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 Au programme des exercices  

→ Chapitre OND1 : Propagation d’ondes électromagnétiques dans le vide  - Attention ! exercices avec Poynting 

/ énergie / polarisation (pas d’exos sur la seule structure de l’onde) 

→ Chapitre OND2 : Propagation d’ondes électromagnétiques dans les plasmas3 :  

→ Chapitre CHIM3 : réactions d’oxydoréduction 

 Questions de cours seules 

1.   Le champ électrique d’une onde électromagnétique se propageant dans le vide est donné par : 

𝐸⃗  =  𝐸0 exp(i(𝜔𝑡 − 𝑘𝑥) 𝑒 𝑧.  Etablir l’expression du champ magnétique associé ainsi que celle de la puissance rayonnée à 

travers une surface 𝑆 plane orthogonale à 𝑒 𝑧. 

2. Polarisation d’une onde électromagnétique : polarisation rectiligne, polarisation circulaire. 

3. On considère une onde électromagnétique plane se propageant dans le vide dans la direction 𝑢⃗ . Exprimer la densité 

volumique d’énergie et montrer que l’énergie électromagnétique est également répartie sous les formes électrique et 

magnétique. Dans le cas d’une OemPPH, établir l’expression de la densité volumique d’énergie moyenne. 

4. Un laser hélium-néon émet un faisceau lumineux cylindrique de rayon 𝑟 = 1,0 mm d’une onde plane monochromatique 

de longueur d’onde 𝜆 = 632,8 𝑛𝑚. La puissance moyenne émise est 𝑃 = 1,0 mW. On donne : 𝜇0 = 4𝜋. 10
−7 H.m−1. 

Calculer les amplitudes 𝐸𝑚𝑎𝑥  et 𝐵𝑚𝑎𝑥  des champs électrique et magnétique. 

5. ** Considérons l’onde électromagnétique suivante, se déplaçant dans le vide : 𝐸⃗ = 𝐸0 sin (
𝜋𝑦

𝑎
) 𝑒𝑖(𝑘𝑥−𝜔𝑡)𝑒 𝑧 . Quelle est sa 

polarisation ? Déterminer le champ magnétique associé à cette onde. 

6. Polariseur et analyseur ; Loi de Malus 

7.   On considère un plasma peu dense composé de cations supposés fixes et d’électrons libres de densité particulaire 𝑛𝑒, 

de charge −𝑒, de masse 𝑚 et on néglige les interactions des électrons avec les autres particules. Les électrons sont 

considérés comme étant non relativistes. Définir la notion de plasma, établir l’expression de la conductivité du plasma et 

définir la pulsation plasma 𝜔𝑝 du plasma en fonction des grandeurs caractéristiques du système. 

8.  On étudie la possibilité de propagation du champ 𝐸⃗ = 𝐸0 exp(𝑖(𝜔𝑡 − 𝑘𝑥)) 𝑒𝑧⃗⃗  ⃗ dans un plasma dilué dont la conductivité 

électrique complexe vaut 𝛾(𝜔) = −𝑖
𝑛𝑒𝑒

2

𝜔𝑚𝑒
. Etablir l’équation de propagation du champ 𝐸

→
 et en déduire la relation de 

dispersion caractéristique du plasma, où on fera apparaître la pulsation 𝜔𝑝.    

9.  On considère un plasma dilué vérifiant la relation de dispersion 𝑘2 =
𝜔2−𝜔𝑝

2

𝑐2
 avec 𝜔𝑝

2 =
𝑛𝑒𝑒

2

𝑚𝑒𝜀0
. Discuter des possibilités 

de propagation d’une OemPPH de pulsation 𝜔 en fonction des valeurs de la pulsation 𝜔. 

10. On considère un plasma dilué vérifiant la relation de dispersion 𝑘2 =
𝜔2−𝜔𝑝

2

𝑐2
 avec 𝜔𝑝

2 =
𝑛𝑒𝑒

2

𝑚𝑒𝜀0
. On étudie une OPPH de 

pulsation 𝜔 polarisée rectilignement selon 𝑒𝑧⃗⃗  ⃗ produite par une source extérieure, et se propageant depuis le vide vers ce 

plasma dilué dans la direction 𝑒𝑥⃗⃗  ⃗. Pour 𝜔 < 𝜔𝑝, montrer que le vecteur de Poynting moyen est nul. 



11.  Vitesse de groupe et vitesse de phase (aucune notion quantitative exigible sur le paquet d’onde). On rappelle la relation 

de dispersion du plasma dilué : 𝑘2 =
𝜔2−𝜔𝑝

2

𝑐2
> 0; établir les expressions des vitesses de groupe et de phase dans le cas où 

𝜔 > 𝜔𝑝. 

12. Phénomène de dispersion (discussion qualitative). 

13.   Soient les couples : Cr2O7
2−/Cr3+  et I2/I

− de potentiels redox standards respectifs 𝐸1
°  et 𝐸2

° . Ecrire l'équation de réaction 

des ions dichromate Cr2O7
2− par les ions iodure I−. Identifier l’oxydant et le réducteur. Donner l’expression de la constante 

d’équilibre de la réaction en fonction des potentiels standards. Pour les  ** : démontrer cette expression 

14.   On considère la pile étain/mercure schématisée comme suit  

(2) Pt |Sn4+, Sn2+ ‖Hg2+, Hg2
2+ | Pt (1) 

Les solutions de chacune des deux demi-piles ont le même volume 𝑉 =  50,0 mL, avec les concentrations suivantes : 

[Hg2+]0 = 𝑐0 =  5,0.10-1 mol.L-1, [Hg2
2+]0 = [Sn4+]0 = 𝑐1 =  1,0.10-2 mol.L-1 , [Sn2+]0  = 𝑐2 =  1,0.10-1 mol.L-1.  

On donne 𝐸1
° = 𝐸°(Hg2+/Hg2

2+) =  0,91 V et 𝐸2
° = 𝐸°(Sn4+/Sn2+)  =  0,15 V. 

Faire un schéma de la pile en commentant (jonction électrolytique notamment). Déterminer la polarité de la pile et l’équation 

de sa réaction de fonctionnement, en indiquant l’anode et la cathode. Quel est le critère vérifié lorsque la pile est « usée » ? 

15.   On étudie le dosage des ions hypochlorite ClO− à la concentration 𝐶𝑠 dans une solution (S) par iodométrie. 

Données : 𝐸°(S4O6
2−/S2O3

2−)  =  0,09 V ; 𝐸°(I2/I
−) = 0,62  𝑉 ; 𝐸°(ClO−/Cl−) = 1,70 V 

Etape (1) : Prélever un volume 𝑉𝑆 =  20,0 mL de solution (S) et y ajouter 𝑉𝐼 =  20 mL d'une solution d’iodure de potassium 

(K+, I−) à 𝐶𝐼 = 0,1  mol.L-1 en milieu acide. 

Etape (2) : Doser ce mélange par du thiosulfate à 𝐶 =  0,10 mol.L-1 ; le volume équivalent est 𝑉𝑒  =  13,0 mL. 

Ecrire les équations des réactions mises en jeu au cours des étapes (1) et (2) et déterminer la concentration 𝐶𝑠  en ions 

hypochlorite de la solution (S). 

 
 

  



 Questions de cours avec éléments de réponse 

1.   Le champ électrique d’une onde électromagnétique se propageant dans le vide est donné par : 

𝐸⃗  =  𝐸0 exp(i(𝜔𝑡 − 𝑘𝑥) 𝑒 𝑧.  Etablir l’expression du champ magnétique associé ainsi que celle de la puissance rayonnée à 

travers une surface 𝑆 plane orthogonale à 𝑒 𝑧. 

Variable 𝜔𝑡 − 𝑘𝑥 : il s’agit d’une onde se propageant dans la direction (𝑂𝑥) dans le sens direct, soit selon le vecteur de 

propagation 𝑢⃗ 𝑘 = + 𝑒 𝑥. La norme du champ électrique ne dépend que de la variable d’espace 𝑥, le plan 𝑥 =  𝑐𝑡𝑒 est 

donc une surface d’onde : l’onde est plane.  

On peut alors utiliser la relation de structure des OemPP : 

𝐵⃗ =
𝑢⃗ 𝑘  ∧ 𝐸⃗ 

𝑐
=
𝑒 𝑥  ∧ (𝐸0 𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑥) 𝑒 𝑧)

𝑐
  

 𝐵⃗ = −
𝐸0

𝑐
𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑥) 𝑒 𝑦 

𝒫𝑒𝑚 =∬ 𝛱⃗⃗ 
(𝛴)

. 𝑑𝑆⃗⃗ ⃗⃗          𝑎𝑣𝑒𝑐     Π⃗⃗ =
𝐸⃗  ∧  𝐵⃗ 

𝜇0
=
𝐸0

2

𝜇0𝑐
𝑐𝑜𝑠2(𝜔𝑡 − 𝑘𝑥)𝑒 𝑥  

 

2.   Polarisation d’une onde électromagnétique : polarisation rectiligne, polarisation circulaire. 

Par définition, la direction de polarisation de l’onde est celle du champ électrique. 

Une onde OEM possède une polarisation rectiligne si le vecteur champ électrique de l’onde garde au cours du temps une 

direction constante : 𝑒 𝑝 = 𝑐𝑡𝑒.  

Nous pouvons choisir par exemple la direction de l’Oem polarisée colinéaire à l’axe 𝑂𝑦, l’expression de ce champ est alors de la 

forme : 𝐸⃗ = 𝐸𝑦  𝑒 𝑦    avec      𝐸𝑦 = 𝐸𝑂𝑦  cos(𝜔𝑡 − 𝑘𝑥 + 𝜑𝑦) = 𝑅𝑒(𝐸𝑂𝑦  𝑒
𝑗 (𝜔𝑡 − 𝑘𝑥)) 

Plus généralement, avec 𝐸⃗ = 𝐸0𝑥 cos(𝜔𝑡 − 𝑘𝑧)⏟          
𝐸𝑥

𝑢⃗ 𝑥 + 𝐸0𝑦 cos(𝜔𝑡 − 𝑘𝑧 + ∆𝜑)⏟              
𝐸𝑦

𝑢⃗ 𝑦, polarisation rectiligne ssi ∆𝜑 = 𝑝𝜋, 𝑝 ∈ ℤ,  

Pour que le champ 𝐸⃗  d’une OemPPH soit polarisé rectilignement et donc possède une direction constante au cours du temps, il 

faut que ses deux composantes dans le plan de phase oscillent en phase ou en opposition de phase, soit ∆𝝋 = 𝟎 ou ∆𝝋 = 𝝅,  

𝐸⃗ = |
𝐸0𝑥 cos(𝜔𝑡 − 𝑘𝑧)

𝐸0𝑦 cos(𝜔𝑡 − 𝑘𝑧 + ∆𝜑)

0

= cos(𝜔𝑡 − 𝑘𝑧) |

𝐸0𝑥
(−1)𝑝𝐸0𝑦

0

= cos(𝜔𝑡 − 𝑘𝑧) |
𝐸0𝑥
±𝐸0𝑦
0

= 𝐸0 cos(𝜔𝑡 − 𝑘𝑧) |
cos𝛼
sin𝛼
0

 

Avec 𝛼 angle entre l’axe (𝑂𝑥) et 𝐸⃗  

Une onde électromagnétique possède une polarisation circulaire si, en tout point M, le champ électrique 𝐸⃗  possède une norme 

constante ; son extrémité décrit alors un cercle. 

On parle de polarisation circulaire gauche si le cercle est parcouru dans le sens 

trigonométrique autour du vecteur d’onde 𝑘
→

, soit pour un observateur qui 

verrait arriver l’onde vers lui, et de polarisation circulaire droite pour une 

rotation dans le sens horaire 

L’onde électromagnétique est polarisée circulairement ssi  

Les deux composantes du champ électrique dans le plan d’onde ont même amplitude 

Ces deux composantes sont en quadrature de phase, avec ∆𝝋 = ±
𝝅

𝟐
[𝝅] 

Polarisation droite pour  ∆𝝋 = −
𝝅

𝟐
[𝟐𝝅] et polarisation gauche pour ∆𝝋 = +

𝝅

𝟐
[𝟐𝝅] soit 

𝐸⃗ 𝑑𝑟𝑜𝑖𝑡𝑒(𝑀, 𝑡) = (

𝐸𝑥 = 0
𝐸𝑦 = 𝐸0cos (𝜔𝑡 − 𝑘𝑦)

𝐸𝑧 = −𝐸0sin (𝜔𝑡 − 𝑘𝑦)
)  et 𝐸⃗ 𝑔𝑎𝑢𝑐ℎ𝑒(𝑀, 𝑡) = (

𝐸𝑥 = 0
𝐸𝑦 = 𝐸0cos (𝜔𝑡 − 𝑘𝑦)

𝐸𝑧 = 𝐸0sin (𝜔𝑡 − 𝑘𝑦)
) 

 



3. On considère une onde électromagnétique plane se propageant dans le vide dans la direction 𝑢⃗ . Exprimer la densité 

volumique d’énergie et montrer que l’énergie électromagnétique est également répartie sous les formes électrique et 

magnétique. Dans le cas d’une OemPPH, établir l’expression de la densité volumique d’énergie moyenne. 

Densité volumique d’énergie électromagnétique associée au champ électromagnétique (𝐸⃗ , 𝐵⃗ ) :   

𝑢𝑒𝑚(𝑀, 𝑡) =
1

2
𝜀0𝐸

2(𝑀, 𝑡) +
1

2
 
𝐵2(𝑀, 𝑡)

𝜇0
 

Pour l’OemPP, les normes des champs 𝐸⃗  et 𝐵⃗  sont liés par la relation  𝐸 = 𝐵𝑐  soit    
1

2

𝐵2

𝜇0
=
1

2

𝐸2

𝑐2𝜇0
 

Avec  𝜀0𝜇0𝑐
2 = 1, on a   

1

𝑐2𝜇0
= 𝜀0   soit    

1

2

𝐵2

𝜇0
=
1

2

𝐸2

𝑐2𝜇0
=
1

2
𝜀0𝐸

2    d’où 

𝑢𝑒𝑚 =
1

2
𝜀0𝐸

2 +
1

2

𝐵2

𝜇0
= 𝜀0𝐸

2 = 𝜀0𝐵
2𝑐2 =

𝐵2

𝜇0
 

Si on considère de plus une OemPPH, le champ électrique est variable, de la forme   

 𝐸⃗ (𝑟 , 𝑡) = 𝐸⃗ 0  cos(𝜔𝑡 − 𝑘⃗ ∙ 𝑟 + 𝜑)  

La densité volumique d’énergie est donc variable dans le temps en un point donné, on peut calculer la moyenne temporelle 

de la densité d’énergie associée à l’onde : 

〈𝑢𝑒𝑚〉 = 〈𝜀0𝐸
2〉 = 𝜀0𝐸0

2 〈cos2(𝜔𝑡 − 𝑘⃗ ∙ 𝑟 + 𝜑)〉  

En moyenne temporelle : 

〈cos2(𝜔𝑡 − 𝑘⃗ ∙ 𝑟 + 𝜑)〉 =
1

2
 

D’où :  

〈𝒖𝒆𝒎〉 =
𝜺𝟎𝑬𝟎

𝟐

𝟐
=
𝑩𝟎
𝟐

𝟐𝝁𝟎
 

4. Un laser hélium-néon émet un faisceau lumineux cylindrique de rayon 𝑟 = 1,0 mm d’une onde plane monochromatique 

de longueur d’onde 𝜆 = 632,8 𝑛𝑚. La puissance moyenne émise est 𝑃 = 1,0 mW. On donne : 𝜇0 = 4𝜋. 10
−7 H.m−1. 

Calculer les amplitudes 𝐸𝑚𝑎𝑥  et 𝐵𝑚𝑎𝑥  des champs électrique et magnétique. 

𝒫𝑒𝑚 = ∬ Π⃗⃗ 
(Σ)

. d𝑆⃗⃗⃗⃗ = ΠS = Ππ𝑟2  soit       𝑃 = 〈𝒫𝑒𝑚〉 =  〈Π〉𝑆 = 〈Π〉π𝑟
2 d’où  〈Π〉 = 𝑃/π𝑟2       or  

Expression du vecteur de Poynting : Π⃗⃗ =
𝐸⃗  ∧ 𝐵⃗ 

𝜇0
 soit   Π =

EB

𝜇0
    (on suppose qu’on se trouve dans l’air et qu’il s’agit d’une 

OPP : Relation de structure:  𝐵⃗ =
 𝑢𝑘⃗⃗ ⃗⃗  ⃗∧𝐸⃗  

c
  donc 𝐸⃗  et 𝐵⃗  orthogonaux) 

De plus, d’après la relation de structure (OPP) :  𝐵⃗ =
 𝑢𝑘⃗⃗ ⃗⃗  ⃗∧𝐸⃗  

c
   d’où  𝐵 =

𝐸

𝐶
  soit   Π =

E2

𝑐𝜇0
 

Avec E = 𝐸𝑚𝑎𝑥 cos(𝜔𝑡 − 𝑘⃗ . 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  + 𝜑) : 

 Π =
E2

𝑐𝜇0
=

𝐸𝑚𝑎𝑥
2

𝑐𝜇0
cos2(𝜔𝑡 − 𝑘⃗ . 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  + 𝜑) 

〈Π〉 = 〈
𝐸𝑚𝑎𝑥

2

𝑐𝜇0
cos2(𝜔𝑡 − 𝑘⃗ . 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  + 𝜑)〉 =

𝐸𝑚𝑎𝑥
2

𝑐𝜇0
〈cos2(𝜔𝑡 − 𝑘⃗ . 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  + 𝜑)〉      

soit avec    〈cos2(𝜔𝑡 − 𝑘⃗ . 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  + 𝜑)〉 =
1

2
 

〈Π〉 =
𝐸𝑚𝑎𝑥

2

2𝑐µ0
= 𝑃/π𝑟2  

𝐸𝑚𝑎𝑥 = √
2𝑐𝜇0𝑃

𝜋𝑟2
= 4,9. 102 𝑉.𝑚−1  ;   𝐵𝑚𝑎𝑥 =

𝐸𝑚𝑎𝑥

𝑐
= √

2𝜇0𝑃

𝑐𝜋𝑟2
= 1,6. 10−6 𝑇.  



5. **Considérons l’onde électromagnétique suivante, se déplaçant dans le vide : 𝐸⃗ = 𝐸0 sin (
𝜋𝑦

𝑎
) 𝑒𝑗(𝑘𝑥−𝜔𝑡)𝑒 𝑧 Est-ce une onde 

plane ? Est-elle progressive ? Quelle est sa polarisation ? Déterminer le champ magnétique associé à cette onde. 

L’onde 𝐸⃗ = 𝐸0 𝑠𝑖𝑛 (
𝜋𝑦

𝑎
) 𝑒𝑗(𝑘𝑥−𝜔𝑡)𝑒 𝑧 dépend de 𝑦 et de 𝑥 sans changement de variable possible permettant de se ramener 

à une unique variable cartésienne, il ne s’agit donc pas d’une onde plane, mais couplage des variables espace et temps 

avec 𝑒𝑗(𝑘𝑥−𝜔𝑡) ∶ propagation selon +𝑒 𝑥.  

Polarisation  = direction de 𝐸⃗ ∶ ici polarisation rectiligne selon 𝑒 𝑧. 

L’onde n’est pas plane, on ne peut donc pas utiliser la relation de structure. Avec l’équation de Maxwell-Faraday dans le 

vide et 𝐸⃗ = 𝐸0 𝑠𝑖𝑛 (
𝜋𝑦

𝑎
) 𝑒𝑗(𝑘𝑥−𝜔𝑡)𝑒 𝑧 :  

𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ (𝐸⃗ ) = −
𝜕𝐵⃗ 

𝜕𝑡
 

Avec −
𝜕𝐵⃗ 

𝜕𝑡
= 𝑗𝜔𝐵⃗    et 

𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ (𝐸⃗ ) =

|

|
(
𝜕  

𝜕𝑥
)
𝑦,𝑧

(
𝜕  

𝜕𝑦
)
𝑧,𝑥

(
𝜕  

𝜕𝑧
)
𝑥,𝑦

∧
|

|𝐸𝑥
𝐸𝑦
𝐸𝑧

=
|

|
(
𝜕  

𝜕𝑥
)
𝑦,𝑧

(
𝜕  

𝜕𝑦
)
𝑧,𝑥

0

∧ |
0
0
𝐸𝑧

=
|

|
(
𝜕 𝐸𝑧 

𝜕𝑦
)
𝑧,𝑥

−(
𝜕 𝐸𝑧  

𝜕𝑥
)
𝑧,𝑥

0

=
|

|
(
𝜕 𝐸𝑧 

𝜕𝑦
)
𝑧,𝑥

−(
𝜕 𝐸𝑧 

𝜕𝑥
)
𝑧,𝑥

0

= ||

𝜋

𝑎
𝐸0 𝑐𝑜𝑠 (

𝜋𝑦

𝑎
) 𝑒𝑗(𝑘𝑥−𝜔𝑡)

−𝑗𝑘𝐸0 𝑠𝑖𝑛 (
𝜋𝑦

𝑎
) 𝑒𝑗(𝑘𝑥−𝜔𝑡)

0

 

Finalement,  

𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ (𝐸⃗ ) = 𝐸0𝑒
𝑗(𝑘𝑥−𝜔𝑡) (

𝜋

𝑎
𝑐𝑜𝑠 (

𝜋𝑦

𝑎
) 𝑒 𝑥 − 𝑗𝑘 𝑠𝑖𝑛 (

𝜋𝑦

𝑎
) 𝑒 𝑦) = −

𝜕𝐵⃗ 

𝜕𝑡
= 𝑗𝜔𝐵⃗  

D’où 

𝐵⃗ = 𝐸0𝑒
𝑗(𝑘𝑥−𝜔𝑡) (

𝜋

𝑗𝜔𝑎
𝑐𝑜𝑠 (

𝜋𝑦

𝑎
) 𝑒 𝑥 −

𝑘

𝜔
𝑠𝑖𝑛 (

𝜋𝑦

𝑎
) 𝑒 𝑦)  

 

6.  Polariseur et analyseur ; Loi de Malus 

7. On considère un plasma peu dense composé de cations supposés fixes et d’électrons libres de densité particulaire 𝑛𝑒, de 

charge −𝑒, de masse 𝑚 et on néglige les interactions des électrons avec les autres particules. Les électrons sont considérés 

comme étant non relativistes. Définir la notion de plasma et établir l’expression de la conductivité du plasma et définir la 

pulsation plasma 𝜔𝑝 du plasma en fonction des grandeurs caractéristiques du système. 

Plasma : gaz composé d’atomes ou de molécules partiellement ou complètement ionisés (mélange d’atomes ou de 

molécules, d’électrons et d’ions positifs issus de la perte d’un ou de plusieurs électrons), l’ensemble étant électriquement 

neutre. On parle de plasma lorsque le nombre d’électrons libres est du même ordre de grandeur que le nombre de 

molécules. 

En considérant les cations fixes, 𝑗 = 𝑛𝑒(−𝑒)𝑣 𝑒 

Déterminons la vitesse des électrons et des ions en régime harmonique en leur appliquant le PFD 

𝑚𝑒

𝑑𝑣 𝑒
𝑑𝑡

= −𝑒𝐸⃗ ⇒ 𝑖𝑚𝑒𝜔𝑣 𝑒 = −𝑒𝐸⃗        ⇒      𝑣 𝑒 = −
𝑒𝐸⃗ 

𝑖𝜔𝑚𝑒

             ⇒     𝑗 = −𝑖
𝑛𝑒𝑒

2

𝜔𝑚𝑒

𝐸⃗  

Relation formellement analogue à la loi d’Ohm locale 𝑗 = 𝛾𝐸⃗ . On peut alors définir par analogie avec un conducteur 

ohmique une conductivité électrique complexe du plasma : 

𝛾(𝜔) = −𝑖
𝑛𝑒𝑒

2

𝜔𝑚𝑒

 

 
 



8.  On étudie la possibilité de propagation du champ 𝐸⃗ = 𝐸0 exp(𝑖(𝜔𝑡 − 𝑘𝑥)) 𝑒𝑧⃗⃗  ⃗ dans un plasma dilué dont la conductivité 

électrique complexe vaut 𝛾(𝜔) = −𝑖
𝑛𝑒𝑒

2

𝜔𝑚𝑒
. Etablir l’équation de propagation du champ 𝐸

→
 et en déduire la relation de 

dispersion caractéristique du plasma, où on fera apparaître la pulsation 𝜔𝑝.    

quatre équations de Maxwell 𝑑𝑖𝑣𝐸⃗ = 0, 𝑑𝑖𝑣𝐵⃗ = 0, 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐸⃗ = −
𝜕𝐵⃗ 

𝜕𝑡
,  𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐵⃗ = 𝜇0𝑗 + 𝜇0𝜀0

𝜕𝐸⃗ 

𝜕𝑡
 

D’autre part, d’après les formules d’analyse vectorielle, 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ (𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐸⃗ ) = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑑𝑖𝑣𝐸⃗ ) − ∆⃗⃗ 𝐸⃗ = −∆⃗⃗ 𝐸⃗  

En combinant les équations de Maxwell : 

 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ (𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐸⃗ ) = −𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ (
𝜕𝐵⃗ 

𝜕𝑡
) = −

𝜕𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗  ⃗(𝐵⃗ )

𝜕𝑡
= −

𝜕

𝜕𝑡
(𝜇0𝑗 + 𝜇0𝜀0

𝜕𝐸⃗ 

𝜕𝑡
) =⏟

𝑝𝑠𝑒𝑢𝑑𝑜 𝑙𝑜𝑖

𝑑′𝑂ℎ𝑚 𝑙𝑜𝑐𝑎𝑙𝑒

−
𝜕

𝜕𝑡
(𝜇0𝛾𝐸⃗ + 𝜇0𝜀0

𝜕𝐸⃗ 

𝜕𝑡
) 

∆⃗⃗ 𝐸⃗ − 𝜇0𝜀0
𝜕2𝐸⃗ 

𝜕𝑡2
= 𝜇0𝛾

𝜕𝐸⃗ 

𝜕𝑡
 

En injectant  𝐸⃗ = 𝐸0 𝑒𝑥𝑝(𝑗(𝜔𝑡 − 𝑘𝑥)) 𝑒𝑧⃗⃗  ⃗, dans l’équation de propagation, on obtient la relation de dispersion :     

−𝑘2𝐸⃗ = 𝜇0𝛾𝑖𝜔𝐸⃗ + 𝜇0𝜀0(𝑖𝜔)
2𝐸⃗ =⏟

𝜇0𝜀0𝑐
2=1

(𝜇0𝛾𝑖𝜔 +
1

𝑐2
(𝑖𝜔)2) 𝐸⃗ = (

𝜇0𝛾

𝑖𝜔
+
1

𝑐2
) (𝑖𝜔)2𝐸⃗  

−𝑘2𝐸⃗ =⏟

𝛾=−𝑖
𝑛𝑒𝑒

2

𝜔𝑚𝑒

(−
𝜇0𝑖

𝑛𝑒𝑒
2

𝜔𝑚𝑒

𝑖𝜔
+
1

𝑐2
)(𝑖𝜔)2𝐸⃗ = −(−

𝜇0𝑛𝑒𝑒
2

𝜔2𝑚𝑒

+
1

𝑐2
)𝜔2𝐸⃗ =⏟

𝜇0𝜀0𝑐
2=1

− (−
𝑛𝑒𝑒

2

𝜔2𝑚𝑒𝜀0𝑐
2
+
1

𝑐2
)𝜔2𝐸⃗  

𝑘2 =
𝜔2

𝑐2
(1 −

𝑛𝑒𝑒
2

𝜔2𝑚𝑒𝜀0
) 

En posant 𝜔𝑝
2 =

𝑛𝑒𝑒
2

𝑚𝑒𝜀0
, avec par définition 𝜔𝑝 pulsation plasma : 

𝑘2 =
𝜔2

𝑐2
(1 −

𝜔𝑝
2

𝜔2
) =

𝜔2 − 𝜔𝑝
2

𝑐2
 

9.   On considère un plasma dilué vérifiant la relation de dispersion 𝑘2 =
𝜔2

𝑐2
(1 −

𝜔𝑝
2

𝜔2
) =

𝜔2−𝜔𝑝
2

𝑐2
 avec 𝜔𝑝

2 =
𝑛𝑒𝑒

2

𝑚𝑒𝜀0
. Discuter 

des possibilités de propagation d’une OemPPH de pulsation 𝜔 en fonction des valeurs de la pulsation 𝜔. 

→ 𝝎 > 𝝎𝒑 :  𝑘2 > 0, 𝑘 est réel et l’onde pourra se propager. 

→ 𝝎 < 𝝎𝒑 :  𝑘2 < 0, 𝑘 est imaginaire pur ce qui n’est pas compatible avec la propagation d’une onde ; on obtient une 

onde évanescente.  

Le plasma se comporte comme un filtre passe haut pour les OEMPPH (filtre d’ordre infini), de pulsation de coupure la 

pulsation plasma 𝝎 = 𝝎𝒑 = √
𝒏𝒆𝒆

𝟐

𝒎𝒆𝜺𝟎
 qui correspond ainsi à la valeur minimale en dessous de laquelle l’onde ne peut se 

propager dans le plasma . 

 

Pour 𝝎 > 𝝎𝒑, 𝑘2 est un réel positif, 𝑘 est alors réel pur :  

𝑘 = 𝑘𝑟 = ±√
𝜔2 − 𝜔𝑝

2

𝑐2
 

Il s’agit d’une onde progressive se propageant à la vitesse de phase :  

𝑣𝜑 =
𝜔

𝑘𝑟
= 𝑐

𝜔

√𝜔2 − 𝜔𝑝
2
=

𝑐

√1 −
𝜔𝑝
2

𝜔2

 

Pour 𝝎 < 𝝎𝒑, 𝑘2 est un réel négatif, 𝑘 est alors imaginaire pur :  



𝑘 = 𝑖𝑘𝑖 = ±𝑖√
𝜔𝑝
2 − 𝜔2

𝑐2
 

On définit alors |𝑘𝑖| =
1

𝛿
= √

𝜔𝑝
2−𝜔2

𝑐2
 soit 𝑘 = 𝑖𝑘𝑖 = ±

𝑖

𝛿
 

   𝑑′𝑜ù      𝐸⃗ = 𝐸0⃗⃗⃗⃗ 𝑒𝑥𝑝(𝑖(𝜔𝑡 − 𝑖𝑘𝑖𝑥)) = 𝐸0⃗⃗⃗⃗ 𝑒
𝑘𝑖𝑥𝑒𝑖𝜔𝑡 

Soit  

𝐸⃗ = 𝐸0⃗⃗⃗⃗ 𝑒
𝑘𝑖𝑥 𝑐𝑜𝑠(𝜔𝑡 + 𝜑) = 𝐸0⃗⃗⃗⃗ 𝑒

±𝑥/𝛿 𝑐𝑜𝑠(𝜔𝑡 + 𝜑) 

Il n’y a plus de propagation (absence de couplage espace et temps) mais selon le signe une amplification menant à une 

solution divergente soit à une solution physiquement non acceptable, le plasma n’étant pas un milieu amplificateur 

fournissant de l’énergie à l’onde, ou une atténuation. Finalement :  

𝑘 = 𝑖𝑘𝑖 = −𝑖√
𝜔𝑝
2 − 𝜔2

𝑐2
= −

𝑖

𝛿
        𝑑′𝑜ù      𝐸⃗ = 𝐸0⃗⃗⃗⃗ 𝑒𝑥𝑝 (𝑖 (𝜔𝑡 +

𝑖

𝛿
𝑥)) = 𝐸0⃗⃗⃗⃗ 𝑒

−
𝑥
𝛿𝑒𝑖𝜔𝑡 

𝛿 =
1

|𝑘𝑖|
= √

𝜔𝑝
2−𝜔2

𝑐2
 distance caractéristique associée à ce phénomène d’atténuation, appelée profondeur de pénétration 

ou épaisseur de peau (au bout d’une distance de quelques 𝛿, l’amplitude de l’onde devient négligeable).  

 

10. On considère un plasma dilué vérifiant la relation de dispersion 𝑘2 =
𝜔2−𝜔𝑝

2

𝑐2
 avec 𝜔𝑝

2 =
𝑛𝑒𝑒

2

𝑚𝑒𝜀0
. On étudie une OPPH de 

pulsation 𝜔 polarisée rectilignement selon 𝑒𝑧⃗⃗  ⃗ produite par une source extérieure, et se propageant depuis le vide vers ce 

plasma dilué dans la direction 𝑒𝑥⃗⃗  ⃗. Pour 𝜔 < 𝜔𝑝, montrer que le vecteur de Poynting moyen est nul. 

11.  Vitesse de groupe et vitesse de phase (aucune notion quantitative exigible sur le paquet d’onde). On rappelle la relation 

de dispersion du plasma dilué : 𝑘2 =
𝜔2−𝜔𝑝

2

𝑐2
> 0; établir les expressions des vitesses de groupe et de phase dans le cas où 

𝜔 > 𝜔𝑝. 

Les vitesses de groupe et de phases sont définies pour des ondes progressives (non définies dans le cas de l’onde 

évanescente notamment). La vitesse de groupe est définie pour un paquet d’onde, qui peut être modélisé par une onde  

de pulsation 𝜔0 centrale se propageant à la vitesse de phase 𝑣𝜑(𝜔0) dont l’amplitude est modulée par une enveloppe 

se propageant à la vitesse de groupe 𝑣𝑔. 

Vitesse de phase correspondant à la vitesse d’une OPPH quelconque de pulsation 𝜔 : 

𝑣𝜑 =
𝜔

𝑘𝑟(𝜔)
=

𝜔

𝑅𝑒(𝑘(𝜔))
 

Elle n’a pas de réalité physique, et ne correspond pas à un transport d’énergie. 

Vitesse de groupe de l’onde globale correspondant à la vitesse de l’onde enveloppe pour un paquet d’onde : 

𝑣𝑔 = (
𝑑𝜔

𝑑𝑘𝑟
)
𝜔0

= (
𝑑𝜔

𝑑𝑅𝑒(𝑘(𝜔0))
)
𝜔0

 

On montre qu’elle s’identifie généralement à la vitesse de propagation de l’énergie. La vitesse de groupe reste dans ce 

cas inférieure à la vitesse de la lumière : 𝒗𝒈(𝝎) ≤ 𝒄 afin de respecter la théorie de la relativité d’Einstein 

En différentiant la relation de dispersion : 

𝑐2𝑘2 = 𝜔2 − 𝜔𝑝
2   ⟹   2𝑐2𝑘𝑑𝑘 = 2𝜔𝑑𝜔      soit    𝑣𝑔 =

𝑑𝜔

𝑑𝑘
= 𝑐2

𝑘

𝜔
=

𝑐2

𝑣𝜑
. Finalement : 

𝑣𝜑 =
𝜔

𝑘
=

𝑐

√1 −
𝜔𝑝
2

𝜔2

                𝑣𝑔 =
𝑑𝜔

𝑑𝑘
= 𝑐√1 −

𝜔𝑝
2

𝜔2
 



Relation de Klein-Gordon :  𝒗𝒈𝒗𝝋 = 𝒄
𝟐 

Pour 𝜔 > 𝜔𝑝, on en déduit les propriétés suivantes :    𝒗𝝋 > 𝒄 𝒆𝒕 𝒗𝒈 < 𝒄 

12. Phénomène de dispersion (discussion qualitative). 

13.  Soient les couples : Cr2O7
2−/Cr3+  et I2/I

− de potentiels redox standards respectifs 𝐸1
°  et 𝐸2

° . Ecrire l'équation de réaction 

des ions dichromate Cr2O7
2− avec les ions iodure I−. Identifier l’oxydant et le réducteur. Donner les expressions des 

potentiels redox associés à chaque couple, ainsi que l’expression de la constante d’équilibre.  

Pour les ** :  établir l’expression de la constante d’équilibre de la réaction en fonction des potentiels standards. 

Demi-équations électroniques :  𝐶𝑟2𝑂7
2− + 14𝐻+ + 6𝑒− = 2𝐶𝑟3+ + 7𝐻2𝑂                     (1)

  

                                                                               2𝐼− = I2 + 2𝑒
−                                                                   (2) 

Pour se ramener au même nombre d’électrons échangés dans les deux demi-équations : (2) × 3 

Cr2O7
2− + 6I− + 14H+ = 2Cr3+ + 3I2 + 7H2O   

Réduction des ions dichromate  𝐶𝑟2𝑂7
2−et oxydation des ions iodure I−, donc 𝐶𝑟2𝑂7

2−oxydant et I− réducteur. 

D’après la L.A.M. : 𝐾° =
[𝐶𝑟3+]

é𝑞

2
[𝐼2]é𝑞

3

[𝐶𝑟2𝑂7
2−]

é𝑞
[𝐻+]14é𝑞[𝐼

−]6é𝑞
 

Loi de Nernst :  

𝐸(𝐶𝑟2𝑂7
2−/𝐶𝑟3+) = 𝐸°(𝐶𝑟2𝑂7

2−/𝐶𝑟3+) +
0,06

6
𝑙𝑜𝑔 (

[𝐶𝑟2𝑂7
2−][𝐻+]14

[𝐶𝑟3+]2
) 

𝐸(I2/I
−) = 𝐸°(I2/I

−) +
0,06

2
𝑙𝑜𝑔 (

[I2]

[I−]2
) 

𝐾° = 10
6(𝐸°(𝐶𝑟2𝑂7

2−/𝐶𝑟3+)−𝐸°(I2/I
−))

0,06 = 10
6(𝐸°𝑜𝑥−𝐸°𝑟𝑒𝑑)

0,06  

Pour les ** : démo  

A l’équilibre, 𝐸(𝐶𝑟2𝑂7
2−/𝐶𝑟3+)é𝑞 = 𝐸(𝐼2/𝐼

−)é𝑞  soit    

 𝐸°(𝐶𝑟2𝑂7
2−/𝐶𝑟3+) +

0,06

6
𝑙𝑜𝑔 (

[𝐶𝑟2𝑂7
2−]

é𝑞
[𝐻+]

14

é𝑞

[𝐶𝑟3+]é𝑞
2 ) = 𝐸°(I2/I

−) +
0,06

2
𝑙𝑜𝑔 (

[I2]é𝑞

[I−]2é𝑞
) 

𝐸°(𝐶𝑟2𝑂7
2−/𝐶𝑟3+) − 𝐸°(I2/I

−) =
0,06 × 3

6
𝑙𝑜𝑔 (

[I2]é𝑞
[I−]2é𝑞

) −
0,06

6
𝑙𝑜𝑔 (

[𝐶𝑟2𝑂7
2−]é𝑞[𝐻

+]14
é𝑞

[𝐶𝑟3+]é𝑞
2 ) 

𝐸°(𝐶𝑟2𝑂7
2−/𝐶𝑟3+) − 𝐸°(I2/I

−) =
0,06

6
𝑙𝑜𝑔(𝐾°) 

𝐾° = 10
6(𝐸°(𝐶𝑟2𝑂7

2−/𝐶𝑟3+)−𝐸°(I2/I
−))

0,06 = 10
6(𝐸°𝑜𝑥−𝐸°𝑟𝑒𝑑)

0,06  

 

14.   On considère la pile étain/mercure schématisée comme suit  

(2) Pt |Sn4+, Sn2+ ‖Hg2+, Hg2
2+ | Pt (1) 

Les solutions de chacune des deux demi-piles ont le même volume 𝑉 =  50,0 mL, avec les concentrations suivantes : 

[Hg2+]0 = 𝑐0 =  5,0.10-1 mol.L-1, [Hg2
2+]0 = [Sn4+]0 = 𝑐1 =  1,0.10-2 mol.L-1 , [Sn2+]0  = 𝑐2 =  1,0.10-1 mol.L-1.  

On donne 𝐸1
° = 𝐸°(Hg2+/Hg2

2+) =  0,91 V et 𝐸2
° = 𝐸°(Sn4+/Sn2+)  =  0,15 V. 

Faire un schéma de la pile en commentant (jonction électrolytique notamment). Déterminer la polarité de la pile et l’équation 

de sa réaction de fonctionnement, en indiquant l’anode et la cathode. Quel est le critère vérifié lorsque la pile est « usée » ? 



Pour déterminer la polarité de la pile, il faut déterminer quelle électrode a le 

potentiel le plus élevé. 

Demi-pile 1 : demi-équation rédox : 2 𝐻𝑔2+ + 2𝑒− =  𝐻𝑔2
2+ 

formule de Nernst à l’état initial  : 

𝐸1,0 = 𝐸1
° +

0,06

2
𝑙𝑜𝑔

[𝐻𝑔2+]0
2

[𝐻𝑔2
2+]0𝑐°

 

A.N. : 𝐸1,0 = 0,91 + 0,03 𝑙𝑜𝑔 50 = 𝟎, 𝟗𝟔 𝑽 = 𝑬𝟏,𝟎 

Demi-pile 2 : demi-équation rédox : 𝑆𝑛4+ + 2𝑒− = 𝑆𝑛2+ 

   𝐸2,0 = 𝐸2
° +

0,06

2
𝑙𝑜𝑔

[𝑆𝑛4+]0
[𝑆𝑛2+]0

 

A.N. : 𝐸2,0 = 0,15 + 0,03 𝑙𝑜𝑔 10
−1 = 𝟎, 𝟏𝟐 𝑽 = 𝐸2,0 

 𝑬𝟏,𝟎 > 𝑬𝟐,𝟎 : la demi pile au mercure constitue la borne positive de la pile, lieu d’arrivée des électrons, donc de la réduction : 

il s’agit de la cathode. La demi-pile au sélénium constitue sa borne négative, lieu de départ des électrons, donc de 

l’oxydation : il s’agit de l’anode . 

 En fonctionnement, la réaction de la pile est  

𝟐𝑯𝒈𝟐+ + 𝑺𝒏𝟐+ =  𝑯𝒈𝟐
𝟐+ + 𝑺𝒏𝟒+ 

Pile usée quand 𝑬𝟏,é𝒒 = 𝑬𝟐,é𝒒 

15.   On étudie le dosage des ions hypochlorite ClO− à la concentration 𝐶𝑠 dans une solution (S) par iodométrie. 

Données : 𝐸°(S4O6
2−/S2O3

2−)  =  0,09 V ; 𝐸°(I2/I
−) = 0,62  𝑉 ; 𝐸°(ClO−/Cl−) = 1,70 V 

Etape (1) : Prélever un volume 𝑉𝑆 =  20,0 mL de solution (S) et y ajouter 𝑉𝐼 =  20 mL d'une solution d’iodure de potassium 

(K+, I−) à 𝐶𝐼 = 0,1  mol.L-1 en milieu acide, les ions iodure étant en excès. 

Etape (2) : Doser ce mélange par du thiosulfate S2O3
2− à 𝐶 =  0,10 mol.L-1 ; le volume équivalent est 𝑉𝑒  =  13,0 mL. 

Ecrire les équations des réactions mises en jeu au cours des étapes (1) et (2) et déterminer la concentration 𝐶𝑠  en ions 

hypochlorite de la solution (S). 

1. Etape 1 : mélange d’ions 𝐶𝑙𝑂−, 𝐶𝑙− et 𝐼−.  

réaction thermodynamiquement la plus favorisée : meilleur oxydant (de potentiel 𝐸° le plus élevé)  sur le 

meilleur réducteur (de potentiel 𝐸° le plus faible), soit ici, après avoir équilibré la réaction redox : 

𝐶𝑙𝑂− + 2 𝐼− + 2  𝐻+  = 𝐼2 + 𝐶𝑙− + 𝐻2𝑂          𝐾1° 

∆𝐸° é𝑙𝑒𝑣é𝑒, 𝑜𝑛 𝑎 𝑑𝑜𝑛𝑐 𝐾1° ≫ 1 ∶ la réaction est quasi-totale ; les ions iodure 𝐼− étant en excès, les ions  

𝐶𝑙𝑂− sont quasi totalement consommés. 

en moles         𝐶𝑙𝑂−           +             2 𝐼−    + 2  𝐻+  =   𝐼2                    +    𝐶𝑙
−       + 𝐻2𝑂          

E.I.          𝐶𝑠𝑉𝑠                             𝐶𝐼𝑉𝐼                           0                        𝑥 

E.F.    𝐶𝑠𝑉𝑠 − 𝜉𝐹 = 0         𝐶𝐼𝑉𝐼 − 2𝜉𝐹                    𝜉𝐹 = 𝐶𝑠𝑉𝑠           𝑥 + 𝜉𝐹 = 𝑥 + 𝐶𝑠𝑉𝑠 

                                    = 𝐶𝐼𝑉𝐼 − 2𝐶𝑠𝑉𝑠  

Il y a donc formation de 𝜉𝐹 = 𝐶𝑠  𝑉𝑆 moles de 𝐼2 (voir bilan ci-dessus). 

Etape 2 : Dosage du mélange obtenu, soit 𝐼−, 𝐼2 et 𝐶𝑙− par le thiosulfate 𝑆2𝑂3
2−. Cf. échelle des potentiels 𝐸° ∶ la réaction 

ayant lieu est celle du meilleur oxydant sur le meilleur réducteur, soit ici : 

𝐼2 + 2 𝑆2𝑂3
2− = 𝑆4𝑂6

2−  +2 𝐼− 

en moles             𝐼2                  +        2 𝑆2𝑂3
2−            =     𝑆4𝑂6

2−     +           2 𝐼−          

E.I.          𝐶𝑠𝑉𝑠                             𝐶𝑉                           0                           𝐶𝐼𝑉𝐼 − 2𝐶𝑠𝑉𝑠  

𝐸° 

ClO− Cl− 

I2 I− 

S4O6
2− S2O3

2− 



E.F. pour 

𝑉 = 𝑉𝑒 

   𝐶𝑠𝑉𝑠 − 𝜉𝑒 = 0         𝐶𝑉𝑒 − 2𝜉𝑒 = 0                    𝜉𝑒                    𝐶𝐼𝑉𝐼 − 2𝐶𝑠𝑉𝑠 + 2𝜉𝑒 

relation à l’équivalence en tenant compte de la stœchiométrie de la réaction de dosage : 

𝜉𝑒 = 𝐶𝑠 𝑉𝑆 =
1

2
𝐶𝑉𝑒  

 
 


