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Colle N°14 – Semaine pronote N°21 : 19 au 23 Janvier 2026 
 

 Au programme des exercices  

→ Chapitre ELEC3 : Portes logiques 

→ Chapitre OND1 : Propagation d’ondes électromagnétiques dans le vide   

→ Chapitre OND2 : Propagation d’ondes électromagnétiques dans les plasmas 

 Questions de cours seules 

1.  On étudie le convertisseur logique tension-fréquence 

réalisé à l’aide du circuit ci-contre constitué de portes 

logiques idéales. On suppose que la porte NON bascule à 

𝐸/2 et on peut montrer que la sortie 𝑠 = 𝐸 correspond à 

un état stable du système. 

(a) Déterminer les caractéristiques des états stables de ce 

système. Comment qualifie-t-on un tel système ? 

(b) Partons d’un montage dans l’état stable correspondant à une entrée 𝑒(𝑡 < 0)  =  𝐸 depuis un temps très long. 

Supposons qu’à 𝑡 = 0, l’entrée 𝑒 bascule à 0 pendant une durée 𝑇0 (avant de revenir à 1). Que se passe-t-il à 𝑡 = 0+dans 

le montage ? On donnera les valeurs des différentes tensions aux instants 𝑡 = 0−et à 𝑡 = 0+. 

2. On reprend la question précédente, et on donne les valeurs des tensions initiales : 

𝑒(0−) = 𝐸, 𝑢(0−) = 0, 𝑢𝐶(0
−) = 0, 𝑣(0−) = 0, 𝑠(0−) = 𝐸  

𝑒(0+) = 0, 𝑢(0+) = 𝐸, 𝑢𝐶(0
+) = 0, 𝑣(0+) = 𝐸, 𝑠(0+) = 0 

ainsi que l’équation différentielle vérifiée : 
𝑑𝑣(𝑡)

𝑑𝑡
+
1

𝜏
𝑣(𝑡) =

𝑑𝑢(𝑡)

𝑑𝑡
. à l’instant 𝑇0, l’entrée 𝑒 bascule à nouveau avec 𝑒(𝑇0) =

𝐸. Soit 𝑇𝑏  l’instant de basculement de la porte NON ; montrer que 𝑇𝑏 = 𝜏 × ln(2) . Déterminer les évolutions des 

différentes tensions entre 𝑡 = 0 et 𝑇0 en séparant  les deux cas 𝑇𝑏 > 𝑇0  et 𝑇𝑏 < 𝑇0 . Tracer les chronogrammes des 

différentes tensions. 

3.   Etudier la stabilité du montage ci-contre. 

Comment qualifie-t-on ce type de montage ? 

 
 
 
 
 
 
 

4. ** Donner l’équation logique de cette bascule RS, montrer que les deux circuits proposés sont équivalents et expliquer son 

principe de fonctionnement.  
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5.   Etablir l’équation de propagation (au choix de l’examinateur) du champ 𝐸⃗  ou du champ 𝐵⃗  associés à une onde 

électromagnétique se propageant dans un milieu assimilable au vide. 

6.  Considérons une OPPH de la forme  𝐸⃗ = 𝐸𝑂   o (𝜔𝑡 − 𝑘𝑥 + 𝜑) 𝑒 𝑦 se propageant dans le vide en vérifiant une équation 

de propagation de d’Alembert. Etablir la relation entre 𝜔 et 𝑘, dite relation de dispersion (méthode au choix de 

l’examinateur, avec ou sans passage aux grandeurs complexes).  

7.   Donner l’expression des équations de Maxwell dans le vide en représentation complexe. En déduire la relation de 

structure entre 𝐸⃗   et 𝐵⃗  pour des ondes planes progressives. 

8.   Le champ électrique d’une onde électromagnétique se propageant dans le vide est donné par : 

𝐸⃗  =  𝐸0  xp( (𝜔𝑡 − 𝑘𝑥) 𝑒 𝑧.  Etablir l’expression du champ magnétique associé ainsi que celle de la puissance rayonnée à 

travers une surface 𝑆 plane orthogonale à 𝑒 𝑧. 

9. Polarisation d’une onde électromagnétique : polarisation rectiligne, polarisation circulaire. 

10. On considère une onde électromagnétique plane se propageant dans le vide dans la direction 𝑢⃗ . Exprimer la densité 

volumique d’énergie et montrer que l’énergie électromagnétique est également répartie sous les formes électrique et 

magnétique. Dans le cas d’une OemPPH, établir l’expression de la densité volumique d’énergie moyenne. 

11. Un laser hélium-néon émet un faisceau lumineux cylindrique de rayon 𝑟 =  ,0 mm d’une onde plane monochromatique 

de longueur d’onde 𝜆 = 632,8 𝑛𝑚. La puissance moyenne émise est 𝑃 =  ,0 mW. On donne : 𝜇0 = 4𝜋.  0
−7 H.m−1. 

Calculer les amplitudes 𝐸𝑚𝑎𝑥  et 𝐵𝑚𝑎𝑥  des champs électrique et magnétique. 

12. ** Considérons l’onde électromagnétique suivante, se déplaçant dans le vide : 𝐸⃗ = 𝐸0   n (
𝜋𝑦

𝑎
) 𝑒𝑖(𝑘𝑥−𝜔𝑡)𝑒 𝑧 . Quelle est sa 

polarisation ? Déterminer le champ magnétique associé à cette onde. 

13. Polariseur et analyseur ; Loi de Malus 

14.   On considère un plasma peu dense composé de cations supposés fixes et d’électrons libres de densité particulaire 𝑛𝑒, 

de charge −𝑒, de masse 𝑚 et on néglige les interactions des électrons avec les autres particules. Les électrons sont 

considérés comme étant non relativistes. Définir la notion de plasma, établir l’expression de la conductivité du plasma et 

définir la pulsation plasma 𝜔𝑝 du plasma en fonction des grandeurs caractéristiques du système. 

15.  On étudie la possibilité de propagation du champ 𝐸⃗ = 𝐸0  xp(𝑖(𝜔𝑡 − 𝑘𝑥)) 𝑒𝑧⃗⃗  ⃗ dans un plasma dilué dont la conductivité 

électrique complexe vaut 𝛾(𝜔) = −𝑖
𝑛𝑒𝑒

2

𝜔𝑚𝑒
. Etablir l’équation de propagation du champ 𝐸

→
 et en déduire la relation de 

dispersion caractéristique du plasma, où on fera apparaître la pulsation 𝜔𝑝.    

16.  On considère un plasma dilué vérifiant la relation de dispersion 𝑘2 =
𝜔2−𝜔𝑝

2

𝑐2
 avec 𝜔𝑝

2 =
𝑛𝑒𝑒

2

𝑚𝑒𝜀0
. Discuter des possibilités 

de propagation d’une OemPPH de pulsation 𝜔 en fonction des valeurs de la pulsation 𝜔. 



17. On considère un plasma dilué vérifiant la relation de dispersion 𝑘2 =
𝜔2−𝜔𝑝

2

𝑐2
 avec 𝜔𝑝

2 =
𝑛𝑒𝑒

2

𝑚𝑒𝜀0
. On étudie une OPPH de 

pulsation 𝜔 polarisée rectilignement selon 𝑒𝑧⃗⃗  ⃗ produite par une source extérieure, et se propageant depuis le vide vers ce 

plasma dilué dans la direction 𝑒𝑥⃗⃗  ⃗. Pour 𝜔 < 𝜔𝑝, montrer que le vecteur de Poynting moyen est nul. 

 

  



 Questions de cours avec éléments de réponse 

1.  On étudie le convertisseur logique tension-

fréquence réalisé à l’aide du circuit ci-contre 

constitué de portes logiques idéales. On suppose 

que la porte NON bascule à 𝐸/2 et on peut montrer 

que la sortie 𝑠 = 𝐸 correspond à un état stable du 

système. 

(c) Déterminer les caractéristiques des états stables de 

ce système. Comment qualifie-t-on un tel 

système ? 

(d) Partons d’un montage dans l’état stable correspondant à une entrée 𝑒(𝑡 < 0)  =  𝐸 depuis un temps très long. 

Supposons qu’à 𝑡 = 0, l’entrée 𝑒 bascule à 0 pendant une durée 𝑇0 (avant de revenir à 1). Que se passe-t-il à 𝑡 = 0+dans 

le montage ? On donnera les valeurs des différentes tensions aux instants 𝑡 = 0−et à 𝑡 = 0+. 

(a) Si un état stable de sortie existe, grandeurs indépendantes du temps, dont 𝑢𝐶.  

D’où 𝑖𝑅 = 𝑖𝐶 = 𝐶
𝑑𝑢𝐶

𝑑𝑡
= 0    ⟹ 𝑣(𝑡) = 𝑅𝑖𝑅 = 0.  

Alors,  d’après les caractéristiques d’une porte NON :   𝒔(𝒕) = 𝑬. 

Pour que 𝑠(𝑡) reste égale à 𝐸, il faut que 𝑣(𝑡) n’évolue pas : 𝑣(𝑡) = 0,  

il faut donc 𝑢𝐶 = 𝑐𝑡𝑒, d’où 𝑢(𝑡) = 𝑐𝑡𝑒.  

2 cas possibles : 

si 𝒖(𝒕) = 𝑬, l’état de charge ne change pas si 𝑒(𝑡) 𝑟𝑒𝑠𝑡𝑒 é𝑔𝑎𝑙𝑒 à 0 car dans ce cas seulement : 

 𝑢(𝑡) = 𝑒. 𝑠 = 𝑒. 𝐸 = 𝐸 ⟹   𝑒 = 0. 

si 𝒖(𝒕) = 𝟎, l’état de charge ne change pas si 𝑒(𝑡) 𝑟𝑒𝑠𝑡𝑒 é𝑔𝑎𝑙𝑒 à 𝐸 car dans ce cas seulement : 

 𝑢(𝑡) = 𝑒. 𝑠 = 𝑒. 𝐸 = 0 ⟹   𝑒 = 𝐸. 

Ainsi, ∀𝑒(𝑡) maintenue constante (à 0 ou à 𝐸), 𝑠(𝑡) = 𝐸 = unique état stable du montage, qui est donc dit monostable. 

 

à 𝑡 = 0, l’entrée 𝑒 bascule à 0 pendant une durée 𝑇0.  

Dans ce cas, 𝑢(0+) = 𝐸 car au moins une des deux entrées de la porte NAND est désormais nulle ; 

𝑢(0+) = 𝑒. 𝑠 = 0. 𝑠 = 0 = 𝐸 

La tension aux bornes du condensateur étant continue, on a  

𝑣(0+) = 𝑢(0+) − 𝑢𝐶(0
+) = 𝑢(0+) − 𝑢𝐶(0

−) = 𝐸 − 0 = 𝐸 et 𝑠 = 𝑣 = 0, la sortie du système passe donc à 0 et les 

deux entrées de la porte NAND sont alors nulles. 

𝑒(0−) = 𝐸, 𝑢(0−) = 0, 𝑢𝐶(0
−) = 0, 𝑣(0−) = 0, 𝑠(0−) = 𝐸  

𝑒(0+) = 0, 𝑢(0+) = 𝐸, 𝑢𝐶(0
+) = 0, 𝑣(0+) = 𝐸, 𝑠(0+) = 0 

La sortie 𝑠 n’étant plus égale à 𝐸, le système n’est plus dans un état stable et va donc évoluer au cours du temps. 

 

2. On reprend la question précédente, et on donne les valeurs des tensions initiales : 

𝑒(0−) = 𝐸, 𝑢(0−) = 0, 𝑢𝐶(0
−) = 0, 𝑣(0−) = 0, 𝑠(0−) = 𝐸  

𝑒(0+) = 0, 𝑢(0+) = 𝐸, 𝑢𝐶(0
+) = 0, 𝑣(0+) = 𝐸, 𝑠(0+) = 0 

ainsi que l’équation différentielle vérifiée : 
𝑑𝑣(𝑡)

𝑑𝑡
+
1

𝜏
𝑣(𝑡) =

𝑑𝑢(𝑡)

𝑑𝑡
. à l’instant 𝑇0, l’entrée 𝑒 bascule à nouveau avec 𝑒(𝑇0) =

𝐸. Soit 𝑇𝑏  l’instant de basculement de la porte NON ; montrer que 𝑇𝑏 = 𝜏 × ln(2) . Déterminer les évolutions des 
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différentes tensions entre 𝑡 = 0 et 𝑇0 en séparant  les deux cas 𝑇𝑏 > 𝑇0  et 𝑇𝑏 < 𝑇0 . Tracer les chronogrammes des 

différentes tensions. 

la tension 𝑢𝐶(𝑡) = 𝑢(𝑡) − 𝑣(𝑡) = 𝐸 − 𝑣(𝑡) aux bornes du condensateur va évoluer avec  

𝑑𝑣(𝑡)

𝑑𝑡
+
 

𝜏
𝑣(𝑡) =

𝑑𝑢(𝑡)

𝑑𝑡
= 0 

La solution de cette équation est de la forme 𝑣(𝑡) = 𝐴𝑒− 𝑡/𝜏 = 𝐸𝑒− 𝑡/𝜏 en exploitant la C.I. 

La tension 𝑣(𝑡) diminuant de manière exponentielle au fur et à mesure de la charge du condensateur, elle va, à un moment, 

passer sous le seuil de basculement de la porte NON. Si on suppose que ce basculement a lieu lorsque  𝑣 =  𝐸/2, alors celui-ci 

aura lieu à l’instant 𝑡 = 𝑇𝑏 tel que  

𝑣(𝑡 = 𝑇𝑏) = 𝐸𝑒
− 𝑇𝑏/𝜏 =

𝐸

2
     ⟹        𝑻𝒃 = 𝝉 × 𝐥𝐧 (𝟐) 

Cas n°1 : 𝑻𝟎 > 𝑻𝒃 

L’entrée 𝑒 est toujours à 0 alors que la sortie est passée de 0 à 𝐸 (état haut) au bout du temps 𝑇𝑏 , l 

a tension 𝑢 = 𝑒. 𝑠 = 𝐸 ne change donc pas et le condensateur continue de se charger jusqu’à 𝑡 = 𝑇0 où 𝑒(𝑡) basculant à 𝐸, 𝑢(𝑡) 

bascule également car on a désormais 𝑢 = 𝑒. 𝑠 = 𝐸. 𝐸 = 0. 

La continuité de la tension aux bornes du condensateur impose alors que 𝑣(𝑡) subissent une discontinuité afin de vérifier 

𝑢(𝑇0
+) − 𝑣(𝑇0

+) = 𝑢(𝑇0
−) − 𝑣(𝑇0

−) ⟹ 0 − 𝑣(𝑇0
+) = 𝐸 − 𝑣(𝑇0

−) ⟹ 𝑣(𝑇0
+) = 𝑣(𝑇0

−) − 𝐸 et partant de cette valeur, le 

condensateur va poursuivre sa charge vers 𝐸. 

  

Cas n°2 : 𝑻𝟎 < 𝑻𝒃 

L’entrée 𝑒 est déjà repassée à l’état haut 𝑒 = 𝐸 alors que la sortie n’a pas encore basculé, mais cela n’entraine pas de 

modification de 𝑢 ni de la poursuite de la décharge du condensateur car 𝑢 = 𝑒. 𝑠 = 𝐸 (sortie à l’état bas). 

Ce n’est qu’au bout de la durée 𝑇𝑏  que 𝑠(𝑡) bascule à l’état haut 𝐸, entrainant alors celle de 𝑢 vers 0. 

La continuité de la tension aux bornes du condensateur impose alors que 𝑣(𝑡) subisse une discontinuité à l’instant 𝑇𝑏 afin de 

vérifier 𝑢(𝑇𝑏
+) − 𝑣(𝑇𝑏

+) = 𝑢(𝑇𝑏
−) − 𝑣(𝑇𝑏

−) ⟹ 0 −
𝐸

2
= 𝐸 − 𝑣(𝑇0

−) ⟹ 𝑣(𝑇0
+) = −𝐸/2 et partant de cette valeur, le 

condensateur va poursuivre sa charge vers 𝐸. 

L’état de sortie 0 est donc un état instable de durée 𝑇𝑏 , quelle que soit la durée du passage 𝑇0 à 0 de la tension d’entrée. 
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3.   Etudier la stabilité du montage ci-contre. 

Comment qualifie-t-on ce type de montage ? 

Analyse générale : portes logiques idéales donc 

d’impédance d’entrée infinie : 𝑖 traversant 𝑅’ nul ; tension 

aux bornes de 𝑅’    =  0.  

D’après la loi des mailles :  𝑣 = 𝑣𝑒2.  

 s’il existe une tension stable, le condensateur se comporte 

comme un interrupteur ouvert, il n’y a donc pas d’intensité circulant dans 𝑅, soit 𝑣 = 𝑣𝑠2 = 𝑣𝑒1  or   𝑣 = 𝑣𝑒2  , mais d’après la 

caractéristique d’une porte NON, 𝑣𝑠2 = 𝑣𝑒2  : incohérent. 

Il n’existe aucune sortie stable d’un tel système, qui va osciller entre des états instables. Il s’agit d’un oscillateur astable. 

 
 

4. ** Donner l’équation logique de cette bascule RS, montrer que les deux circuits proposés sont équivalents et expliquer son 

principe de fonctionnement.  

 

Pour le circuit (a) : On effectue la simple traduction des opérations en distinguant uniquement 𝑄𝑛+1 de 𝑄𝑛. On obtient  

𝑄𝑛+1 = 𝑆 + 𝑅. 𝑄𝑛 

Pour le circuit (b) : 𝑄𝑛+1 = 𝑆. 𝑄𝑛
′ , or d’après la loi de de Morgan : 

 𝑄𝑛+1 = 𝑆. 𝑄𝑛
′ = 𝑆. 𝑅. 𝑄𝑛 = 𝑆 + 𝑅. 𝑄𝑛 

 

Etude de la stabilité, en introduisant 𝐼𝑛 la sortie de la 2ème porte logique du circuit (a) : 

Cas n°1 : (𝑹, 𝑺) = (𝟎, 𝟏) 

Si 𝑄𝑛 = 0, alors 𝐼𝑛 = 𝑅.𝑄𝑛 = 0, donc 𝑄𝑛+1 = 𝑆 + 𝑅. 𝑄𝑛 =  + 0 =  . La sortie 𝑄 = 0 n’est donc pas stable et bascule 

à 𝑄 =  . 

Si désormais 𝑄𝑛 =  , alors 𝐼𝑛 = 𝑅.𝑄𝑛 =  , donc 𝑄𝑛+1 = 𝑆 + 𝑅. 𝑄𝑛 =  +  =  . La sortie 𝑄 =   est donc stable et se 

maintient. 

Il s’agit du cas d’inscription.  

 

Cas n°2 : (𝑹, 𝑺) = (𝟏, 𝟎) 

Si 𝑄𝑛 =  , alors 𝐼𝑛 = 𝑅.𝑄𝑛 = 0, donc 𝑄𝑛+1 = 𝑆 + 𝑅. 𝑄𝑛 = 0 + 0 = 0. La sortie 𝑄 = 0 n’est donc pas stable et bascule 

à 𝑄 =  . 

Si désormais 𝑄𝑛 = 0, alors 𝐼𝑛 = 𝑅.𝑄𝑛 = 0, donc 𝑄𝑛+1 = 𝑆 + 𝑅. 𝑄𝑛 = 0 + 0 = 0. La sortie 𝑄 = 0 est donc stable et se 

maintient. 

Il s’agit du cas d’effacement.  
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Cas n°3 : (𝑹, 𝑺) = (𝟎, 𝟎) 

Si 𝑄𝑛 =  , alors 𝐼𝑛 = 𝑅.𝑄𝑛 =  , donc 𝑄𝑛+1 = 𝑆 + 𝑅. 𝑄𝑛 = 0 +  =  . La sortie 𝑄 =   est donc stable et mémorisée. 

Si 𝑄𝑛 = 0, alors 𝐼𝑛 = 𝑅.𝑄𝑛 = 0, donc 𝑄𝑛+1 = 𝑆 + 𝑅. 𝑄𝑛 = 0 + 0 = 0. La sortie 𝑄 = 0 est donc stable et mémorisée. 

Il s’agit de l’état de mémorisation.  

𝑺 𝑹 𝑸𝒏+𝟏 Action 
1 0 1 Mise à un (inscription-Set) 
0 1 0 Mise à zéro (effacement-Reset) 
0 0 𝑸𝒏 Mémoire 
1 1 1 État interdit – inscription prioritaire 

5.   Etablir l’équation de propagation (au choix de l’examinateur) du champ 𝐸⃗  ou du champ 𝐵⃗  associés à une onde 

électromagnétique se propageant dans un milieu assimilable au vide. 

Équation pour le champs électrique 𝑬⃗⃗   

𝒓𝒐𝒕⃗⃗ ⃗⃗ ⃗⃗   (𝒓𝒐𝒕⃗⃗ ⃗⃗ ⃗⃗   (𝑬⃗⃗ )) = 𝒈𝒓𝒂𝒅⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (𝒅𝒊𝒗 (𝑬⃗⃗ )) − ∆⃗⃗ 𝑬⃗⃗       

Avec (MG) dans le vide :  𝒅𝒊𝒗 (𝑬⃗⃗ ) = 𝟎  soit 𝒓𝒐𝒕⃗⃗ ⃗⃗ ⃗⃗   (𝒓𝒐𝒕⃗⃗ ⃗⃗ ⃗⃗   (𝑬⃗⃗ )) = −∆⃗⃗ 𝑬⃗⃗   

Avec (MF) :     𝒓𝒐𝒕⃗⃗ ⃗⃗ ⃗⃗   (𝑬⃗⃗ ) = −
𝝏𝑩⃗⃗ 

𝝏𝒕
      soit       𝒓𝒐𝒕⃗⃗ ⃗⃗ ⃗⃗   (−

𝝏𝑩⃗⃗ 

𝝏𝒕
) = −∆⃗⃗ 𝑬⃗⃗  ou 

Indépendance des variables d’espace et de temps : on put inverser l’opérateur rotationnel et la dérivée temporelle 

𝒓𝒐𝒕⃗⃗ ⃗⃗ ⃗⃗   (
𝝏𝑩⃗⃗ 

𝝏𝒕
) = ∆⃗⃗ 𝑬⃗⃗ =

𝝏(𝒓𝒐𝒕⃗⃗ ⃗⃗ ⃗⃗   𝑩⃗⃗ )

𝝏𝒕
 

Or selon (MA) dans le vide : 𝒓𝒐𝒕⃗⃗ ⃗⃗ ⃗⃗   (𝑩⃗⃗ ) = 𝝁𝟎𝜺𝟎 
𝝏𝑬⃗⃗ 

𝝏𝒕
   d’où    ∆⃗⃗ 𝑬⃗⃗ = 𝝁𝟎𝜺𝟎 

𝝏𝟐𝑬⃗⃗ 

𝝏𝒕𝟐
 

Finalement   ∆⃗⃗ 𝑬⃗⃗ − 𝝁𝟎𝜺𝟎
𝝏𝟐𝑬⃗⃗ 

𝝏𝒕𝟐
= 𝟎⃗⃗    

Équation pour le champ magnétique 𝑩⃗⃗  

𝒓𝒐𝒕⃗⃗ ⃗⃗ ⃗⃗   (𝒓𝒐𝒕⃗⃗ ⃗⃗ ⃗⃗   (𝑩⃗⃗ )) = 𝒈𝒓𝒂𝒅⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (𝒅𝒊𝒗 (𝑩⃗⃗ )) − ∆⃗⃗ 𝑩⃗⃗       

Avec (M𝜱) :  𝒅𝒊𝒗 (𝑩⃗⃗ ) = 𝟎  soit 𝒓𝒐𝒕⃗⃗ ⃗⃗ ⃗⃗   (𝒓𝒐𝒕⃗⃗ ⃗⃗ ⃗⃗   (𝑩⃗⃗ )) = −∆⃗⃗ 𝑩⃗⃗  

Avec (MA) 𝒅𝒂𝒏𝒔 𝒍𝒆 𝒗𝒊𝒅𝒆 : 𝒓𝒐𝒕⃗⃗ ⃗⃗ ⃗⃗   (𝑩⃗⃗ ) = 𝝁𝟎𝜺𝟎 
𝝏𝑬⃗⃗ 

𝝏𝒕
   𝒅’𝒐     𝒓𝒐𝒕⃗⃗ ⃗⃗ ⃗⃗   (𝝁𝟎𝜺𝟎 

𝝏𝑬⃗⃗ 

𝝏𝒕
) = −∆⃗⃗ 𝑩⃗⃗  ou 

Indépendance des variables d’espace et de temps : on put inverser l’opérateur rotationnel et la dérivée temporelle 

𝝁𝟎𝜺𝟎𝒓𝒐𝒕⃗⃗ ⃗⃗ ⃗⃗   (
𝝏𝑬⃗⃗ 

𝝏𝒕
) = −∆⃗⃗ 𝑩⃗⃗ = 𝝁𝟎𝜺𝟎

𝝏(𝒓𝒐𝒕⃗⃗ ⃗⃗ ⃗⃗   𝑬⃗⃗ )

𝝏𝒕
 

Or selon (MF) : 𝒓𝒐𝒕⃗⃗ ⃗⃗ ⃗⃗   (𝑬⃗⃗ ) = − 
𝝏𝑩⃗⃗ 

𝝏𝒕
   d’où    ∆⃗⃗ 𝑩⃗⃗ = 𝝁𝟎𝜺𝟎 

𝝏𝟐𝑩⃗⃗ 

𝝏𝒕𝟐
 

D’où    ∆⃗⃗ 𝑩⃗⃗ − 𝝁𝟎𝜺𝟎
𝝏𝟐𝑩⃗⃗ 

𝝏𝒕𝟐
= 𝟎⃗⃗      

Les champs vectoriels 𝑬⃗⃗  et 𝑩⃗⃗  vérifient des équations de la même forme  ∆⃗⃗ 𝑎 − 𝜇0𝜀0
𝜕2𝑎⃗ 

𝜕𝑡2
= 0⃗  :  

∆⃗⃗ 𝐸⃗ − 𝜇0𝜀0
𝜕2𝐸⃗ 

𝜕𝑡2
= 0⃗      et ∆⃗⃗ 𝐵⃗ − 𝜇0𝜀0

𝜕2𝐵⃗ 

𝜕𝑡2
= 0⃗  

 

6.  Considérons une OPPH de la forme  𝐸⃗ = 𝐸𝑂   o (𝜔𝑡 − 𝑘𝑥 + 𝜑) 𝑒 𝑦 se propageant dans le vide en vérifiant une équation 

de propagation de d’Alembert. Etablir la relation entre 𝜔 et 𝑘, dite relation de dispersion (méthode au choix de 

l’examinateur, avec ou sans passage aux grandeurs complexes).  

Méthode N°1 (champs réel) 



calcul des dérivées partielles par rapport au temps et à x, qu’il faut injecter dans l’équation de d’Alembert 

  ∆ ⃗⃗ =
1

c2

∂2E⃗⃗ 

∂t2
 

ici, ∆ ⃗⃗ =
∂2E⃗⃗ 

∂x2
=

1

c2

∂2E⃗⃗ 

∂t2
        avec    

∂2E⃗⃗ 

∂x2
= −k2 O   o (ω  − kx + φ)  ⃗ y   et    

∂2E⃗⃗ 

∂t2
= −ω2 O   o (ω  − kx + φ)  ⃗ y 

En simplifiant, on trouve −k2 +
1

c2
ω2 = 0  soit en choisissant des grandeurs positives :  k =

ω

c
 

Méthode N°2 (champs complexe) 

En introduisant la notation complexe :  𝐸⃗ = 𝐸0  𝑒𝑥𝑝 𝑖(𝜔𝑡 − 𝑘𝑥) 𝑒𝑦⃗⃗⃗⃗ ,   avec   𝐸0 = 𝐸0𝑒
𝑖𝜑  

équation de d’Alembert : ∆𝑬⃗⃗ =
𝝏𝟐𝑬⃗⃗ 

𝝏𝒙𝟐
=

𝟏

𝒄𝟐

𝝏𝟐𝑬⃗⃗ 

𝝏𝒕𝟐
 

Obtention de la relation de dispersion : 

𝐸⃗ = 𝐸0  𝑒𝑥𝑝 𝑖(𝜔𝑡 − 𝑘𝑥) 𝑒𝑦⃗⃗⃗⃗  

Dérivées spatiales : 
𝜕𝐸⃗ 

𝜕𝑥
= −𝑖𝑘𝐸⃗ = −𝑖𝑘𝐸0  𝑒𝑥𝑝 𝑖(𝜔𝑡 − 𝑘𝑥) 𝑒𝑦⃗⃗⃗⃗                     

𝜕2𝐸⃗ 

𝜕𝑥2
= −𝑘2𝐸⃗ = −𝑘2𝐸0  𝑒𝑥𝑝 𝑖(𝜔𝑡 − 𝑘𝑥) 𝑒𝑦⃗⃗⃗⃗     

Dérivées temporelles : 
𝜕𝐸⃗ 

𝜕𝑡
= 𝑖𝜔𝐸⃗ = 𝑖𝜔𝐸0  𝑒𝑥𝑝 𝑖(𝜔𝑡 − 𝑘𝑥) 𝑒𝑦⃗⃗⃗⃗                     

𝜕2𝐸⃗ 

𝜕𝑡2
= −𝜔2𝐸⃗ = −𝜔2𝐸0  𝑒𝑥𝑝 𝑖(𝜔𝑡 − 𝑘𝑥) 𝑒𝑦⃗⃗⃗⃗     

En injectant ces relations dans l’équation de propagation de d’Alembert : ∆𝑬⃗⃗ =
𝝏𝟐𝑬⃗⃗ 

𝝏𝒙𝟐
=

𝟏

𝒄𝟐

𝝏𝟐𝑬⃗⃗ 

𝝏𝒕𝟐
 

On trouve 

−𝑘2𝐸⃗ =
𝟏

𝒄𝟐
× (−𝜔2𝐸⃗ ) 

Soit 𝑘2 =
𝜔2

𝒄𝟐
, les grandeurs physiques étant définies positives, on retrouve bien la relation de dispersion : 

𝝎 = 𝒌𝒄         𝑠𝑜𝑖𝑡     𝝀 = 𝒄𝑻 

7.   Donner l’expression des équations de Maxwell dans le vide en représentation complexe. En déduire la relation de 

structure entre 𝐸⃗   et 𝐵⃗  pour des ondes planes progressives. 

Pour un champ de la forme 𝐸⃗ = 𝐸0⃗⃗⃗⃗  𝑒𝑥𝑝 𝑖(𝜔𝑡 − 𝑘⃗ . 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  ) ∶ 

d  𝐸⃗ = −𝑖𝑘⃗ ⋅ 𝐸⃗ = 0     ⟹        𝒌⃗⃗ . 𝑬⃗⃗ = 𝟎

d  𝐵⃗ = −𝑖𝑘⃗ ⋅ 𝐵⃗ = 0     ⟹      𝒌⃗⃗ . 𝑩⃗⃗ = 𝟎
        

ro ⃗⃗ ⃗⃗  ⃗𝐸⃗ = −
𝜕𝐵⃗ 

𝜕𝑡
⟹ −𝑖𝑘⃗ ∧ 𝐸⃗ = −𝑖𝜔𝐵⃗              ⟹ 𝐵⃗ =

𝑘⃗ ∧ 𝐸⃗ 

𝜔

ro ⃗⃗ ⃗⃗  ⃗𝐵⃗ =
 

𝑐2
𝜕𝐸⃗ 

𝜕𝑡
⟹ −𝑖𝑘⃗ ∧ 𝐵⃗ = 𝑖

𝜔

𝑐2
𝐸⃗                       ⟹ 𝐸⃗ = −

𝑐2𝑘⃗ ∧ 𝐵⃗ 

𝜔

 

Equation de Maxwell-Faraday :  𝑘⃗ ∧ 𝐸⃗ = 𝜔𝐵⃗             𝑠𝑜𝑖𝑡       𝐵⃗ =
𝑘⃗ ∧𝐸⃗ 

𝜔
       

𝑘⃗  et 𝜔 étant des constantes réelles, cette relation reste vraie pour les champs réels (linéarité de la partie réelle) : 

𝐵⃗ =
𝑘⃗ ∧ 𝐸⃗ 

𝜔
 

De plus, avec 𝑘⃗ = 𝑘𝑢𝑘⃗⃗⃗⃗   et la relation de dispersion 𝜔 = 𝑘𝑐 : 𝐵⃗ =
𝑘𝑢𝑘⃗⃗ ⃗⃗  ⃗∧𝐸⃗ 

𝑘𝑐
  

𝐵⃗ =
𝑢𝑘⃗⃗⃗⃗  ∧ 𝐸⃗ 

𝑐
 

Cette relation étant vraie pour toute OPPH, elle est également vraie pour toute OPP en tant que somme d’OPPH se 

propageant dans le même sens, donc de même vecteur 𝑢𝑘⃗⃗⃗⃗  . 



8.   Le champ électrique d’une onde électromagnétique se propageant dans le vide est donné par : 

𝐸⃗  =  𝐸0  xp( (𝜔𝑡 − 𝑘𝑥) 𝑒 𝑧.  Etablir l’expression du champ magnétique associé ainsi que celle de la puissance rayonnée à 

travers une surface 𝑆 plane orthogonale à 𝑒 𝑧. 

Variable 𝜔𝑡 − 𝑘𝑥 : il s’agit d’une onde se propageant dans la direction (𝑂𝑥) dans le sens direct, soit selon le vecteur de 

propagation 𝑢⃗ 𝑘 = + 𝑒 𝑥. La norme du champ électrique ne dépend que de la variable d’espace 𝑥, le plan 𝑥 =  𝑐𝑡𝑒 est 

donc une surface d’onde : l’onde est plane.  

On peut alors utiliser la relation de structure des OemPP : 

𝐵⃗ =
𝑢⃗ 𝑘  ∧ 𝐸⃗ 

𝑐
=
𝑒 𝑥  ∧ (𝐸0 𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑥) 𝑒 𝑧)

𝑐
  

 𝐵⃗ = −
𝐸0

𝑐
𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑥) 𝑒 𝑦 

𝒫𝑒𝑚 =∬ Π⃗⃗ 
(Σ)

. d𝑆⃗⃗⃗⃗         𝑎𝑣𝑒𝑐     Π⃗⃗ =
𝐸⃗  ∧  𝐵⃗ 

𝜇0
=
𝐸0

2

𝜇0𝑐
𝑐𝑜𝑠2(𝜔𝑡 − 𝑘𝑥)𝑒 𝑥 

 

9.   Polarisation d’une onde électromagnétique : polarisation rectiligne, polarisation circulaire. 

Par définition, la direction de polarisation de l’onde est celle du champ électrique. 

Une onde OEM possède une polarisation rectiligne si le vecteur champ électrique de l’onde garde au cours du temps une 

direction constante : 𝑒 𝑝 = 𝑐𝑡𝑒.  

Nous pouvons choisir par exemple la direction de l’Oem polarisée colinéaire à l’axe 𝑂𝑦, l’expression de ce champ est alors de la 

forme : 𝐸⃗ = 𝐸𝑦  𝑒 𝑦    avec      𝐸𝑦 = 𝐸𝑂𝑦   o (𝜔𝑡 − 𝑘𝑥 + 𝜑𝑦) = 𝑅𝑒(𝐸𝑂𝑦  𝑒
𝑗 (𝜔𝑡 − 𝑘𝑥)) 

Plus généralement, avec 𝐸⃗ = 𝐸0𝑥  o (𝜔𝑡 − 𝑘𝑧)⏟          
𝐸𝑥

𝑢⃗ 𝑥 + 𝐸0𝑦  o (𝜔𝑡 − 𝑘𝑧 + ∆𝜑)⏟              
𝐸𝑦

𝑢⃗ 𝑦, polarisation rectiligne ssi ∆𝜑 = 𝑝𝜋, 𝑝 ∈ ℤ,  

Pour que le champ 𝐸⃗  d’une OemPPH soit polarisé rectilignement et donc possède une direction constante au cours du temps, il 

faut que ses deux composantes dans le plan de phase oscillent en phase ou en opposition de phase, soit ∆𝝋 = 𝟎 ou ∆𝝋 = 𝝅,  

𝐸⃗ = |
𝐸0𝑥  o (𝜔𝑡 − 𝑘𝑧)

𝐸0𝑦  o (𝜔𝑡 − 𝑘𝑧 + ∆𝜑)

0

=  o (𝜔𝑡 − 𝑘𝑧) |

𝐸0𝑥
(− )𝑝𝐸0𝑦

0

=  o (𝜔𝑡 − 𝑘𝑧) |
𝐸0𝑥
±𝐸0𝑦
0

= 𝐸0  o (𝜔𝑡 − 𝑘𝑧) |
 o 𝛼
  n𝛼
0

 

Avec 𝛼 angle entre l’axe (𝑂𝑥) et 𝐸⃗  

Une onde électromagnétique possède une polarisation circulaire si, en tout point M, le champ électrique 𝐸⃗  possède une norme 

constante ; son extrémité décrit alors un cercle. 

On parle de polarisation circulaire gauche si le cercle est parcouru dans le sens 

trigonométrique autour du vecteur d’onde 𝑘
→

, soit pour un observateur qui 

verrait arriver l’onde vers lui, et de polarisation circulaire droite pour une 

rotation dans le sens horaire 

L’onde électromagnétique est polarisée circulairement ssi  

Les deux composantes du champ électrique dans le plan d’onde ont même amplitude 

Ces deux composantes sont en quadrature de phase, avec ∆𝝋 = ±
𝝅

𝟐
[𝝅] 

Polarisation droite pour  ∆𝝋 = −
𝝅

𝟐
[𝟐𝝅] et polarisation gauche pour ∆𝝋 = +

𝝅

𝟐
[𝟐𝝅] soit 

𝐸⃗ 𝑑𝑟𝑜𝑖𝑡𝑒(𝑀, 𝑡) = (

𝐸𝑥 = 0
𝐸𝑦 = 𝐸0 o  (𝜔𝑡 − 𝑘𝑦)

𝐸𝑧 = −𝐸0  n (𝜔𝑡 − 𝑘𝑦)
)     𝐸⃗ 𝑔𝑎𝑢𝑐ℎ𝑒(𝑀, 𝑡) = (

𝐸𝑥 = 0
𝐸𝑦 = 𝐸0 o  (𝜔𝑡 − 𝑘𝑦)

𝐸𝑧 = 𝐸0  n (𝜔𝑡 − 𝑘𝑦)
) 

 



10. On considère une onde électromagnétique plane se propageant dans le vide dans la direction 𝑢⃗ . Exprimer la densité 

volumique d’énergie et montrer que l’énergie électromagnétique est également répartie sous les formes électrique et 

magnétique. Dans le cas d’une OemPPH, établir l’expression de la densité volumique d’énergie moyenne. 

Densité volumique d’énergie électromagnétique associée au champ électromagnétique (𝐸⃗ , 𝐵⃗ ) :   

𝑢𝑒𝑚(𝑀, 𝑡) =
 

2
𝜀0𝐸

2(𝑀, 𝑡) +
 

2
 
𝐵2(𝑀, 𝑡)

𝜇0
 

Pour l’OemPP, les normes des champs 𝐸⃗  et 𝐵⃗  sont liés par la relation  𝐸 = 𝐵𝑐  soit    
1

2

𝐵2

𝜇0
=
1

2

𝐸2

𝑐2𝜇0
 

Avec  𝜀0𝜇0𝑐
2 =  , on a   

1

𝑐2𝜇0
= 𝜀0   soit    

1

2

𝐵2

𝜇0
=
1

2

𝐸2

𝑐2𝜇0
=
1

2
𝜀0𝐸

2    d’où 

𝑢𝑒𝑚 =
 

2
𝜀0𝐸

2 +
 

2

𝐵2

𝜇0
= 𝜀0𝐸

2 = 𝜀0𝐵
2𝑐2 =

𝐵2

𝜇0
 

Si on considère de plus une OemPPH, le champ électrique est variable, de la forme   

 𝐸⃗ (𝑟 , 𝑡) = 𝐸⃗ 0   o (𝜔𝑡 − 𝑘⃗ ∙ 𝑟 + 𝜑)  

La densité volumique d’énergie est donc variable dans le temps en un point donné, on peut calculer la moyenne temporelle 

de la densité d’énergie associée à l’onde : 

〈𝑢𝑒𝑚〉 = 〈𝜀0𝐸
2〉 = 𝜀0𝐸0

2 〈 o 2(𝜔𝑡 − 𝑘⃗ ∙ 𝑟 + 𝜑)〉  

En moyenne temporelle : 

〈 o 2(𝜔𝑡 − 𝑘⃗ ∙ 𝑟 + 𝜑)〉 =
 

2
 

D’où :  

〈𝒖𝒆𝒎〉 =
𝜺𝟎𝑬𝟎

𝟐

𝟐
=
𝑩𝟎
𝟐

𝟐𝝁𝟎
 

11. Un laser hélium-néon émet un faisceau lumineux cylindrique de rayon 𝑟 =  ,0 mm d’une onde plane monochromatique 

de longueur d’onde 𝜆 = 632,8 𝑛𝑚. La puissance moyenne émise est 𝑃 =  ,0 mW. On donne : 𝜇0 = 4𝜋.  0
−7 H.m−1. 

Calculer les amplitudes 𝐸𝑚𝑎𝑥  et 𝐵𝑚𝑎𝑥  des champs électrique et magnétique. 

𝒫𝑒𝑚 = ∬ Π⃗⃗ 
(Σ)

. d𝑆⃗⃗⃗⃗ = ΠS = Ππ𝑟2  soit       𝑃 = 〈𝒫𝑒𝑚〉 =  〈Π〉𝑆 = 〈Π〉π𝑟
2 d’où  〈Π〉 = 𝑃/π𝑟2       or  

Expression du vecteur de Poynting : Π⃗⃗ =
𝐸⃗  ∧ 𝐵⃗ 

𝜇0
 soit   Π =

EB

𝜇0
    (on suppose qu’on se trouve dans l’air et qu’il s’agit d’une 

OPP : Relation de structure:  𝐵⃗ =
 𝑢𝑘⃗⃗ ⃗⃗  ⃗∧𝐸⃗  

c
  donc 𝐸⃗  et 𝐵⃗  orthogonaux) 

De plus, d’après la relation de structure (OPP) :  𝐵⃗ =
 𝑢𝑘⃗⃗ ⃗⃗  ⃗∧𝐸⃗  

c
   d’où  𝐵 =

𝐸

𝐶
  soit   Π =

E2

𝑐𝜇0
 

Avec  = 𝐸𝑚𝑎𝑥  o (𝜔𝑡 − 𝑘⃗ . 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  + 𝜑) : 

 Π =
E2

𝑐𝜇0
=

𝐸𝑚𝑎𝑥
2

𝑐𝜇0
 o 2(𝜔𝑡 − 𝑘⃗ . 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  + 𝜑) 

〈Π〉 = 〈
𝐸𝑚𝑎𝑥

2

𝑐𝜇0
 o 2(𝜔𝑡 − 𝑘⃗ . 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  + 𝜑)〉 =

𝐸𝑚𝑎𝑥
2

𝑐𝜇0
〈 o 2(𝜔𝑡 − 𝑘⃗ . 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  + 𝜑)〉      

soit avec    〈 o 2(𝜔𝑡 − 𝑘⃗ . 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  + 𝜑)〉 =
1

2
 

〈Π〉 =
𝐸𝑚𝑎𝑥

2

2𝑐µ0
= 𝑃/π𝑟2  

𝐸𝑚𝑎𝑥 = √
2𝑐𝜇0𝑃

𝜋𝑟2
= 4,9.  02 𝑉.𝑚−1  ;   𝐵𝑚𝑎𝑥 =

𝐸𝑚𝑎𝑥

𝑐
= √

2𝜇0𝑃

𝑐𝜋𝑟2
=  ,6.  0−6 𝑇.  



12. **Considérons l’onde électromagnétique suivante, se déplaçant dans le vide : 𝐸⃗ = 𝐸0   n (
𝜋𝑦

𝑎
) 𝑒𝑗(𝑘𝑥−𝜔𝑡)𝑒 𝑧 Est-ce une onde 

plane ? Est-elle progressive ? Quelle est sa polarisation ? Déterminer le champ magnétique associé à cette onde. 

L’onde 𝐸⃗ = 𝐸0   n (
𝜋𝑦

𝑎
) 𝑒𝑗(𝑘𝑥−𝜔𝑡)𝑒 𝑧 dépend de 𝑦 et de 𝑥 sans changement de variable possible permettant de se ramener 

à une unique variable cartésienne, il ne s’agit donc pas d’une onde plane, mais couplage des variables espace et temps 

avec 𝑒𝑗(𝑘𝑥−𝜔𝑡) ∶ propagation selon +𝑒 𝑥.  

Polarisation  = direction de 𝐸⃗ ∶ ici polarisation rectiligne selon 𝑒 𝑧. 

L’onde n’est pas plane, on ne peut donc pas utiliser la relation de structure. Avec l’équation de Maxwell-Faraday dans le 

vide et 𝐸⃗ = 𝐸0   n (
𝜋𝑦

𝑎
) 𝑒𝑗(𝑘𝑥−𝜔𝑡)𝑒 𝑧 :  

ro ⃗⃗ ⃗⃗  ⃗(𝐸⃗ ) = −
𝜕𝐵⃗ 

𝜕𝑡
 

Avec −
𝜕𝐵⃗ 

𝜕𝑡
= 𝑗𝜔𝐵⃗    et 

ro ⃗⃗ ⃗⃗  ⃗(𝐸⃗ ) =

|

|
(
𝜕  

𝜕𝑥
)
𝑦,𝑧

(
𝜕  

𝜕𝑦
)
𝑧,𝑥

(
𝜕  

𝜕𝑧
)
𝑥,𝑦

∧
|

|𝐸𝑥
𝐸𝑦
𝐸𝑧

=
|

|
(
𝜕  

𝜕𝑥
)
𝑦,𝑧

(
𝜕  

𝜕𝑦
)
𝑧,𝑥

0

∧ |
0
0
𝐸𝑧

=
|

|
(
𝜕 𝐸𝑧  

𝜕𝑦
)
𝑧,𝑥

−(
𝜕 𝐸𝑧  

𝜕𝑥
)
𝑧,𝑥

0

=
|

|
(
𝜕 𝐸𝑧  

𝜕𝑦
)
𝑧,𝑥

−(
𝜕 𝐸𝑧  

𝜕𝑥
)
𝑧,𝑥

0

= ||

𝜋

𝑎
𝐸0  o (

𝜋𝑦

𝑎
) 𝑒𝑗(𝑘𝑥−𝜔𝑡)

−𝑗𝑘𝐸0   n (
𝜋𝑦

𝑎
) 𝑒𝑗(𝑘𝑥−𝜔𝑡)

0

 

Finalement,  

ro ⃗⃗ ⃗⃗  ⃗(𝐸⃗ ) = 𝐸0𝑒
𝑗(𝑘𝑥−𝜔𝑡) (

𝜋

𝑎
 o (

𝜋𝑦

𝑎
) 𝑒 𝑥 − 𝑗𝑘   n (

𝜋𝑦

𝑎
) 𝑒 𝑦) = −

𝜕𝐵⃗ 

𝜕𝑡
= 𝑗𝜔𝐵⃗  

D’où 

𝐵⃗ = 𝐸0𝑒
𝑗(𝑘𝑥−𝜔𝑡) (

𝜋

𝑗𝜔𝑎
 o (

𝜋𝑦

𝑎
) 𝑒 𝑥 −

𝑘

𝜔
  n (

𝜋𝑦

𝑎
) 𝑒 𝑦)  

 

13.  Polariseur et analyseur ; Loi de Malus 

14. On considère un plasma peu dense composé de cations supposés fixes et d’électrons libres de densité particulaire 𝑛𝑒, de 

charge −𝑒, de masse 𝑚 et on néglige les interactions des électrons avec les autres particules. Les électrons sont considérés 

comme étant non relativistes. Définir la notion de plasma et établir l’expression de la conductivité du plasma et définir la 

pulsation plasma 𝜔𝑝 du plasma en fonction des grandeurs caractéristiques du système. 

Plasma : gaz composé d’atomes ou de molécules partiellement ou complètement ionisés (mélange d’atomes ou de 

molécules, d’électrons et d’ions positifs issus de la perte d’un ou de plusieurs électrons), l’ensemble étant électriquement 

neutre. On parle de plasma lorsque le nombre d’électrons libres est du même ordre de grandeur que le nombre de 

molécules. 

En considérant les cations fixes, 𝑗 = 𝑛𝑒(−𝑒)𝑣 𝑒 

Déterminons la vitesse des électrons et des ions en régime harmonique en leur appliquant le PFD 

𝑚𝑒

𝑑𝑣 𝑒
𝑑𝑡

= −𝑒𝐸⃗ ⇒ 𝑖𝑚𝑒𝜔𝑣 𝑒 = −𝑒𝐸⃗        ⇒      𝑣 𝑒 = −
𝑒𝐸⃗ 

𝑖𝜔𝑚𝑒

             ⇒     𝑗 = −𝑖
𝑛𝑒𝑒

2

𝜔𝑚𝑒

𝐸⃗  

Relation formellement analogue à la loi d’Ohm locale 𝑗 = 𝛾𝐸⃗ . On peut alors définir par analogie avec un conducteur 

ohmique une conductivité électrique complexe du plasma : 

𝛾(𝜔) = −𝑖
𝑛𝑒𝑒

2

𝜔𝑚𝑒

 

 
 



15.  On étudie la possibilité de propagation du champ 𝐸⃗ = 𝐸0  xp(𝑖(𝜔𝑡 − 𝑘𝑥)) 𝑒𝑧⃗⃗  ⃗ dans un plasma dilué dont la conductivité 

électrique complexe vaut 𝛾(𝜔) = −𝑖
𝑛𝑒𝑒

2

𝜔𝑚𝑒
. Etablir l’équation de propagation du champ 𝐸

→
 et en déduire la relation de 

dispersion caractéristique du plasma, où on fera apparaître la pulsation 𝜔𝑝.    

quatre équations de Maxwell 𝑑𝑖𝑣𝐸⃗ = 0, 𝑑𝑖𝑣𝐵⃗ = 0, 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐸⃗ = −
𝜕𝐵⃗ 

𝜕𝑡
,  𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐵⃗ = 𝜇0𝑗 + 𝜇0𝜀0

𝜕𝐸⃗ 

𝜕𝑡
 

D’autre part, d’après les formules d’analyse vectorielle, 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ (𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐸⃗ ) = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑑𝑖𝑣𝐸⃗ ) − ∆⃗⃗ 𝐸⃗ = −∆⃗⃗ 𝐸⃗  

En combinant les équations de Maxwell : 

 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ (𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐸⃗ ) = −𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ (
𝜕𝐵⃗ 

𝜕𝑡
) = −

𝜕𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗  ⃗(𝐵⃗ )

𝜕𝑡
= −

𝜕

𝜕𝑡
(𝜇0𝑗 + 𝜇0𝜀0

𝜕𝐸⃗ 

𝜕𝑡
) =⏟

𝑝𝑠𝑒𝑢𝑑𝑜 𝑙𝑜𝑖

𝑑′𝑂ℎ𝑚 𝑙𝑜𝑐𝑎𝑙𝑒

−
𝜕

𝜕𝑡
(𝜇0𝛾𝐸⃗ + 𝜇0𝜀0

𝜕𝐸⃗ 

𝜕𝑡
) 

∆⃗⃗ 𝐸⃗ − 𝜇0𝜀0
𝜕2𝐸⃗ 

𝜕𝑡2
= 𝜇0𝛾

𝜕𝐸⃗ 

𝜕𝑡
 

En injectant  𝐸⃗ = 𝐸0 𝑒𝑥𝑝(𝑗(𝜔𝑡 − 𝑘𝑥)) 𝑒𝑧⃗⃗  ⃗, dans l’équation de propagation, on obtient la relation de dispersion :     

−𝑘2𝐸⃗ = 𝜇0𝛾𝑖𝜔𝐸⃗ + 𝜇0𝜀0(𝑖𝜔)
2𝐸⃗ =⏟

𝜇0𝜀0𝑐
2=1

(𝜇0𝛾𝑖𝜔 +
 

𝑐2
(𝑖𝜔)2) 𝐸⃗ = (

𝜇0𝛾

𝑖𝜔
+
 

𝑐2
) (𝑖𝜔)2𝐸⃗  

−𝑘2𝐸⃗ =⏟

𝛾=−𝑖
𝑛𝑒𝑒

2

𝜔𝑚𝑒

(−
𝜇0𝑖

𝑛𝑒𝑒
2

𝜔𝑚𝑒

𝑖𝜔
+
 

𝑐2
)(𝑖𝜔)2𝐸⃗ = −(−

𝜇0𝑛𝑒𝑒
2

𝜔2𝑚𝑒

+
 

𝑐2
)𝜔2𝐸⃗ =⏟

𝜇0𝜀0𝑐
2=1

− (−
𝑛𝑒𝑒

2

𝜔2𝑚𝑒𝜀0𝑐
2
+
 

𝑐2
)𝜔2𝐸⃗  

𝑘2 =
𝜔2

𝑐2
( −

𝑛𝑒𝑒
2

𝜔2𝑚𝑒𝜀0
) 

En posant 𝜔𝑝
2 =

𝑛𝑒𝑒
2

𝑚𝑒𝜀0
, avec par définition 𝜔𝑝 pulsation plasma : 

𝑘2 =
𝜔2

𝑐2
( −

𝜔𝑝
2

𝜔2
) =

𝜔2 − 𝜔𝑝
2

𝑐2
 

16.   On considère un plasma dilué vérifiant la relation de dispersion 𝑘2 =
𝜔2

𝑐2
( −

𝜔𝑝
2

𝜔2
) =

𝜔2−𝜔𝑝
2

𝑐2
 avec 𝜔𝑝

2 =
𝑛𝑒𝑒

2

𝑚𝑒𝜀0
. Discuter 

des possibilités de propagation d’une OemPPH de pulsation 𝜔 en fonction des valeurs de la pulsation 𝜔. 

→ 𝝎 > 𝝎𝒑 :  𝑘2 > 0, 𝑘 est réel et l’onde pourra se propager. 

→ 𝝎 < 𝝎𝒑 :  𝑘2 < 0, 𝑘 est imaginaire pur ce qui n’est pas compatible avec la propagation d’une onde ; on obtient une 

onde évanescente.  

Le plasma se comporte comme un filtre passe haut pour les OEMPPH (filtre d’ordre infini), de pulsation de coupure la 

pulsation plasma 𝝎 = 𝝎𝒑 = √
𝒏𝒆𝒆

𝟐

𝒎𝒆𝜺𝟎
 qui correspond ainsi à la valeur minimale en dessous de laquelle l’onde ne peut se 

propager dans le plasma . 

 

Pour 𝝎 > 𝝎𝒑, 𝑘2 est un réel positif, 𝑘 est alors réel pur :  

𝑘 = 𝑘𝑟 = ±√
𝜔2 − 𝜔𝑝

2

𝑐2
 

Il s’agit d’une onde progressive se propageant à la vitesse de phase :  

𝑣𝜑 =
𝜔

𝑘𝑟
= 𝑐

𝜔

√𝜔2 − 𝜔𝑝
2
=

𝑐

√ −
𝜔𝑝
2

𝜔2

 

Pour 𝝎 < 𝝎𝒑, 𝑘2 est un réel négatif, 𝑘 est alors imaginaire pur :  



𝑘 = 𝑖𝑘𝑖 = ±𝑖√
𝜔𝑝
2 − 𝜔2

𝑐2
 

On définit alors |𝑘𝑖| =
1

𝛿
= √

𝜔𝑝
2−𝜔2

𝑐2
 soit 𝑘 = 𝑖𝑘𝑖 = ±

𝑖

𝛿
 

   𝑑′𝑜       𝐸⃗ = 𝐸0⃗⃗⃗⃗ 𝑒𝑥𝑝(𝑖(𝜔𝑡 − 𝑖𝑘𝑖𝑥)) = 𝐸0⃗⃗⃗⃗ 𝑒
𝑘𝑖𝑥𝑒𝑖𝜔𝑡 

Soit  

𝐸⃗ = 𝐸0⃗⃗⃗⃗ 𝑒
𝑘𝑖𝑥 𝑐𝑜𝑠(𝜔𝑡 + 𝜑) = 𝐸0⃗⃗⃗⃗ 𝑒

±𝑥/𝛿 𝑐𝑜𝑠(𝜔𝑡 + 𝜑) 

Il n’y a plus de propagation (absence de couplage espace et temps) mais selon le signe une amplification menant à une 

solution divergente soit à une solution physiquement non acceptable, le plasma n’étant pas un milieu amplificateur 

fournissant de l’énergie à l’onde, ou une atténuation. Finalement :  

𝑘 = 𝑖𝑘𝑖 = −𝑖√
𝜔𝑝
2 − 𝜔2

𝑐2
= −

𝑖

𝛿
        𝑑′𝑜       𝐸⃗ = 𝐸0⃗⃗⃗⃗ 𝑒𝑥𝑝 (𝑖 (𝜔𝑡 +

𝑖

𝛿
𝑥)) = 𝐸0⃗⃗⃗⃗ 𝑒

−
𝑥
𝛿𝑒𝑖𝜔𝑡 

𝛿 =
1

|𝑘𝑖|
= √

𝜔𝑝
2−𝜔2

𝑐2
 distance caractéristique associée à ce phénomène d’atténuation, appelée profondeur de pénétration 

ou épaisseur de peau (au bout d’une distance de quelques 𝛿, l’amplitude de l’onde devient négligeable).  

 

17. On considère un plasma dilué vérifiant la relation de dispersion 𝑘2 =
𝜔2−𝜔𝑝

2

𝑐2
 avec 𝜔𝑝

2 =
𝑛𝑒𝑒

2

𝑚𝑒𝜀0
. On étudie une OPPH de 

pulsation 𝜔 polarisée rectilignement selon 𝑒𝑧⃗⃗  ⃗ produite par une source extérieure, et se propageant depuis le vide vers ce 

plasma dilué dans la direction 𝑒𝑥⃗⃗  ⃗. Pour 𝜔 < 𝜔𝑝, montrer que le vecteur de Poynting moyen est nul. 

 


