COLLES DE PHYSIQUE - MPI —2025-2026

Colle N°16 — Semaine pronote N°24 : 02 au 06 Février 2026

= Au programme des exercices
— Chapitre OND2 : Propagation d’ondes électromagnétiques dans les plasmas

— Chapitre ON3 : Propagation d’Oem dans les milieux conducteurs en régime lentement variable (attention !!
pas encore d’étude des réflexions sur un conducteur parfait !)

— Chapitre CHIMS3 : réactions d’oxydoréduction

= Questions de cours seules

1. @ Vitesse de groupe et vitesse de phase (aucune notion quantitative exigible sur le paquet d’onde). On rappelle la relation

2_,2
@p

de dispersion du plasma dilué : k? = wc—z > 0 ; établir les expressions des vitesses de groupe et de phase dans le cas ou

W > wp
2. Phénomeéne de dispersion (discussion qualitative).

3. @ Soient les couples : Cr,02~/Cr3* et ], /I~ de potentiels redox standards respectifs E; et E,. Ecrire I'équation de réaction
des ions dichromate Cr,0%™ par les ions iodure I™. Identifier I'oxydant et le réducteur. Donner I'expression de la constante
d’équilibre de la réaction en fonction des potentiels standards. Pour les ** : démontrer cette expression

4. @ On considére la pile étain/mercure schématisée comme suit
(2) Pt |Sn**,Sn?* ||Hg?*, Hg2* | Pt (1)
Les solutions de chacune des deux demi-piles ont le méme volume V' = 50,0 mL, avec les concentrations suivantes :
[Hg?*]o = ¢o = 5,0.10" mol.LY, [Hg3*], = [Sn**], = ¢; = 1,0.102 mol.L't, [Sn?*], = ¢, = 1,0.10" mol.L™.
On donne E; = E°(Hg?*/Hg%*) = 0,91V et E, = E°(Sn**/Sn?*) = 0,15 V.

Faire un schéma de la pile en commentant (jonction électrolytique notamment). Déterminer la polarité de la pile et I'équation
de sa réaction de fonctionnement, en indiquant I'anode et la cathode. Quel est le critére vérifié lorsque la pile est « usée » ?

5. @ On étudie le dosage des ions hypochlorite CIO™ a la concentration Cg dans une solution (S) par iodométrie.
Données : E°(S,04°7/S,05°7) = 0,09V; E°(I,/17) = 0,62 V; E°(CI0~/Cl™) = 1,70 V

Etape (1) : Prélever un volume Vs = 20,0 mL de solution (S) et y ajouter V; = 20 mL d'une solution d’iodure de potassium
(K*,I7)a ¢, = 0,1 mol.L'*en milieu acide.

Etape (2) : Doser ce mélange par du thiosulfate 8 C = 0,10 mol.L; le volume équivalent est 1, = 13,0 mL.

Ecrire les équations des réactions mises en jeu au cours des étapes (1) et (2) et déterminer la concentration Cs en ions
hypochlorite de la solution (S).

6. € On considére une OPPM de pulsation w envoyée sur un conducteur ohmique, caractérisé par densité volumique n,
d’électrons correspondant aux porteurs de charges. Les électrons se déplacent avec une vitesse d’ensemble 7 et sont
soumis dans leur mouvement a des collisions modélisées par a une force de type frottement F= —%17 avec un temps de
relaxation T = 10*s. Etablir I'expression d’une loi d’Ohm généralisée en définissant une conductivité complexe du milieu.

Quelle est son expression dans le modéle des conducteurs en régime lentement variable ? domaine de validité de ce
modele ?



7.

10.

11.

12,

13.

¥ © Etablir 'équation de propagation du champs électrique dans un conducteur ohmique en régime lentement variable
apres avoir rappelé les hypothéses et conséquences de ce modéle.

T . , . - — )l . Lo aE
¥ ¥ Nous étudions la propagation d’une onde électromagnétique vérifiant I'équation de propagation AE = uyy, v On
recherche E solution sous la forme E = Eoei(“’t‘@‘)éy en supposant un forgage sinusoidal imposé en x = 0% & un métal
occupant tout le demi espace x > 0. O. Etablir la relation de dispersion associée, déterminer I'expression du vecteur

d’onde k et celle de E sachant que I'on cherche des solutions bornées.

Pour un milieu vérifiant la relation de dispersion k? = —iuyy,w, établir les expressions des vitesses de phase et de groupe.
Les conducteurs ohmiques en régime lentement variable constituent-ils des milieux dispersifs ?

Considérons une onde électromagnétique se propageant dans un conducteur ohmique, de champ électrique

E =E,e™/8 t—24g,)e
= Eye cos(w 5 ®o ) €y
Etablir I'expression du vecteur de Poynting moyen et interpréter le résultat obtenu

** On étudie la propagation d’une perturbation thermique T(x < 0) = T, + a, cos(wt) dans le sol caractérisé par x >

0.Onnote D = pic la diffusivité thermique du sol ; I’équation de de la diffusion thermique de I'onde dans le sol est (3—:) =
X

2
D (ZTZ) . On recherche la réponse a la profondeur x = 0 sous la forme T(x,t) = T, + a(x) cos(wt + <p(x)), alaquelle on
t
associe 8(x,t) = T(x,t) — Ty = a(x) cos(wt + (p(x)). Etablir I'expression de 8(x, t) donc de T(x, t).
2 2
On considére la propagation d'ondes vérifiant une équation de d’Alembert de la forme ZTi - ULZZTJZI = 0, et on recherche

les solutions de la forme : y(x, t) = Y;(x) sin(wt) ou w est la pulsation de I'onde et Y, (x) est une fonction que I'on souhaite

P o . . a? N . . .
étudier. Montrer que Y, (x) doit vérifier I'équation %ix) + k2Yy(x) = 0 ol k > 0 et résoudre cette équation.

**Considérons un milieu régi par I'équation :

2 2
0% _29% _,
at2 0x?

On recherche la solution sous la forme stationnaire suivante : &(x,t) = f(x)g(t).

Déterminer la forme de f et g permettant de vérifiant I'équation de propagation de d'Alembert.

14.

15.

Etablir les caractéristiques des modes propres en rappelant le lien entre

@ Considérons une onde stationnaire d’expression s(x, t) = A sin(kx) cos(wt + ¢). Etablir les expressions des positions
des nceuds et des ventres associés.

@ Y On considére une corde de longueur L fixée aux 2 L
extrémités (en x = 0 et en x = L) oscillant selon : T o
(X, 1) .
y(x,t) = A cos(kx + y) cos(wt + @) : >

0 x=L

- Corde vibrante fixée a ses deux extrémités.

les différentes grandeurs caractéristiques.

16.

@ On considére une OemPPH de champ Ei = E, cos(wt — kx) §y se propageant dans le vide et arrivant en incidence
normale sur un conducteur parfait occupant le demi-espace x > 0.

—

Rappel des relations de passage : Le champ électrique et le M — e,
- . . S 2% € .
champ magnétique subissent des discontinuités finies a la 2 12 charge milieu 2
, , =2 =2 o > 1 -
traversée d’une surface chargée: E, —E; = —eé;, ou d’une 1 jg milieul
€0

nappe de courant surfacique : B, —B; = g Js A &12.

Déterminer les expressions des champs électrique et magnétique réfléchis, puis les expressions et les caractéristiques des
champs électrique et magnétique de I'onde résultante.



17. On considére une OemPPH de champ Ei = E, cos(wt — kx) é, et El- = B, cos(wt — kx) &, se propageant dans le vide et
arrivant en incidence normale sur un conducteur parfait occupant le demi-espace x > 0.

Le champ réfléchi est ﬁr(x, t) = By cos(wt + kx) €,. On rappelle la relation de passage pour le champ magnétique :
B,-B, =p,j Neqg

Etablir 'expression du courant surfacique J; généré a la surface et commenter le résultat obtenu.



= Questions de cours avec éléments de réponse

1. @ Vitesse de groupe et vitesse de phase (aucune notion quantitative exigible sur le paquet d’onde). On rappelle la

. . . o w?-w} , . . .
relation de dispersion du plasma dilué : k? = C—Zp > 0; établir les expressions des vitesses de groupe et de phase dans

le cas ol w > wp,

Les vitesses de groupe et de phases sont définies pour des ondes progressives (non définies dans le cas de I'onde
évanescente notamment). La vitesse de groupe est définie pour un paquet d’onde, qui peut étre modélisé par une onde
de pulsation w, centrale se propageant a la vitesse de phase v,, (wg) dont I'amplitude est modulée par une enveloppe
se propageant a la vitesse de groupe vj,.

Vitesse de phase correspondant a la vitesse d’une OPPH quelconque de pulsation w :

_ w _ w
% Tk @) Re(k(w))

Elle n’a pas de réalité physique, et ne correspond pas a un transport d’énergie.

Vitesse de groupe de I'onde globale correspondant a la vitesse de I'onde enveloppe pour un paquet d’onde :

_ dw _ dw
C (E) - (dRe(k(wo))>wo

On montre qu’elle s’identifie généralement a la vitesse de propagation de I’énergie. La vitesse de groupe reste dans ce
cas inférieure a la vitesse de la lumiére : v4(w) < c afin de respecter la théorie de la relativité d’Einstein

En différentiant la relation de dispersion :

2

. dw k c .

c’k? = w? —w? = 2c?’kdk =2wdw  soit v, = — = c?>= = = Finalement :
P g dk w v
©
w c dw w}
v, =—=——- VvV, =—=2¢ —_
v =% Y 9 = dk w2
1-%2

Relation de Klein-Gordon : v4v,, = ¢*

Pour w > wy, on en déduit les propriétés suivantes : v, > cetvy <c
2. Phénomeéne de dispersion (discussion qualitative).

3. @ sSoientles couples : Cr,0%2~ /Cr3* et I, /I~ de potentiels redox standards respectifs E; et E,. Ecrire |'équation de réaction
des ions dichromate Cr,0%~ avec les ions iodure 1. Identifier 'oxydant et le réducteur. Donner les expressions des
potentiels redox associés a chaque couple, ainsi que I'expression de la constante d’équilibre.

Pour les ** : établir I'expression de la constante d’équilibre de la réaction en fonction des potentiels standards.

Demi-équations électroniques : Cr,02~ + 14H* 4+ 6e~ = 2Cr3* + 7H,0 (D

217 =1, + 2e” (2)
Pour se ramener au méme nombre d’électrons échangés dans les deux demi-équations : (2) X 3
Cry02~ + 61~ + 14H* = 2Cr3* + 31, + 7H,0
Réduction des ions dichromate Cr,0% et oxydation des ions iodure 1=, donc Cr,0% oxydant et I~ réducteur.

[CT3+
[cr027]

]éqz[lzléq3

D’aprés la LAM. : K = [HH*,_[1-]6

éq éq[ éq

Loi de Nernst :

E(Cr,02~/Cr3%) = E°(Cr,027 /CT3%) +

0,06l [Cr, 02 [H*]*
6 < [CT3+]2 )



B 0,06 [L,]
E(L/17) = E(L/17) + = log< )

(=12
6(E°(CT205™ /CT3%)—E°(I5/17)) 6(E°0x=E°red)
K° =10 0,06 =10 0,06

Pour les ** : démo

A l'équilibre, E(Cr,0%~ /Cr3*)q = E(I/17 )44 soit

crp027], [HH]™, )
E°(Cry 03 /Cr3*) + %L log <—[ 207 gl e‘*) = E°(I,/I7) + 22 log ( = )

[CT3+]éq2 [1—]2éq

. Cr,0% 1o [HY]™,
EO(CTZO%_/CT:H—) _ EO(IZ/[_) _ 0,06 X 3 lo <[[12]eq ) _ 0,06 log <[ 1% ] q[ ] eq)

6 I_]zéq 6 [CT3+]éq2

0,06
ES(Cry08/Cr™*) = E°(,/17) = = —log (K°)

6(E°(CT205™ /Cr3%)—E°(I5/17)) 6(E°ox—E°red)
0,06 =10 0,06

K° =10
4. @ On considére la pile étain/mercure schématisée comme suit
(2) Pt |Sn**,Sn?* ||Hg?*, Hg3™ | Pt (1)
Les solutions de chacune des deux demi-piles ont le méme volume V' = 50,0 mL, avec les concentrations suivantes :
[Hg?*]o = ¢y = 5,0.10" mol.L?, [Hg3*], = [Sn**], = ¢; = 1,0.102 mol.L*, [Sn?*], = ¢, = 1,0.10" mol.L™.
On donne E; = E°(Hg?*/Hg%*) = 0,91 Vet E, = E°(Sn**/Sn?*) = 0,15 V.

Faire un schéma de la pile en commentant (jonction électrolytique notamment). Déterminer la polarité de la pile et I'équation
de sa réaction de fonctionnement, en indiquant I'anode et la cathode. Quel est le critére vérifié lorsque la pile est « usée » ?

Pour déterminer la polarité de la pile, il faut déterminer quelle électrode a le  €lectrode de Pt électrode de Pt

potentiel le plus élevé.
Pont Salin

Demi-pile 1 : demi-équation rédox : 2 Hg** + 2e~ = Hg3*

formule de Nernst a I’état initial :

£ s 0'06l [Hg**1§
= [0} -+ 2+ 2+ 2+
1,0 1 2 g[Hg§+]0c° Sn'*, Sn Hg** Hg?

demi pile 2 demi pile 1
AN.:E ,=091+0,03log50=0,96V =E;,

Demi-pile 2 : demi-équation rédox : Sn** + 2e~ = Sn?*

0,06  [Sn**],

EZ,O =E, + Tlogm

AN.:Eyo=0,15+0,03log 107 = 0,12V = E,,

E, o > E; : la demi pile au mercure constitue la borne positive de la pile, lieu d’arrivée des électrons, donc de la réduction :
il s’agit de la cathode. La demi-pile au sélénium constitue sa borne négative, lieu de départ des électrons, donc de
I'oxydation : il s’agit de I'anode .

En fonctionnement, la réaction de la pile est
2Hg*" + Sn** = Hg%* + sn**

‘ Pile usée quand Eq1sq = Ez¢q

5. @ On étudie le dosage des ions hypochlorite CIO™ a la concentration Cg dans une solution (S) par iodométrie.

Données : E°(S,04°7/S,05°7) = 0,09V; E°(1,/17) = 0,62 V; E°(CI0~/CI7) = 1,70 V



Etape (1) : Prélever un volume Vs = 20,0 mL de solution (S) et y ajouter V/; = 20 mL d'une solution d’iodure de potassium
(K*,I7)a ¢, = 0,1 mol.L'ten milieu acide, les ions iodure étant en excés.

Etape (2) : Doser ce mélange par du thiosulfate S,05%” 4 C = 0,10 mol.L'’?; le volume équivalent est 1, = 13,0 mL.

Ecrire les équations des réactions mises en jeu au cours des étapes (1) et (2) et déterminer la concentration Cs en ions
hypochlorite de la solution (S).

1. Etape 1:mélange d’ions CIO~,Cl” et ™.

réaction thermodynamiquement la plus favorisée : meilleur oxydant (de potentiel E° le plus élevé) sur le E°
meilleur réducteur (de potentiel E° le plus faible), soit ici, aprés avoir équilibré la réaction redox : A
Clo"+2I"+2 H* =1, +Cl” + H,0 K,° clo- - qr-

AE” élevée,on a donc K,° > 1 : la réaction est quasi-totale ; les ions iodure I~ étant en excés, les ions

ClO~ sont quasi totalement consommeés.

en moles clo~ + 217 +2HY = I, + ClI +H,0 S0 S,0,%"
E.l C,V; v 0 x
E.F. CVs—¢r=0 GV — 2¢¢ A x+ &g =x+ Gl

= C,V, — 2GSV,

Il'y a donc formation de & = C Vs moles de I, (voir bilan ci-dessus).

Etape 2 : Dosage du mélange obtenu, soit -, 1, et Cl™ par le thiosulfate S,05%". Cf. échelle des potentiels E° : la réaction
ayant lieu est celle du meilleur oxydant sur le meilleur réducteur, soit ici :

I +25,0,*" =85,0.% +21°

en moles I +  25,05% = 5,05 + 21

El. .V, cv 0 C,V, — 2C,V,

EF.  pour CVi—&,=0 CV,—28,=0 g, C,V, — 2C.V, + 28,
V=V

relation a I’équivalence en tenant compte de la stcechiométrie de la réaction de dosage :

1
fe ZCSV.S‘:ECV;‘

6. @ On considére une OPPM de pulsation w envoyée sur un conducteur ohmique, caractérisé par densité volumique n,
P P , . -
d’électrons correspondant aux porteurs de charges. Les électrons se déplacent avec une vitesse d’ensemble v et sont
. N .. P T N =4 m
soumis dans leur mouvement a des collisions modélisées par a une force de type frottement F = ——¥ avec un temps de
T

relaxation T = 10'*s. Etablir 'expression d’une loi d’Ohm généralisée en définissant une conductivité complexe du milieu.
Quelle est son expression dans le modéle des conducteurs en régime lentement variable ? domaine de validité de ce

modele ?
- = m 5 ..dv ¥ =  —eE
PFD:ma = qE — — soit— 42 =21F ==
T dt T m m
. - ets
. .o o eE . - —eE “nE
en notation complexe : iwv = —v/t —— soit V=———=—"
- — m - imw+m/t 1+iwt
e’t
N N N em = -
] =TMeqU=—Meel =1 o = y()E
LT Wt loi d'Oohm
y(w) locale
neeZT s . .
) “m_ Y(=0) y(régime continu)
y(w) = - = - = -
- 1+iwt 1+iwt 1+ iwt

On a donc y(régime continu) =y, = n.e?t/m



Yo
1+iwt

pour wt << 1:y(w) = = Y,

7. € W Etablir 'équation de propagation du champs électrique dans un conducteur chmique en régime lentement variable
aprés avoir rappelé les hypothéses et conséquences de ce modéle.

| Voir cours

0 9 . oF
AE = a(mtB) = &(MOYOE) = HoYo 5
M.A.
5F = oyo o
= UoYo E

8. W W Nous étudions la propagation d’une onde électromagnétique vérifiant I'équation de propagation AE = UoYo Z—f. On

recherche E solution sous la forme E = Eoei(wt_Ex)éy en supposant un forcage sinusoidal imposé en x = 0% & un métal
occupant tout le demi espace x > 0. O. Etablir la relation de dispersion associée, déterminer I'expression du vecteur

d’onde k et celle de E sachant que I'on cherche des solutions bornées.
La relation de dispersion s’obtient en injectant dans I’équation de propagation la forme générique du champ électrique

E = Eoei(wt_ﬁx)éy

ot ox?

(—ik)’E = povo(io)E

Soit
k? = —ipgyow
Aveck =k, +ik; :
Avec —i = e"™/2 ona k? = —iuyyow = e " 2 pyyw
1—i

k =te ™" [ugyow = i( V2 ) V HoYow

On définit la grandeur 6 homogeéne a une longueur :

2
o=
HoYow
(1-10)
k=+
- 1)
. 1 1
On obtient k,, = —k; = ig =t—=4 ’_HOJ;O(U
HoYow
Puisque deux valeurs de k sont possibles, forme la plus générale des solutions de I'équation de propagation :
N S (=D ; a-9 X X X . X
E= /_106‘(” 5 x)gy + /_165(“’” 5 x)gy =Aye’ e‘(“’t 5)§y + Aye's e‘(“’”zs)

Si Ej # 0 alors I'onde diverge pour x — +o0, ce qui est physiquement impossible puisque 'onde ne regoit pas d’énergie mais
en perd (effet Joule) au cours de la propagation dans le métal. Par conséquent, dans un métal semi infini (épaisseur > §), seul
(1-j) .

le signe D est pertinent, avec k = P
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En repassant en notation réelle :

E=E, e™*/* cos (wt —x/8 + ) €,

atténuation  terme de propagation
par effet Joule

9. Pour un milieu vérifiant la relation de dispersion k? = —iu,y,w, établir les expressions des vitesses de phase et de groupe.
Les conducteurs ohmiques en régime lentement variable constituent-ils des milieux dispersifs ?

1 2 spe ege . w
Onak, =—-k; = ¥ etd = ’Iio)’ow or par définition, la vitesse de phase est v, = Pl Sw = o w

w 2w
vy == [ — = f(w)
k, HoYo

Milieu dispersif avec une vitesse de phase qui augmente avec w, contrairement au cas des plasmas dilués.

dw 1 13) ] w 2k} R
=2 oor k,=-= [B% ooit k2 =HT% oyencore w == d’ou
dky s 2 2 Koo

dw 4k, 4 [uoYow 2w
yg = = = =2 = 217(/)
dk,  UoYo oY 2 HoYo

v, et v, dépendent de w : milieu dispersif

Vitesse de groupe : v, =

10. Considérons une onde électromagnétique se propageant dans un conducteur ohmique, de champ électrique

R X
— —x/8 >
E = Eje™/ cos(wt—§+<p0)ey

Etablir I'expression du vecteur de Poynting moyen et interpréter le résultat obtenu

Exprimons le vecteur de Poynting dans le cas d’une onde polarisée selon §y, de la forme

R x
- —x/8 2
E = Eje ™/ cos(a)t—g+g00)ey

B=Xa nBeiwrtn K5 5 g ewsgitwt-assion (16_ D 3 e~x/8itat-x/+0)
w w w

S V2 X ™

B= %Eoéze‘x/‘scos (a)t —5+ - Z)
_ EAB E x V2 x T
M= = M—Oéye‘x/5cos ((ut -5+ goo) A %Eoéze‘x/gcos (a)t —5+ 90— Z)

0 0
—  V2E,* x x s
— 3 ,—2x/8 _ = — - —
Il o, e.e cos (wt 5 + (po) cos ((ut 5 + o 4)
L ae

(1) é,e~%/% (cos ((ut - g + goo) cos (a)t - g + @y — E))

- Swpy

{cos (a)t - % + (po) cos (a)t - % + @y — %))

= (cos? (wt - % + (po)) cos (%) + (cos ((ut - % + goo) sin (a)t - g + goo)) sin (g)

N

= (cos(wt—§+<ﬂo)COS(wt—§+<ﬂo _%)> Z%COS(%) ~

2
EO 5 e—2x/8
28wpy *

(Mx) =




11. ** On étudie la propagation d’une perturbation thermique T(x < 0) = T, + a4 cos(wt) dans le sol caractérisé par x >
0.Onnote D = [% la diffusivité thermique du sol ; I’équation de de la diffusion thermique de I'onde dans le sol est (Z—:) =
X

2
D (ZTZ) . On recherche la réponse a la profondeur x = 0 sous la forme T(x,t) = T, + a(x) cos(a)t + rp(x)), alaquelle on
t

associe 0(x,t) = T(x,t) — Ty = a(x) cos(wt + (p(x)). Etablir 'expression de 6(x, t) donc de T(x, t).

AT(x,t) =T, + alx) cos(wt + (p(x)), on associe  0(x,t) = T(x,t) — T, = a(x) cos(wt + (p(x)), qui par linéarité
vérifie également I’équation de la diffusion thermique.

6(x,t) = a(x) exp (i (wt + (p(x))) = a(x) exp(iwt) exp(i<p(x))

Soit en introduisant I'amplitude complexe : 8(x,t) = a(x) exp(iwt) ot a(x) = a(x) exp(i<p(x))

00
(a—;> = iwa(x) exp(iwt)

exp (iwt)

axz) —  dx?

() -

2 2
exp(iwt) <6 Q) _d a(x)

P . ’4 . oo (90 (9%6

‘ D’ou, en exploitant I’équation de diffusion (i)t)x D (_6x2)t =0:
. ) d’a .
iwa(x)exp(iwt) =D d—x;exp(w)t) =0

| et, en simplifiant le terme oscillant (non nul), on obtient finalement

©a(d) — D da _
iwalx)—D — =
= dx?
| Ou, sous forme plus habituelle,

d’a iw =0

— ——ax) =

dx? D~
Equation différentielle d’ordre 2 en a(x), linéaire, a coefficients constants, sans second membre, les coefficients étant
cependant complexes.
Equation caractéristique : 1% — %w =0
Soit 2=

D
. 2 iw w T s~ w0 T
Soit r =—=—exp(l—), d’ou r=i\/: e+ avec
D D 2 D
/4 TL’+..T[ 1+,1 1+
e =cos—+isin—=—+i—=
4 4 V2 V2 2
w 141
r=+ |—
D 2

Démarche classique !!  On pose § tel quer = + %

c’est-a-dire § = /% avec [r]= [\/%] =L1 [61=L

Solution générale de I’équation différentielle en a(x) :

1+1i 1+
g(x)zéexp(— 5 x>+§exp<+ 5 x)

ou

a(x) = Aexp (— g) exp (—i g) + Bexp (+ g) exp (+i g)



Le premier terme donne une amplitude qui décroit quand on descend dans le sol, c’est cohérent avec la seconde condition
aux limites donnée.

Le second terme est quant a lui a exclure, 'amplitude augmenterait avec x et divergerait : B est nécessairement nul. On
retient donc une solution :

a(x) = Aexp (— %) exp (—i g)

Ce qui donne, pour I'écart de température a la moyenne en fonction de x et t :

6(x,t) = Aexp (— %) exp (—i %) exp(iwt) = A exp (— g) exp (i (wt - %))

‘ Enx = 0, il y a continuité de la température CL(0)
(T(0,))s01r = (T () air = To + ao cos(wt)
6(0,t))501 — Ty = +a, cos(wt)
| Soit, en complexes,
6(0,t) = ayexp(i wt)

|Or

0 0
6(0,t) =Aexp <— 5) exp <i (a)t — E)) = Aexp(i wt)
d’ou Aexp(i wt) = a, exp(i wt)

par identification : A = a,
On revient a I’écriture réelle de la température en prenant la partie réelle de I'expression précédente :

T(x,t) =Ty + Re(a(x) exp(iwt))

T(x,t) =Ty + ag exp (— g) cos (wt - g)

s . . - , . , 82 a2
12. On considére la propagation d'ondes vérifiant une équation de d’Alembert de la forme # - viza—tjzl = 0, et on recherche
les solutions de laforme : y(x, t) = Y;(x) sin(wt) ol w est la pulsation de I'onde et Y; (x) est une fonction que I'on souhaite
d?Yy(x)
dx?

étudier. Montrer que Y, (x) doit vérifier I'équation + k2Yy(x) = 0 ot k > 0 et résoudre cette équation.

2 2
y(x,t) = Yy(x) sin(wt) doit étre solution de I'équation de d’Alembert : %y _ 15y _

ax2  v2at2

d?Yy
dx?

%(Yo(x) sin(wt)) = sin(wt) et %(Yo(x) sin(wt)) = —w?Y,(x) sin(wt) d’ou

2Y0

dx?

sin(wt) — % X (—w?)Yy(x) sin(wt) = 0

soit

d?y, w? _
+ ﬁYo(x) sin(wt) =0

dx?

ceci devant étre vrai & chaque instant, on en déduit que Y y(x) est solution de I'équation

d?Yy(x) w
2 _ _
Ax? + k*Yy(x) = 0 aveck = -
‘ Les solutions de I'équation précédente sont de la forme : Yo(x) = Acos(kx + w) avec A et wdeux constantes.

13. **Considérons un milieu régi par I'équation :



02 02
d cZ—f 0

9tz ox?
On recherche la solution sous la forme stationnaire suivante : £(x,t) = f(x)g(t).

Déterminer la forme de f et g permettant de vérifiant I’équation de propagation de d'Alembert.

Afin de déterminer la forme de f et g, on injecte la fonction &(x,t) = f(x)g(t) dans I"équation de propagation

0% 0%

Pz T
a%¢ 9% B B g"(t) ")
3z CZW =0=g"Mf(x) = c*f"()gt) =0= O c? 00

Lorsqu'une fonction qui dépend uniquement de temps est égale a une fonction qui ne dépend que de x alors
nécessairement, ces fonctions sont égales ! En effet, si la fonction en temps varie, on peut faire varier t en maintenant x
constant et donc la fonction en t varie alors que la fonction en x reste constante. Ce résultat est général et peut
s'appliquer a deux variables indépendantes quelconques. On a alors :

9O _ L@,
FICIIRNIC)

On va maintenant distinguer les 3 cas portant sur le signe de K :

si K > 0, on peut écrire K = w? et on a I'équation pour g(t) qui 'écrit :
g —w?g = 0= g(t) = Adexp(—wt) + Bexp(wt)

Cette solution n'est pas physiquement intéressant puisqu'elle diverge a l'infini et qu'on cherche une solution valable a
tout instant. Le cas K > 0 n'est donc pas intéressant.

siK =0,onag(t) = At + b. De méme, cette solution n'est pas intéressant car elle diverge (ou ne dépend pas du temps)
et ne permet donc pas de décrire les phénomenes physiques qui nous intéressent.

resta alors seulement le cas K < 0 soit K = —w?. On a alors :

g" + w?g =0= g(t) = Acos (wt) + Bsin (wt) = Ccos (wt + ¢)

De plus, I'équation portant sur f (x) s'écrit quant a elle :

2
"+ (:—zf =0 = f(x) = A'cos(kx) + B'sin(kx) = C'cos (kx + w) avec k =%

La solution générale de I'équation de d'Alembert sous forme stationnaire peut alors s'écrire :
E(x, t) = &ycos (wt + @) cos (kx + w) avecw = kcetéy = CC’

Les valeurs de w n'étant pas spécifiées, on a donc une famille de solutions vérifiant I'équation de d'Alembert !

14. @ Considérons une onde stationnaire d’expression s(x, t) = A sin(kx) cos(wt + ¢). Etablir les expressions des positions
des nceuds et des ventres associés.

Positions xy des neeuds telles que Vt,y(0,t) = 0 avec y(x,t) = A sin(wt + @) sin(kx), soit sin(kxy) = 0
d’ot kxy = 0[n]

L . _ ., 2T _ _pl
Les différents nceuds ont alors comme positions kxy ,, = pm avec p € Z soit ~ Xnp = PT ouencore Xy, = -

. . 2 . 2
Distance entre deux nceuds successifs : Xy ,41 — Xyp = > Tout fuseau a une taille de >
Positions x,, des ventres telles que I'amplitude A (x) = |A sin(kx)| soit maximale soit sin(kx,) = +1,

[7]

d’ot kx, =

SR

Les différents nceuds ont alors comme positions kx,, ,, = §+ pm = g(l + 2p) avec p € Z soit ZTH Xpp = g(l + 2p) ou

2, pA
encore x,p =7 + p?




. . A
Distance entre deux ventres successifs : Xypy1 = Xpp =3

. A
Distance entre un nceud et une ventre successifs : "

15. @ W On considére une corde de longueur L fixée aux 2 L

Etablir les caractéristiques des modes propres en rappelant le lien entre

extrémités (en x = 0 et en x = L) oscillant selon :

y(x,t) = A cos(kx + y) cos(wt + @) > . 7 >
X=

- Corde vibrante fixée a ses deux extrémités.

les différentes grandeurs caractéristiques.

| Cherchons la solution sous la forme générale :
y(x,t) = A cos(wt + @) cos(kx + y)
On consideére une corde de longueur L fixe aux deux extrémités (corde de guitare) situées en x = 0 eten x = L.
On en déduit deux conditions aux limites : Vt,y(0,t) =0 et vt,y(L,t) =0
Avec y(x,t) = A cos(wt + @) cos(kx + ), les conditions at
cos(y) =0 (1) et cos(kL+yw) =0 (2)

(1)  =y=%3

(2) =cos (kL + g) =0 =sin(kL) =0 = k,L = nm, avecn entier =k, = n%, avec n entier
Les seules valeurs de k envisageables sont les valeurs k,, = n%, avec n entier. La norme du vecteur d’onde est donc
quantifiée.
On en déduit que la pulsation et la fréquence sont également quantifiées, les valeurs admissibles étant :

Wn

e c
wnznTetfnz—zn

5 oo avecn entier
T

Les modes propres (solutions stationnaires possibles) sont donc donnés par :
e . T , .
v (x,t) = A, cos (nTt + ¢, ) sin (nzx) , n étant un entier.

Relation entre L et A

2 L A
k,=n"= Onendéduit: L=n =2
L~ An 2
Le mode fondamental correspondan =1 : fi1= Z—CL
Les modes suivants sont des harmoniques : fn=nf1

16. @ On considére une OemPPH de champ ﬁi = E, cos(wt — kx) éy se propageant dans le vide et arrivant en incidence

normale sur un conducteur parfait occupant le demi-espace x > 0.

—
€12

Rappel des relations de passage : Le champ électrique et le

champ magnétique subissent des discontinuités finies a la milieu 2

. , = = o - —_—
traversée d’une surface chargée: E, —E; = —¢é;, ou d’une jg milieul
£ 5

nappe de courant surfacique : B, —B; = g Js A &;5.

Déterminer les expressions des champs électrique et magnétique réfléchis, puis les expressions et les caractéristiques des
champs électrique et magnétique de I'onde résultante.

. = UxAE _KAE ,, . = o E
3. Relation de structure : B = u"CA = % d’oli Bi(x,t) = Bycos(wt —kx)e, avecB, = 70

nducteur parfait : E(0%) = 0 et B(0") = 0, soit dans les relations de passage avec &;, = €, :



- - O‘_) — - _ — _ O-_>
Ez_E1=s_e12=0_E(0) = E© )=_3_oex (1)
0

A la limite du conducteur (x = 07), on a pour les champs incidents : El- (07,t) = E; cos(wt) é, Ei (07,t) = By cos(wt) &,
Le champ Ei ne satisfait pas a la relation de continuité (1), il doit apparaitre un champ réfléchi Er se propageant suivant —¢&, de

sorte que Ei + Er vérifie cette relation de continuité. Du fait de la linéarité des équations de Maxwell, 'onde réfléchie a la méme
pulsation w que l'onde incidente.

Soient Er et §r les champs électrique et magnétique réfléchis. Les relations de passage impliquent :
- - o Lo R o
Ei(o_, t) +E‘I"(O_!t) = —S—ex d’ou ET(O_,t) = —E'0 COS((,Ut) ey_e_ex
0 0

m Champ électrique réfléchi (par exemple méthode complexe) : on le cherche sous la forme E"r (x,t) = Eoryéyei(“’“k") +

EOngzei(wHkx)
Ey(x,t) = Ei(x, t) + E(x,t) = Eoe @) &, 4 E;,.,8,e' @k 4y, 8 el @t )
Soitenx = 07
E;(07,) = Ei(0,8) + E(0,) = Eoe' @D &, + Ey,, 8,e' @0 + Ey,,8,e'@0) = (@ &, + Egry6y + Eméz) ei(@n)
Relation de passage en terme de champs complexes El 07)=- giéx (1) projetée:
— 0

E;(07,t) = E;(0,) + E(0,t) = Ege'“D &, + Ey,., 8,0 + E,,,8,e'@) = (Eo &, + Egry6y + Eméz) el@t)

Relation de passage en terme de champs complexes El(O‘) = —giéx (1) projetée:
— 0
( o
=
Ey +Epry =0
EOrz =0
On a donc Ey,., = —Ej et Ey,, = 0, soit
Er(x’ t) — EOTyé’yei(wt+kx) + EOrzézei(wHkx) — _Eoé'yei(wHkx) — _Eogyei(wHkx)

Finalement, E,(x, t) = —E, cos(wt + kx) é, = Eycos(wt + kx +m) €,
Méme amplitude et méme polarisation mais déphasage de

(=8x) AEy __ (=€x) A(—Eq cos(wt+kx)éy) _ Eq

m Champ magnétique réfléchi : F?r (x,t) = . . -

cos(wt + kx)é,

Le champ magnétique réfléchi a la méme amplitude, la méme pulsation et la méme phase que le champ incident.

17. On considere une OemPPH de champ Ei = E, cos(wt — kx) é, et §i = B, cos(wt — kx) &, se propageant dans le vide et
arrivant en incidence normale sur un conducteur parfait occupant le demi-espace x > 0.

Le champ réfléchi est §r(x, t) = By cos(wt + kx) €,. On rappelle la relation de passage pour le champ magnétique :
B, -By = pyj, Neyq,

Etablir 'expression du courant surfacique J; généré a la surface et commenter le résultat obtenu.



