COLLES DE PHYSIQUE - MPI —2025-2026

Colle N°14 — Semaine pronote N°21 : 19 au 23 Janvier 2026

= Au programme des exercices
—> Chapitre ELEC3 : Portes logiques
— Chapitre ONDL1 : Propagation d’ondes électromagnétiques dans le vide

— Chapitre OND2 : Propagation d’ondes électromagnétiques dans les plasmas

= Questions de cours seules

1. @ On étudie le convertisseur logique tension-fréquence \\ u (t)
c

réalisé a I'aide du circuit ci-contre constitué de portes

logiques idéales. On suppose que la porte NON bascule a

E /2 et on peut montrer que la sortie s = E correspond a
u(t) Ri V(O s(t)

un état stable du systéme. e(t)

(a) Déterminer les caractéristiques des états stables de ce R

systeme. Comment qualifie-t-on un tel systéeme ? “{\\

(b) Partons d’'un montage dans I'état stable correspondant a une entrée e(t < 0) = E depuis un temps trés long.
Supposons qu’at = 0, I'entrée e bascule a 0 pendant une durée T, (avant de revenir a 1). Que se passe-t-ila t = 0*dans
le montage ? On donnera les valeurs des différentes tensions aux instants t = 0"etat = 0%.

2. On reprend la question précédente, et on donne les valeurs des tensions initiales : e(® -L-
e(07) =E,u(07) =0,uc(07) =0,v(07) =0,s(07) = E ————E
e(0+) = O!u(0+) = E! uC(O+) = Olv(0+) = EIS(O+) = O *
. )z . - . (e, dv(t) |1 du(t) . . ) . .
ainsi que I'équation différentielle vérifiée : T + ;v(t) =— 9 I'instant Ty, 'entrée e bascule a nouveau avec e(T,) =

E.Soit T, l'instant de basculement de la porte NON; montrer que T, =t X In(2) . Déterminer les évolutions des
différentes tensions entre t = 0 et T, en séparant les deux cas T, > T, et T, <T,. Tracer les chronogrammes des
différentes tensions.

3. @ Etudier la stabilité du montage ci-contre.
Comment qualifie-t-on ce type de montage ? R
C R'
| —
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4. ** Donner I'’équation logique de cette bascule RS, montrer que les deux circuits proposés sont équivalents et expliquer son
principe de fonctionnement.
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(a) Circuit directement issu de la fonction logique 1. (b) Circuit équivalent a portes NAND.

@ Etablir 'équation de propagation (au choix de I'examinateur) du champ E ou du champ B associés a une onde
électromagnétique se propageant dans un milieu assimilable au vide.

W Considérons une OPPH de la forme E = E, cos(wt —kx + ¢) éy se propageant dans le vide en vérifiant une équation
de propagation de d’Alembert. Etablir la relation entre w et k, dite relation de dispersion (méthode au choix de
I’examinateur, avec ou sans passage aux grandeurs complexes).

@ Donner I'expression des équations de Maxwell dans le vide en représentation complexe. En déduire la relation de

= —
structure entre E' et B pour des ondes planes progressives.

@ Le champ électrique d’une onde électromagnétique se propageant dans le vide est donné par :

=3

E = E,exp(i(wt — kx) &,. Etablir I'expression du champ magnétique associé ainsi que celle de la puissance rayonnée a
travers une surface S plane orthogonale a é,.

Polarisation d’une onde électromagnétique : polarisation rectiligne, polarisation circulaire.

On considére une onde électromagnétique plane se propageant dans le vide dans la direction uU. Exprimer la densité
volumique d’énergie et montrer que I'énergie électromagnétique est également répartie sous les formes électrique et
magnétique. Dans le cas d’'une OemPPH, établir I'expression de la densité volumique d’énergie moyenne.

Un laser hélium-néon émet un faisceau lumineux cylindrique de rayon r = 1,0 mm d’une onde plane monochromatique
de longueur d’'onde 1 = 632,8 nm. La puissance moyenne émise est P = 1,0 mW. On donne : py = 4m.1077 H.m™2.

Calculer les amplitudes E;,4x et Byax des champs électrique et magnétique.

" , L. . , . = . Ty P(ley— >
** Considérons I'onde électromagnétique suivante, se déplagant dans le vide : E = E|, sin (7) elkx=0Dg Quelle est sa

polarisation ? Déterminer le champ magnétique associé a cette onde.
Polariseur et analyseur ; Loi de Malus

@ On considére un plasma peu dense composé de cations supposés fixes et d’électrons libres de densité particulaire n,,
de charge —e, de masse m et on néglige les interactions des électrons avec les autres particules. Les électrons sont
considérés comme étant non relativistes. Définir la notion de plasma, établir I'expression de la conductivité du plasma et
définir la pulsation plasma w,, du plasma en fonction des grandeurs caractéristiques du systeme.

@ On étudie la possibilité de propagation du champ E =K, exp(i(wt - kx)) e, dans un plasma dilué dont la conductivité

nee?

N
électrique complexe vaut y(w) = —i . Etablir 'équation de propagation du champ E et en déduire la relation de

wme

dispersion caractéristique du plasma, ol on fera apparaitre la pulsation w,,.

2_,,2
W —wp

@ On considére un plasma dilué vérifiant la relation de dispersion EZ =— avec wg =

nee?

. Discuter des possibilités
Mmeé&o

de propagation d’'une OemPPH de pulsation w en fonction des valeurs de la pulsation w.



2

w?-w? nee? , .
P avec w? = —¢—. On étudie une OPPH de
c2 P mee

17. On considere un plasma dilué vérifiant la relation de dispersion kz =

pulsation w polarisée rectilighement selon e, produite par une source extérieure, et se propageant depuis le vide vers ce
plasma dilué dans la direction e,.. Pour w < wy,, montrer que le vecteur de Poynting moyen est nul.



= Questions de cours avec éléments de réponse

1. @On étudie le convertisseur logique tension- \\ u(t)

fréquence réalisé a l'aide du circuit ci-contre < -0
s . .1z & 0—0—| | _ > 1 b
constitué de portes logiques idéales. On suppose M
—|
que la porte NON bascule a E /2 et on peut montrer C
je s = 5 un & u(t) Ri| v s(t)

que la sortie s = E correspond a un état stable du ¢(t)
systeme. i

(c) Déterminer les caractéristiques des états stables de “{‘\
ce systéme. Comment qualifie-t-on un tel
systeme ?

(d) Partons d’'un montage dans I'état stable correspondant a une entrée e(t < 0) = E depuis un temps tres long.
Supposons qu’at = 0, I'entrée e bascule a 0 pendant une durée T, (avant de revenir a 1). Que se passe-t-ila t = 0*dans
le montage ? On donnera les valeurs des différentes tensions aux instants t = 0"etat = 0%.
(a) Siun état stable de sortie existe, grandeurs indépendantes du temps, dont u.
D’ou iy —lC—CduC—O = v(t) = Rig = 0.
Alors, d’aprés les caractéristiques d’une porte NON : s(t)=E
Pour que s(t) reste égale a E, il faut que v(t) n’évolue pas : v(t) = 0,
il faut donc u, = cte, d’ot u(t) = cte.
2 cas possibles :
siu(t) = E, I'état de charge ne change pas si e(t) reste égale a 0 car dans ce cas seulement :
u(t) =es=eE=EF = e=0.
siu(t) = 0, I'état de charge ne change pas si e(t) reste égale a E car dans ce cas seulement :
u(t)=es=eE=0 = e=E.
Ainsi, Ve(t) maintenue constante (ad 0 ou a E), s(t) = E = unique état stable du montage, qui est donc dit monostable.
at =0, I'entrée e bascule a 0 pendant une durée T,.
Dans ce cas, u(0") = E car au moins une des deux entrées de la porte NAND est désormais nulle ;

u(0)=es=0s=0=E
La tension aux bornes du condensateur étant continue, on a
v(0") =u(0*) —uc(0") =u(0*) —u(0")=E—-0=E et s =v =0, la sortie du systéme passe donc & O et les
deux entrées de la porte NAND sont alors nulles.
e(O_) = El u(O_) = 01 uC(O_) = 01 U(O_) = O!S(O_) =E
e(0%) = 0,u(0") = E,uc(0%) = 0,v(0") = E,s(0*) =0
La sortie s n’étant plus égale a E, le systéme n’est plus dans un état stable et va donc évoluer au cours du temps.
. . L T
2. On reprend la question précédente, et on donne les valeurs des tensions initiales : e(® PR
e(07) =E,u(07) =0,uc(07) =0,v(07) =0,s(07) = E ————E
e(0Y) =0,u(0*) = E,uc(0") =0,v(0*) = E,s(0*) =0 *

ainsi que I'équation différentielle vérifiée :

d
v(t) (t) = u( ). a Vinstant Ty, 'entrée e bascule a nouveau avec e(T,) =

E.Soit T, linstant de basculement de la porte NON ; montrer que T, =7 X In(2). Déterminer les évolutions des



différentes tensions entre t = 0 et T, en séparant les deux cas T, > T, et T, <T,. Tracer les chronogrammes des
différentes tensions.

la tension uc(t) = u(t) — v(t) = E — v(t) aux bornes du condensateur va évoluer avec

do(t) 1 du(t)
dt +?v(t)_ dt

0

La solution de cette équation est de la forme v(t) = Ae™ /T = Ee ™t/ en exploitant la C.1.

La tension v(t) diminuant de maniére exponentielle au fur et a mesure de la charge du condensateur, elle va, a un moment,
passer sous le seuil de basculement de la porte NON. Si on suppose que ce basculement a lieu lorsque v = E /2, alors celui-ci
aura lieu a I'instant t = T}, tel que

E
v(tsz)zEe‘Tb/Tzi = T,=txIn(2)

Casn’l: T, >T,

L’entrée e est toujours a 0 alors que la sortie est passée de 0 a E (état haut) au bout du temps Tj, |

atension u = e.s = E ne change donc pas et le condensateur continue de se charger jusqu’at = T, ou e(t) basculant a E, u(t)

bascule également car on a désormaisu =e.s = E.E = 0.

La continuité de la tension aux bornes du condensateur impose alors que v(t) subissent une discontinuité afin de vérifier
u(TH) —v(TH) =u(Ty) —v(Ty) = 0—v(Ty) =E —v(Ty) = v(T§) =v(Ty) —E et partant de cette valeur, le
condensateur va poursuivre sa charge vers E.

Casn’2: T, <T,

L'entrée e est déja repassée a I'état haut e = E alors que la sortie n’a pas encore basculé, mais cela n’entraine pas de
modification de u ni de la poursuite de la décharge du condensateur car u = e.s = E (sortie a |'état bas).

Ce n’est qu’au bout de la durée T}, que s(t) bascule a I'état haut E, entrainant alors celle de u vers 0.

La continuité de la tension aux bornes du condensateur impose alors que v(t) subisse une discontinuité a I'instant T}, afin de
vérifier w(T)) — v(T) = u(T;) —v(T,) =0 —% =E—-v(T;) =v(T§) = —E/2 et partant de cette valeur, le

condensateur va poursuivre sa charge vers E.

L’état de sortie 0 est donc un état instable de durée T}, quelle que soit la durée du passage T, a O de la tension d’entrée.

casou T, <T, casou T, >T,
T, T,
ey i i F ey i E
u(® 5 P t u(t)y 5 t
(G t vy i t
. . . .

s(t) . T s(t) T

t= t t=0 t



3. @ Etudier la stabilité du montage ci-contre.
Comment qualifie-t-on ce type de montage ? R
Analyse générale: portes logiques idéales donc c R'
d’impédance d’entrée infinie : i traversant R’ nul ; tension N 1 O—| I 1 O—“
aux bornesde R* = 0.
Ve1 VUs1 v Ve2 Vs2
D’apres la loi des mailles : v = v,,.

s’il existe une tension stable, le condensateur se comporte
comme un interrupteur ouvert, il n’y a donc pas d’intensité circulant dans R, soit v = vy, = U,y Or vV = V,, , mais d’apreés la
caractéristique d’une porte NON, v, = V,, :incohérent.

Il n’existe aucune sortie stable d’un tel systéeme, qui va osciller entre des états instables. Il s’agit d’un oscillateur astable.

4. ** Donner I'équation logique de cette bascule RS, montrer que les deux circuits proposés sont équivalents et expliquer son

principe de fonctionnement.
S
[‘ > Q
R ——Q L0
H{Di> :

(a) Circuit directement issu de la fonction logique 1. (b) Circuit équivalent a portes NAND.

Pour le circuit (a) : On effectue la simple traduction des opérations en distinguant uniquement Q,,,, de Q,,.. On obtient
Qn+1 =S+ R.Qyp

Pour le circuit (b) : Q11 = S.QL, or d’aprés la loi de de Morgan :

Qn+1=5.Q0, =S.R.Q, =S +R.Q,

Etude de la stabilité, en introduisant I, la sortie de la 2™ porte logique du circuit (a) :

Casn°l:(R,S) =(0,1)

SiQ, =0,alorsl, =R.Q, =0, donc Q.1 =S +R.Q, =1+ 0= 1. La sortie Q = 0 n’est donc pas stable et bascule
aQ =1

Si désormais Q, = 1, alors I, = R.Q,, = 1, donc Q.1 = S+ R.Q,, = 1+ 1 = 1. La sortie Q = 1 est donc stable et se

maintient.

Il s’agit du cas d’inscription.

Casn°2:(R,S) =(1,0)

SiQ,=1,alorsl, =R.Q, =0, donc Qus1y =S +R.Q, =0+ 0 = 0. La sortie Q = 0 n’est donc pas stable et bascule
a@Q =1
Si désormais Q,, = 0, alors I, = R.Q,, = 0, donc Q.1 =S + R.Q,, = 0+ 0 = 0. La sortie Q = 0 est donc stable et se

maintient.

Il s’agit du cas d’effacement.




Casn°3:(R,S) = (0,0)
SiQ,=1,alorsI, =R.Q, = 1,donc Q.1 =S +R.Q,, = 0+ 1 = 1. La sortie Q = 1 est donc stable et mémorisée.

SiQ, = 0,alorsI, = R.Q, = 0, donc Q.1 =S +R.Q,, =0+ 0= 0. La sortie Q = 0 est donc stable et mémorisée.

Il s’agit de I’état de mémorisation.

S R Qi1 Action

1 0 1 Mise a un (inscription-Set)

0 1 0 Mise a zéro (effacement-Reset)

0 0 Q. Mémoire

1 1 1 Etat interdit - inscription prioritaire

5. @ Etablir 'équation de propagation (au choix de I'examinateur) du champ E ou du champ B associés a une onde
électromagnétique se propageant dans un milieu assimilable au vide.

Equation pour le champs électrique E

rot (rot (E)) = grad (div (E)) — AE

Avec (MG) dans le vide :  div (E) = 0 soit rot (rot (E)) = —AE
B

Avec (MF): 1ot (f) =—5, soit rot (— g) = —AE ou

Indépendance des variables d’espace et de temps : on put inverser I'opérateur rotationnel et la dérivée temporelle

. <6§> ., d(rot ﬁ)
rot =AF=—"+——=
at

at

%E

Or selon (MA) dans le vide : Tot (B) = po&, Z—f d'ou AE = pyg, =

’E _
a2

Finalement AE — HoEo 0

Equation pour le champ magnétique B
rot (rot (B)) = grad (div (B)) — AB

Avec (M®) : div (B) = 0 soit rot (rot (B)) = —AB
N —2 (D 0E )N — af ——
Avec (MA) dans le vide : Tot (B) = pog =, dou rot (uoso E) = —ABou

Indépendance des variables d’espace et de temps : on put inverser I'opérateur rotationnel et la dérivée temporelle

—.

___ (9E - d(rotE)
HoEprot rriln —AB = pogg—————=

at

- > B T 2B
Or selon (MF) : rot (E) == d'ou AB = pyg, 7z
Dou BB - pogo2n =0

u Ho&o 57 =
) — = L, . " -, azH —

Les champs vectoriels E et B vérifient des équations de la méme forme Aa — pyeg B_t(; = (0}
== 9%E — == 9%B —
AE—,uosoﬁ=0 et AB—,uoe()ﬁ:O

6. € Considérons une OPPH de la forme E= E, cos(wt —kx + @) §y se propageant dans le vide en vérifiant une équation
de propagation de d’Alembert. Etablir la relation entre w et k, dite relation de dispersion (méthode au choix de
I'examinateur, avec ou sans passage aux grandeurs complexes).

Méthode N°1 (champs réel)



calcul des dérivées partielles par rapport au temps et a x, qu’il faut injecter dans I’équation de d’Alembert
= 1 0%
AE = 2 ot2
i AR = 0%E _ 1 0%E 0%E _ K2E K - 0%E _ 2 kx -
ici, AE = ——=——5 avec ——=-kEg cos(wt —kx + @) €, et 2z = —0°Eo cos(wt —kx + @) €,
En simplifiant, on trouve —k? + clzcoz =0 soit en choisissant des grandeurs positives : k= %
Meéthode N°2 (champs complexe)
En introduisant la notation complexe : E =E, exp i(wt — kx) e_y), avec E, = E,e'®
équation de d’Alembert : AE = FE_ 10K
quatio ert: = 2T a2
Obtention de la relation de dispersion :
E= Ey exp i(wt — kx) e,
Dérivé iales : £ = _ikE = —ikE, exp i(wt — kx) ey PE _ k2B = —K2E, exp i(wt — kx) &y
érivées spatiales : —= = —ikE = —ikE, exp i(wt —kx)e, omz = K°E=—k"E, exp i(wt —kx)e,
D,., /l aE_E’_E . k —_— BZE_ 2E’_ ZE . k —
érivées temporelles : == = iwE = iwE, exp i(wt — kx) e, 2 = ~WE=—wE, exp i(wt —kx)e,
L. . L. . . , —  0*E 1 0%F
En injectant ces relations dans I’équation de propagation de d’Alembert : AE = 222
On trouve

O | -
20 _ 2
—k?E = 7 % (-0’E)
2
‘ Soit k? = (z—z, les grandeurs physiques étant définies positives, on retrouve bien la relation de dispersion :
w = kc soit A=cT

7. W Donner I'expression des équations de Maxwell dans le vide en représentation complexe. En déduire la relation de

structure entre E et B pour des ondes planes progressives.

Pour un champ de la forme E = Eg exp i(a)t - EW) :

divE=-ik-E=0 = KkE=0
divE=—-ik-B=0 = kB=0
_.. 0B S ~ kAE
rotE = —— = —ik AE = —iwB =B =—
at = - )
. 1 N W R 2k AB
rotB=——= —ikAB=i—=E = E=- —
c?d - - 1)
Equation de Maxwell-Faraday : E/\E=w§ soit E=%

k et w étant des constantes réelles, cette relation reste vraie pour les champs réels (linéarité de la partie réelle) :

~ kAE
B=——-
)
N . o = KagnE
De plus, avec k = kuy, et la relation de dispersion w = kc : B = e
B Uy ANE
c

Cette relation étant vraie pour toute OPPH, elle est également vraie pour toute OPP en tant que somme d’OPPH se
propageant dans le méme sens, donc de méme vecteur uy,.



8. W Le champ électrique d’une onde électromagnétique se propageant dans le vide est donné par :

o
E = E,exp(i(wt — kx) &,. Etablir I'expression du champ magnétique associé ainsi que celle de la puissance rayonnée a
travers une surface S plane orthogonale a é,.

Variable wt — kx : il s’agit d’une onde se propageant dans la direction (Ox) dans le sens direct, soit selon le vecteur de
propagation U, = + &,. La norme du champ électrique ne dépend que de la variable d’espace x, le plan x = cte est
donc une surface d’onde : 'onde est plane.

On peut alors utiliser la relation de structure des OemPP :

Uy NE &, A(E,cos(wt — kx) &,)
c c

B =

b _ Eo -
B = —?cos((ut —kx) e,

o . EANEB EZ? .
Py = Jf MN.dS avec M= = ——cos?(wt — kx)é,
(03] Ho HoC

9. @ Polarisation d’'une onde électromagnétique : polarisation rectiligne, polarisation circulaire.
Par définition, la direction de polarisation de I'onde est celle du champ électrique.

Une onde OEM posséde une polarisation rectiligne si le vecteur champ électrique de I'onde garde au cours du temps une
direction constante : Ep = cte.

Nous pouvons choisir par exemple la direction de I’'Oem polarisée colinéaire a I'axe Oy, I'expression de ce champ est alors de la

forme:E =E, &, avec E, = E,, cos(wt—kx + ¢,) = Re(Ep, e/ (®t~*0)

Plus généralement, avec E = Eoy cos(wt — kz) U, + Ey, cos(wt — kz + A@) ii,, polarisation rectiligne ssi Ap = pm,p € Z,
ox AT %
Ex Ey

Pour que le champ E d’une OemPPH soit polarisé rectilignement et donc posséde une direction constante au cours du temps, il
faut que ses deux composantes dans le plan de phase oscillent en phase ou en opposition de phase, soit Ap = 0 ou Ap =,

. Ey, cos(wt — kz) Eox Eox cosa
E = |Epy cos(wt — kz + Ap) = cos(wt — kz) |(=1)PE,,, = cos(wt — kz) |1Eqy, = Eq cos(wt — kz) |sina
0 0 0 0

Avec a angle entre I'axe (Ox) et E

Une onde électromagnétique posséde une polarisation circulaire si, en tout point M, le champ électrique E posséde une norme
constante ; son extrémité décrit alors un cercle.

On parle de polarisation circulaire gauche si le cercle est parcouru dans le sens

N
trigonométrique autour du vecteur d’onde k, soit pour un observateur qui
verrait arriver I'onde vers lui, et de polarisation circulaire droite pour une

rotation dans le sens horaire

¢=m/2 @=37/2
L'onde électromagnétique est polarisée circulairement ssi Giogulie gauchie CrSHISISaEGs
Les deux composantes du champ électrique dans le plan d’onde ont méme amplitude
Ces deux composantes sont en quadrature de phase, avec Ap = + g [m]
Polarisation droite pour A@p = — g [27] et polarisation gauche pour Ap = + g [27] soit
E, =0 E., =0

Earoice(M,t) = | Ey = Eocos (wt —ky) | et Egauche M, t) = | Ey = Eycos (wt — ky)
E, = —Esin (wt — ky) E, = Eysin (wt — ky)




10. On considére une onde électromagnétique plane se propageant dans le vide dans la direction 1. Exprimer la densité
volumique d’énergie et montrer que I'énergie électromagnétique est également répartie sous les formes électrique et
magnétique. Dans le cas d’'une OemPPH, établir I'expression de la densité volumique d’énergie moyenne.

Densité volumique d’énergie électromagnétique associée au champ électromagnétique (E, §) :

1 B2(M, t)

1
U, (M, t) = = E2(M, t) + =
em(M, ) =5 &E*(M,8) +5 o
) 5 o y . .. 1B?® 1 E?
Pour ’OemPP, les normes des champs E et B sont liés par la relation E = Bc soit Z e = 2%
0 0

2 .. 1B* 1 E? 1 2 s
Avec gypoc” = 1,0na =gy soit -——=- ==-¢gyE* dou
c?po 2pp  2¢%puy 2
1 1B? B?
Upm = = E0E? + =— = ggE? = gyB?%c? = —
2 2 o Ho

Si on considére de plus une OemPPH, le champ électrique est variable, de la forme
E@t) = E, cos(wt —k -7 + ¢)

La densité volumique d’énergie est donc variable dans le temps en un point donné, on peut calculer la moyenne temporelle
de la densité d’énergie associée a I'onde :

<uem> = <80E2> = goEg (COSZ(a)t — E P4 q)))

En moyenne temporelle :

- 1
(cos?(wt — k-7 + @)) = 5

D’ol :
gE; B}
2 2y

(uem> =

11. Un laser hélium-néon émet un faisceau lumineux cylindrique de rayon r = 1,0 mm d’une onde plane monochromatique
de longueur d’'onde 1 = 632,8 nm. La puissance moyenne émise est P = 1,0 mW. On donne : py = 4m.1077 H.m™1.

Calculer les amplitudes E;,4x et Byax des champs électrique et magnétique.

Py = f@)ﬁ.ﬁ =TS = Inr? soit P = (P,,) = (IS = (mr?2 dou (M) = P/mr®  or

. . - EAB __. EB ) , b e
Expression du vecteur de Poynting : n= : soit Il = o (on suppose qu’on se trouve dans I'air et qu’il s’agit d’une
0 0
. —  WAB - o
OPP : Relation de structure: B = % donc E et B orthogonaux)

N E . E?
d’ou B =- soit [I=—
c Cho

De plus, d’apreés la relation de structure (OPP) : B =t

Avec E = E,, 4, cos(wt — k.OM + Q)

Ez Emaxz - —
II=— =% cos?(wt —k.OM + @)

o Cho
Emasx? - — B2 N
I = max 2 —k.OM — “max 2 —k.OM
(M) = ( e €OS (wt — k.OM + ¢)) . (cos?(wt — k.OM + ¢))
soit avec (cosz((ut —k.OM + (p)) = %

E 2
M) = —™Max_ _ p /.2
(1) 2y /mr

Epax = /% =4,9.102V.m™!; Byay = “2% = /% =1,6.107T.



12. **Considérons I'onde électromagnétique suivante, se déplacant dans le vide : E= E, sin (%) ej(kx_“’t)(?z Est-ce une onde

plane ? Est-elle progressive ? Quelle est sa polarisation ? Déterminer le champ magnétique associé a cette onde.

L'onde E = E, sin (Tl—y) ej(k"_‘“t)e?z dépend de y et de x sans changement de variable possible permettant de se ramener

a une unique variable cartésienne, il ne s’agit donc pas d’une onde plane, mais couplage des variables espace et temps
avec e/kx=90 : propagation selon +é,.

=1 -
Polarisation = direction de E : ici polarisation rectiligne selon e,.

L’onde n’est pas plane, on ne peut donc pas utiliser la relation de structure. Avec I’équation de Maxwell-Faraday dans le

vide et E = E, sin (H) ellex-wtg .
- a

S dB
rot(E) = ——
— t
‘A _%B _ iF et
vec ——== jwB e
<0 ) a a d
-— E E
el 18, 0 |2 B, e
— = a ) gx = yz 0 | ay z,X | ay z,X EEO cos (7)6
= - = = = = y[5 .
rot(@) dy ZXA y <(’)_> A g _<6 Ez) _(6 EZ) —jkE, sin(—y) o) (kx—wt)
P) ! z (’)y zx z ox 7% Ox Z,X 61
(-) 0 0 0
02/,

Finalement,

E(E) = E,e/kx-0t) (Z cos (%) é, — jk sin (%) éy) = —ﬁ = jwB

D’ou

B = E,eikx-w) (]wla cos (%) &, — S sin (Q) Ey)

13. Polariseur et analyseur ; Loi de Malus

14. On considére un plasma peu dense composé de cations supposés fixes et d’électrons libres de densité particulaire n,, de
charge —e, de masse m et on néglige les interactions des électrons avec les autres particules. Les électrons sont considérés
comme étant non relativistes. Définir la notion de plasma et établir I'expression de la conductivité du plasma et définir la
pulsation plasma w,, du plasma en fonction des grandeurs caractéristiques du systéeme.

Plasma : gaz composé d’atomes ou de molécules partiellement ou complétement ionisés (mélange d’atomes ou de
molécules, d’électrons et d’ions positifs issus de la perte d’un ou de plusieurs électrons), I'ensemble étant électriquement
neutre. On parle de plasma lorsque le nombre d’électrons libres est du méme ordre de grandeur que le nombre de
molécules.

En considérant les cations fixes, | = n,(—e)v,

Déterminons la vitesse des électrons et des ions en régime harmonique en leur appliquant le PFD

= —eE = imwv,=—eE = U,=——= > J=-i
= iwm, -

dv eE n,e?
e ol > _e”
E

m. ¢
¢ dt wm, =

Relation formellement analogue & la loi d’Ohm locale | = yﬁ . On peut alors définir par analogie avec un conducteur

ohmique une conductivité électrique complexe du plasma :

n,e?

y(@)=-i wm,



15. @ On étudie la possibilité de propagation du champ E =E, exp(i(wt - kx)) e, dans un plasma dilué dont la conductivité
2 -
électrique complexe vaut y(w) = —i%. Etablir I’équation de propagation du champ E et en déduire la relation de
- e

dispersion caractéristique du plasma, ol on fera apparaitre la pulsation w,,.

R

quatre équations de Maxwell divE =0, divE =0, rotE = —Z—% mE = o] + Hofoz—f
D’autre part, d’aprés les formules d’analyse vectorielle, m(mﬁ ) = grad(divE ) - ZE = —ZE

En combinant les équations de Maxwell :

——r——=y  —— (9B\ _ 9rot(B) _  a - OE _ d = OE
rot(rotE) = —rot (5) = =75 = =2 (uo] tmoso3) = — 5 (HoVE + ooy
pseudo loi

d'ohm locale

- 0%E OE
AE — pogg ez MO]_/E

En injectant E = E,exp (j (wt — kx)) e,, dans I’équation de propagation, on obtient la relation de dispersion :

—K°E = poyioE + pogo0)’E = (noyio + 5 ()?)E = (=4 ) (0)°E
= ootz N c iw ¢
R ”Oiwm 1 R n.e? 1 R n,e? 1 R
—K’E = |-—+3 (iw)25=—<—uoze +—2)w2E = —<—%+—z)wzé
- - o iw c w?m, ¢ . w?mggpc? ¢
y:_izerrel HoEpc =1
- e
k2 = w_z 1— —neez
- 2 w?m,g,
2
En posant a)g = ::i , avec par définition w,, pulsation plasma :
e<0

2 2 2 2
kz_w_<1_&>=w -}

- c? w? c?

s e g . . X w? w? w?-w nee? .
16. @ W On considére un plasma dilué vérifiant la relation de dispersion kz = C—z( — w_g) =—0 P qvec wg = m“’—g Discuter
e<o

des possibilités de propagation d’une OemPPH de pulsation w en fonction des valeurs de la pulsation w.

SW> Wy k% > 0, k est réel et I'onde pourra se propager.
-w<w,: k? < 0, k est imaginaire pur ce qui n’est pas compatible avec la propagation d’une onde ; on obtient une
onde évanescente.

Le plasma se comporte comme un filtre passe haut pour les OEMPPH (filtre d’ordre infini), de pulsation de coupure la

2
qui correspond ainsi a la valeur minimale en dessous de laquelle I'onde ne peut se

ulsation plasma w = w,, =
p p p .

propager dans le plasma .

Pour w > wp, k? est un réel positif, k est alors réel pur :

Il s’agit d’une onde progressive se propageant a la vitesse de phase :

w w Cc
v, =—=2¢(¢ =

¢k Jw? — w? \/1 w3

w2

‘ Pour w < w,, Kz est un réel négatif, k est alors imaginaire pur :



On définit alors |k;| = % -

Soit
E = Eye*i* cos(wt + @) = E,e*/ cos(wt + ¢)

Il n’y a plus de propagation (absence de couplage espace et temps) mais selon le signe une amplification menant a une
solution divergente soit a une solution physiquement non acceptable, le plasma n’étant pas un milieu amplificateur

fournissant de I’énergie a I’'onde, ou une atténuation. Finalement :

2 2
1 f w-w? s s , \ [ . . T
6= Tl = pcz distance caractéristique associée a ce phénomene d’atténuation, appelée profondeur de pénétration
i

ou épaisseur de peau (au bout d’une distance de quelques &, I'amplitude de I'onde devient négligeable).

2

N S . . . w?-w} nee?
17. On considére un plasma dilué vérifiant la relation de dispersion k? = C—Z” avec wp ==

On étudie une OPPH de

Megq
pulsation w polarisée rectilignement selon e, produite par une source extérieure, et se propageant depuis le vide vers ce
plasma dilué dans la direction e,. Pour w < wy,, montrer que le vecteur de Poynting moyen est nul.



