une entrée e(t < 0) = E depuis un temps tres long.
Supposons qu’a t = 0, I'entrée e bascule a 0 pendant une durée T, (avant de revenir a 1). Que se passe-t-il a t =

0*dans le montage ? On donnera les valeurs des différentes tensions aux instants t = 0"eta ¢t = 0™.

(a) Siun état stable de sortie existe, grandeurs indépendantes du temps, dont u..

duc

=0 = v(t) = Riz = 0.

D'Ol‘liR = iC = C

Alors, d’apreés les caractéristiques d’une porte NON : s(t) = E.



Pour que s(t) reste égale a E, il faut que v(t) n’évolue pas : v(t) = 0,

il faut donc u, = cte, d’ot u(t) = cte.

2 cas possibles :

siu(t) = E, I'état de charge ne change pas si e(t) reste égale a 0 car dans ce cas seulement :
ut)=es=e.E=EFE = e=0.

siu(t) = 0, I’état de charge ne change pas si e(t) reste égale a E car dans ce cas seulement :

u(t) =es=eE=0 = e=E.

Ainsi, Ve(t) maintenue constante (d 0 ou a E), s(t) = E = unique état stable du montage, qui est donc dit
monostable.

at = 0, I'entrée e bascule a 0 pendant une durée T,.

Dans ce cas, u(0%) = E car au moins une des deux entrées de la porte NAND est désormais nulle ;
u(0t)=es=0s=0=E

La tension aux bornes du condensateur étant continue, on a

v(0") = u(0*) —uc(0") =u(0%) —us(07) =E—0=Eets =v =0, la sortie du systéme passe donc a 0 et les

deux entrées de la porte NAND sont alors nulles.

e(07) =E,u(07) =0,u,(07) =0,v(07) =0,s(07) =E
e(0Y) =0,u(0*) = E,uc(0%) =0,v(0*) = E,s(0*) =0
La sortie s n’étant plus égale a E, le systéme n’est plus dans un état stable et va donc évoluer au cours du temps.

5. Onreprend la question précédente, et on donne les valeurs des tensions initiales : —

e(07) =E,u(07) = 0,uc(07) = 0,v(07) =0,s(07) = E e(t) .

e(0Y) =0,u(0*) = E,uc(0") =0,v(0*) = E,s(0*) =0

- )l ) e . (g d d < ) . R
ainsi que I'équation différentielle vérifiée : %+%v(t) = %.a Iinstant T, 'entrée e bascule a nouveau avec
e(T,) = E.Soit Tj, I'instant de basculement de la porte NON ; montrer que T, = T X In(2) . Déterminer les évolutions

des différentes tensions entre t = 0 et Ty en séparant lesdeuxcas T, > T, et T, < T, . Tracer les chronogrammes des
différentes tensions.

la tension us(t) = u(t) — v(t) = E — v(t) aux bornes du condensateur va évoluer avec

do(®) 1 du(t)
dt +?U(t)_ a0

La solution de cette équation est de la forme v(t) = Ae™ /T = Ee ™t/ en exploitant la C.1.

La tension v(t) diminuant de maniére exponentielle au fur et 3 mesure de la charge du condensateur, elle va, a un moment,
passer sous le seuil de basculement de la porte NON. Si on suppose que ce basculement a lieu lorsque v = E /2, alors celui-
ciaura lieu a l'instant t = T}, tel que

E
v(t=Tb)=Ee‘Tb/T:E = T,=txIn(2)

Casn°l: T, >T,

L’entrée e est toujours a 0 alors que la sortie est passée de 0 a E (état haut) au bout du temps T}, |

a tension u = e.s = E ne change donc pas et le condensateur continue de se décharger jusqu’a t = T,, ou e(t) basculant a

E, u(t) bascule également car on a désormaisu =e.s = E.E = 0.



La continuité de la tension aux bornes du condensateur impose alors que v(t) subissent une discontinuité afin de vérifier
wu(Ty) —v(T) =u(Ty) —v(Ty) = 0—v(TyH) =E —v(Ty) = v(Ty) =v(T;) — E et partant de cette valeur, le
condensateur va poursuivre sa décharge vers 0.

Casn2: T, <T,

L'entrée e est déja repassée a |'état haut e = E alors que la sortie n’a pas encore basculé, mais cela n’entraine pas de
modification de u ni de la poursuite de la décharge du condensateur car u = e.s = E (sortie a |’état bas).

Ce n’est qu’au bout de la durée T}, que s(t) bascule a I'état haut E, entrainant alors celle de u vers 0.

La continuité de la tension aux bornes du condensateur impose alors que v(t) subisse une discontinuité a I'instant T}, afin de
vérifier w(Ty) —v(Ty) =u(T,) —v(T,) =0 —g =E—-v(Ty;) = v(T§) = —E/2 et partant de cette valeur, le

condensateur va poursuivre sa décharge vers 0.

L’état de sortie 0 est donc un état instable de durée T}, quelle que soit la durée du passage T, a O de la tension d’entrée.

casou Tb<TO casou Tb>TO
T, T,

- >
e(t) 1 o E e(t)/ Lo : E
u(®) t u(®)y t
v(t) o t vy i t

— . -— .
s(9) T, s(t)4 T

=0 t t=0 t

6. @ Etudier la stabilit¢ du montage ci-contre. R
Comment qualifie-t-on ce type de montage ? C R
sné . i idé |  —
Ar?alys’e générale .’ .po'rt.es ' logiques /c’ieales do.nc N 1 O_|| 1 o—“
d’impédance d’entrée infinie : i traversant R’ nul ; tension
) v, v, v v,
aux bornesde R© = 0. el s1 v ez sz
D’apres la loi des mailles : v = v,,. I

s’il existe une tension stable, le condensateur se comporte comme un interrupteur ouvert, il n’y a donc pas d’intensité circulant
dans R, soit v = v, =V, OF V = V,, , mais d’aprés la caractéristique d’une porte NON, vy, = v,, :incohérent.

Il n’existe aucune sortie stable d’un tel systéme, qui va osciller entre des états instables. Il s’agit d’un oscillateur astable.

7. ** Donner I'’équation logique de cette bascule RS, montrer que les deux circuits proposés sont équivalents et expliquer
son principe de fonctionnement.



8.

R o D

(a) Circuit directement issu de la fonction logique 1. (b) Circuit équivalent a portes NAND.

Pour le circuit (a) : On effectue la simple traduction des opérations en distinguant uniquement Q,,,., de Q,,. On obtient

Qn+1 =S+ E Qn

Pour le circuit (b) : Qpy1 = S. Q,,, or d’apres la loi de de Morgan :

Etude de la stabilité, en introduisant I, la sortie de la 2™ porte logique du circuit (a) :
Casn°l:(R,S)=(0,1)

Si Q, =0, alors I, =R.Q,, = 0, donc Qn4; =S +R.Q, =1+ 0= 1. La sortie Q = 0 n’est donc pas stable et
bascule a Q = 1.

Si désormais Q,, = 1, alors I, = R.Q, = 1, donc Q.1 = S+ R.Q,, = 1+ 1 = 1. La sortie Q = 1 est donc stable et
se maintient.

I s’agit du cas d’inscription.

Casn2:(R,S) =(1,0)

SiQ, =1, alors I, =R.Q,, = 0, donc Qns1 =S +R.Q, =0+ 0= 0. La sortie Q = 0 n’est donc pas stable et
bascule a Q = 1.

Si désormais Q,, = 0, alors I, = R.Q,, = 0, donc Q.1 = S+ R.Q,, = 0+ 0 = 0. La sortie Q = 0 est donc stable et
se maintient.

Il s’agit du cas d’effacement.

Casn°3:(R,S) = (0,0)
SiQ, =1,alorsl, =R.Q, = 1,doncQ,,; =S +R.Q, = 0+ 1 = 1. La sortie Q = 1 est donc stable et mémorisée.
SiQ, = 0,alorsI, = R.Q, = 0,donc Qys1 =S +R.Q, = 0+ 0 = 0. La sortie Q = 0 est donc stable et mémorisée.

Il s’agit de I'état de mémorisation.

S R Qui1 Action

1 0 1 Mise a un (inscription-Set)

0 1 0 Mise a zéro (effacement-Reset)

0 0 Q. Mémoire

1 1 1 Etat interdit - inscription prioritaire

@ Etablir I'équation de propagation (au choix de I’examinateur) du champ E ou du champ B associés a une onde
électromagnétique se propageant dans un milieu assimilable au vide.

Equation pour le champs électrique E

rot (rot (E)) = grad (div (E)) — AE



Avec (MG) dans le vide : div (E) = 0 soit rot (ot (E)) = —AE

Avec (MF) : ot (E) = —g soit  rot (— g) = —AF ou

Indépendance des variables d’espace et de temps : on put inverser I'opérateur rotationnel et la dérivée temporelle

. <a§> _ sz 0(0tE)

rot [ —
at at
. — = 9E ,, . == 9%E

Or selon (MA) dans le vide : rot (B) = Hogo 5, dot AE = pyeg 3z

. — = aZE —
Finalement AE — Ho€o 5z = 0
Equation pour le champ magnétique B
rot (rot (B)) = grad (div (B)) — AB
Avec (M®) : div (B) = 0 soit rot (rot (B)) = —AB

. — = 9E ,, . — 0E\ _ =3

Avec (MA) dans le vide : rot (B) = Hofo 5, d’ou rot (,u(,eo E) = —AB ou
Indépendance des variables d’espace et de temps : on put inverser I'opérateur rotationnel et la dérivée temporelle

=3

__ (0E\ . a(rot E)
UoEprot Fr = —AB = yygg———=

Jt

— o 9B ,, . == _ 9%B
Or selon (MF) : rot (E) == d’ou AB = g, 5z
D'oii AB — pye PE 0

Hoto 5z =
T R [ . R o 9%d _ =

Les champs vectoriels E et B vérifient des équations de la méme forme Ad — pyeg a—tj =0:
—— azﬁ - —— 62§ -
AE—uos()ﬁ:O et AB—,uoeoﬁ=0

9. @ Considérons une OPPH de la forme E = E, cos(wt —kx + ¢) éy se propageant dans le vide en vérifiant une
équation de propagation de d’Alembert. Etablir la relation entre w et k, dite relation de dispersion (méthode au choix
de I'’examinateur, avec ou sans passage aux grandeurs complexes).

Méthode N°1 (champs réel)

calcul des dérivées partielles par rapport au temps et a x, qu’il faut injecter dans I’équation de d’Alembert

= 1 0%
AE = =—
c2 9t?
= 0%E 1 93%E 9%E S 3%E >
ici, AE =— =—=— avec — = —k?E, cos(wt —kx é, et — = —w?E, cos(wt —kx é
’ ax2 2 9t? PY) 0 ( + (P) y 9c2 0 ( + ‘P) 'y
S 1 . .. . w
En simplifiant, on trouve —k? + C—zwz =0 soit en choisissant des grandeurs positives : k= -

Meéthode N°2 (champs complexe)

En introduisant la notation complexe : E = E, exp i(wt — kx) e, avec Ey = E el

uation de d AR o PE_ 1%
équation de d’Alembert : AE = -5 = -3
Obtention de la relation de dispersion :
E = E, expi(wt — kx) ey,
L. s . aE o p . e aZE 20 2 . —
Dérivées spatiales : = = —ikE = —ikE, exp i(wt —kx) e, oz = —k"E = —k®Ey exp i(wt —kx) e,



(e 0E . = . . — 9%E = . —
Dérivées temporelles vl lwE = iwE, exp i(wt —kx) e, P —w’E = —a)zﬂ exp i(wt — kx) e,

9%’E 1 @%F

En injectant ces relations dans I’équation de propagation de d’Alembert : AE = 22

On trouve

| .
—k’E = % (—w?E)

2
‘ Soit k? = (:—2, les grandeurs physiques étant définies positives, on retrouve bien la relation de dispersion :

w = kc soit A =cT

10. @ Donner I'expression des équations de Maxwell dans le vide en représentation complexe. En déduire la relation de

structure entre E' et B pour des ondes planes progressives.

—

Pour un champ de la forme E = 5 exp i(wt —k. OM) :

divE=—-ik-E=0 = Kk.E=0
divB=-ik-B=0 = kB=0
.. 0B - - . kAE
rotE = —— = —ikANE = —iwB = B =—-+—
ot - - W
1 0E N W - R 2k AB
rotB=——= —-ikAB=i—E =FE=- =
c? ot - cz= = w
Equation de Maxwell-Faraday : kA E = wE soit E — knk

k et w étant des constantes réelles, cette relation reste vraie pour les champs réels (linéarité de la partie réelle) :

. kAE
B=——
w

De plus, avec k = kuy, et la relation de dispersion w = kc : B = el

kc

Uy AE

4

B =

Cette relation étant vraie pour toute OPPH, elle est également vraie pour toute OPP en tant que somme d’OPPH se
propageant dans le méme sens, donc de méme vecteur .

11. € Le champ électrique d’une onde électromagnétique est donné par: E=EO cos <a) (t—%)) é,. Donner

I’expression du champ magnétique associé a cette onde.

Variable t — = : il s’agit d’une onde se propageant dans la direction (Ox) dans le sens direct, soit selon le vecteur de
c

propagation i, = + €,. La norme du champ électrique ne dépend que de la variable d’espace x, le plan x = cte est
donc une surface d’onde : I'onde est plane.

On peut alors utiliser la relation de structure des OemPP :

S x\\ -
i, AR €x N (Epcos (w (t_E)> €,)

[ [

B =




