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 Au programme des exercices  

→ Chapitre OND2 : Propagation d’ondes électromagnétiques dans les plasmas 

→ Chapitre ON3 : Propagation d’Oem dans les milieux conducteurs en régime lentement variable (attention !! 

pas encore d’étude des réflexions sur un conducteur parfait !) 

→ Chapitre CHIM3 : réactions d’oxydoréduction 

 Questions de cours seules 

1.  Vitesse de groupe et vitesse de phase (aucune notion quantitative exigible sur le paquet d’onde). On rappelle la relation 

de dispersion du plasma dilué : 𝑘2 =
𝜔2−𝜔𝑝

2

𝑐2
> 0 ; établir les expressions des vitesses de groupe et de phase dans le cas où 

𝜔 > 𝜔𝑝. 

2. Phénomène de dispersion (discussion qualitative). 

3.   Soient les couples : Cr2O7
2−/Cr3+  et I2/I

− de potentiels redox standards respectifs 𝐸1
°  et 𝐸2

° . Ecrire l'équation de réaction 

des ions dichromate Cr2O7
2− par les ions iodure I−. Identifier l’oxydant et le réducteur. Donner l’expression de la constante 

d’équilibre de la réaction en fonction des potentiels standards. Pour les  ** : démontrer cette expression 

4.   On considère la pile étain/mercure schématisée comme suit  

(2) Pt |Sn4+, Sn2+ ‖Hg2+, Hg2
2+ | Pt (1) 

Les solutions de chacune des deux demi-piles ont le même volume 𝑉 =  50,0 mL, avec les concentrations suivantes : 

[Hg2+]0 = 𝑐0 =  5,0.10-1 mol.L-1, [Hg2
2+]0 = [Sn4+]0 = 𝑐1 =  1,0.10-2 mol.L-1 , [Sn2+]0  = 𝑐2 =  1,0.10-1 mol.L-1.  

On donne 𝐸1
° = 𝐸°(Hg2+/Hg2

2+) =  0,91 V et 𝐸2
° = 𝐸°(Sn4+/Sn2+)  =  0,15 V. 

Faire un schéma de la pile en commentant (jonction électrolytique notamment). Déterminer la polarité de la pile et l’équation 

de sa réaction de fonctionnement, en indiquant l’anode et la cathode. Quel est le critère vérifié lorsque la pile est « usée » ? 

5.   On étudie le dosage des ions hypochlorite ClO− à la concentration 𝐶𝑠 dans une solution (S) par iodométrie. 

Données : 𝐸°(S4O6
2−/S2O3

2−)  =  0,09 V ; 𝐸°(I2/I
−) = 0,62  𝑉 ; 𝐸°(ClO−/Cl−) = 1,70 V 

Etape (1) : Prélever un volume 𝑉𝑆 =  20,0 mL de solution (S) et y ajouter 𝑉𝐼 =  20 mL d'une solution d’iodure de potassium 

(K+, I−) à 𝐶𝐼 = 0,1  mol.L-1 en milieu acide. 

Etape (2) : Doser ce mélange par du thiosulfate à 𝐶 =  0,10 mol.L-1 ; le volume équivalent est 𝑉𝑒  =  13,0 mL. 

Ecrire les équations des réactions mises en jeu au cours des étapes (1) et (2) et déterminer la concentration 𝐶𝑠  en ions 

hypochlorite de la solution (S). 

6.   On considère une OPPM de pulsation 𝜔 envoyée sur un conducteur ohmique, caractérisé par densité volumique 𝑛𝑒 

d’électrons correspondant aux porteurs de charges. Les électrons se déplacent avec une vitesse d’ensemble 𝑣→ et sont 

soumis dans leur mouvement à des collisions modélisées par à une force de type frottement 𝐹⃗ = −
𝑚

𝜏
𝑣⃗ avec un temps de 

relaxation 𝜏 = 1014𝑠. Etablir l’expression d’une loi d’Ohm généralisée en définissant une conductivité complexe du milieu. 

Quelle est son expression dans le modèle des conducteurs en régime lentement variable ? domaine de validité de ce 

modèle ? 



7.    Etablir l’équation de propagation du champs électrique dans un conducteur ohmique en régime lentement variable 

après avoir rappelé les hypothèses et conséquences de ce modèle. 

8.   Nous étudions la propagation d’une onde électromagnétique vérifiant l’équation de propagation ∆⃗⃗⃗𝐸⃗⃗ = 𝜇0𝛾0
𝜕𝐸⃗⃗

𝜕𝑡
. On 

recherche 𝐸⃗⃗ solution sous la forme 𝐸⃗⃗ = 𝐸0𝑒
𝑖(𝜔𝑡−𝑘𝑥)𝑒𝑦 en supposant un forçage sinusoïdal imposé en 𝑥 =  0+ à un métal 

occupant tout le demi espace 𝑥 >  0. O. Établir la relation de dispersion associée, déterminer l’expression du vecteur 

d’onde 𝑘 et celle de 𝐸⃗⃗  sachant que l’on cherche des solutions bornées.  

9. Pour un milieu vérifiant la relation de dispersion 𝑘2 = −𝑖𝜇0𝛾0𝜔, établir les expressions des vitesses de phase et de groupe. 

Les conducteurs ohmiques en régime lentement variable constituent-ils des milieux dispersifs ? 

10. Considérons une onde électromagnétique se propageant dans un conducteur ohmique, de champ électrique  

𝐸⃗⃗ = 𝐸0𝑒
−𝑥 𝛿⁄ cos (𝜔𝑡 −

𝑥

𝛿
+ 𝜑0) 𝑒𝑦 

Etablir l’expression du vecteur de Poynting moyen et interpréter le résultat obtenu 

11. ** On étudie la propagation d’une perturbation thermique 𝑇(𝑥 ≤ 0) = 𝑇0 + 𝑎0 cos(𝜔𝑡) dans le sol caractérisé par 𝑥 ≥

0. On note 𝑫 = 
𝝀

𝜌𝒄
 la diffusivité thermique du sol ; l’équation de de la diffusion thermique de l’onde dans le sol est  (

𝜕𝑇

𝜕𝑡
)

x
=

𝐷 (
𝜕2𝑇

𝜕𝑥2
)
𝑡
. On recherche la réponse à la profondeur 𝑥 ≥ 0 sous la forme 𝑇(𝑥, 𝑡) = 𝑇0 + 𝑎(𝑥) cos(𝜔𝑡 + 𝜑(𝑥)), à laquelle on 

associe 𝜃(𝑥, 𝑡) =  𝑇(𝑥, 𝑡) − 𝑇0 = 𝑎(𝑥) cos(𝜔𝑡 + 𝜑(𝑥)). Etablir l’expression de 𝜃(𝑥, 𝑡) donc de 𝑇(𝑥, 𝑡). 

12. On considère la propagation d'ondes vérifiant une équation de d’Alembert de la forme 
𝜕2𝑦

𝜕𝑥2
−

1

𝑣2

𝜕2𝑦

𝜕𝑡2
= 0, et on recherche 

les solutions de la forme : 𝑦(𝑥, 𝑡) = 𝑌0(𝑥) sin(𝜔𝑡) où 𝜔 est la pulsation de l’onde et 𝑌0(𝑥) est une fonction que l'on souhaite 

étudier. Montrer que 𝑌0(𝑥) doit vérifier l'équation 
𝑑2𝑌0(𝑥)

𝑑𝑥2
+ 𝑘2𝑌0(𝑥) = 0 où 𝑘 > 0 et résoudre cette équation. 

13. **Considérons un milieu régi par l'équation : 

𝜕2𝜉

𝜕𝑡2
− 𝑐2

𝜕2𝜉

𝜕𝑥2
= 0 

On recherche la solution sous la forme stationnaire suivante :  𝜉(𝑥, 𝑡) = 𝑓(𝑥)𝑔(𝑡). 

Déterminer la forme de 𝑓 et 𝑔 permettant de vérifiant l’équation de propagation de d'Alembert. 

14.   Considérons une onde stationnaire d’expression 𝑠(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥) cos(𝜔𝑡 + 𝜑). Etablir les expressions des positions 

des nœuds et des ventres associés. 
 

15. ♥♥On considère une corde de longueur 𝐿 fixée aux 2 

extrémités (en 𝑥 = 0 et en 𝑥 = 𝐿) oscillant selon : 

𝑦(𝑥, 𝑡) = 𝐴 𝑐𝑜𝑠(𝑘𝑥 + ) 𝑐𝑜𝑠(𝜔𝑡 + 𝜑) 

Etablir les caractéristiques des modes propres en rappelant le lien entre 

les différentes grandeurs caractéristiques.  

16.  On considère une OemPPH de champ 𝐸⃗⃗𝑖 = 𝐸0 cos(𝜔𝑡 − 𝑘𝑥) 𝑒𝑦 se propageant dans le vide et arrivant en incidence 

normale sur un conducteur parfait occupant le demi-espace 𝑥 > 0.  

Rappel des relations de passage : Le champ électrique et le 

champ magnétique subissent des discontinuités finies à la 

traversée d’une surface chargée :  𝐸⃗⃗2 − 𝐸⃗⃗1 =
𝜎

𝜺0
𝑒12 ou d’une 

nappe de courant surfacique : 𝐵⃗⃗2 − 𝐵⃗⃗1 = 𝜇0 𝑗𝑠 ∧ 𝑒12. 

Déterminer les expressions des champs électrique et magnétique réfléchis, puis les expressions et les caractéristiques des 

champs électrique et magnétique de l’onde résultante. 

 



17. On considère une OemPPH de champ 𝐸⃗⃗𝑖 = 𝐸0 cos(𝜔𝑡 − 𝑘𝑥) 𝑒𝑦 et 𝐵⃗⃗𝑖 = 𝐵0 cos(𝜔𝑡 − 𝑘𝑥) 𝑒𝑧 se propageant dans le vide et 

arrivant en incidence normale sur un conducteur parfait occupant le demi-espace 𝑥 > 0. 

 Le champ réfléchi est 𝐵⃗⃗𝑟(𝑥, 𝑡) = 𝐵0 cos(𝜔𝑡 + 𝑘𝑥) 𝑒𝑧. On rappelle la relation de passage pour le champ magnétique : 

 𝑩⃗⃗⃗𝟐 − 𝑩⃗⃗⃗𝟏 = 𝝁𝟎 𝒋⃗𝒔 ∧ 𝒆⃗𝟏𝟐 

Etablir l’expression du courant surfacique 𝑗𝑠 généré à la surface et commenter le résultat obtenu. 
 
 
 

  



 Questions de cours avec éléments de réponse 

1.  Vitesse de groupe et vitesse de phase (aucune notion quantitative exigible sur le paquet d’onde). On rappelle la 

relation de dispersion du plasma dilué : 𝑘2 =
𝜔2−𝜔𝑝

2

𝑐2
> 0; établir les expressions des vitesses de groupe et de phase dans 

le cas où 𝜔 > 𝜔𝑝. 

Les vitesses de groupe et de phases sont définies pour des ondes progressives (non définies dans le cas de l’onde 

évanescente notamment). La vitesse de groupe est définie pour un paquet d’onde, qui peut être modélisé par une onde  

de pulsation 𝜔0 centrale se propageant à la vitesse de phase 𝑣𝜑(𝜔0) dont l’amplitude est modulée par une enveloppe 

se propageant à la vitesse de groupe 𝑣𝑔. 

Vitesse de phase correspondant à la vitesse d’une OPPH quelconque de pulsation 𝜔 : 

𝑣𝜑 =
𝜔

𝑘𝑟(𝜔)
=

𝜔

𝑅𝑒(𝑘(𝜔))
 

Elle n’a pas de réalité physique, et ne correspond pas à un transport d’énergie. 

Vitesse de groupe de l’onde globale correspondant à la vitesse de l’onde enveloppe pour un paquet d’onde : 

𝑣𝑔 = (
𝑑𝜔

𝑑𝑘𝑟
)
𝜔0

= (
𝑑𝜔

𝑑𝑅𝑒(𝑘(𝜔0))
)
𝜔0

 

On montre qu’elle s’identifie généralement à la vitesse de propagation de l’énergie. La vitesse de groupe reste dans ce 

cas inférieure à la vitesse de la lumière : 𝒗𝒈(𝝎) ≤ 𝒄 afin de respecter la théorie de la relativité d’Einstein 

En différentiant la relation de dispersion : 

𝑐2𝑘2 = 𝜔2 − 𝜔𝑝
2   ⟹   2𝑐2𝑘𝑑𝑘 = 2𝜔𝑑𝜔      soit    𝑣𝑔 =

𝑑𝜔

𝑑𝑘
= 𝑐2

𝑘

𝜔
=

𝑐2

𝑣𝜑
. Finalement : 

𝑣𝜑 =
𝜔

𝑘
=

𝑐

√1 −
𝜔𝑝
2

𝜔2

                𝑣𝑔 =
𝑑𝜔

𝑑𝑘
= 𝑐√1 −

𝜔𝑝
2

𝜔2
 

Relation de Klein-Gordon :  𝒗𝒈𝒗𝝋 = 𝒄
𝟐 

Pour 𝜔 > 𝜔𝑝, on en déduit les propriétés suivantes :    𝒗𝝋 > 𝒄 𝒆𝒕 𝒗𝒈 < 𝒄 

2. Phénomène de dispersion (discussion qualitative). 

3.  Soient les couples : Cr2O7
2−/Cr3+  et I2/I

− de potentiels redox standards respectifs 𝐸1
°  et 𝐸2

° . Ecrire l'équation de réaction 

des ions dichromate Cr2O7
2− avec les ions iodure I−. Identifier l’oxydant et le réducteur. Donner les expressions des 

potentiels redox associés à chaque couple, ainsi que l’expression de la constante d’équilibre.  

Pour les ** :  établir l’expression de la constante d’équilibre de la réaction en fonction des potentiels standards. 

Demi-équations électroniques :  𝐶𝑟2𝑂7
2− + 14𝐻+ + 6𝑒− = 2𝐶𝑟3+ + 7𝐻2𝑂                     (1)

  

                                                                               2𝐼− = 𝐼2 + 2𝑒
−                                                                   (2) 

Pour se ramener au même nombre d’électrons échangés dans les deux demi-équations : (2) × 3 

𝐶𝑟2𝑂7
2− + 6𝐼− + 14𝐻+ = 2𝐶𝑟3+ + 3𝐼2 + 7𝐻2𝑂   

Réduction des ions dichromate  𝐶𝑟2𝑂7
2−et oxydation des ions iodure 𝐼−, donc 𝐶𝑟2𝑂7

2−oxydant et 𝐼− réducteur. 

D’après la L.A.M. : 𝐾° =
[𝐶𝑟3+]

é𝑞

2
[𝐼2]é𝑞

3

[𝐶𝑟2𝑂7
2−]

é𝑞
[𝐻+]14é𝑞[𝐼

−]6é𝑞
 

Loi de Nernst :  

𝐸(𝐶𝑟2𝑂7
2−/𝐶𝑟3+) = 𝐸°(𝐶𝑟2𝑂7

2−/𝐶𝑟3+) +
0,06

6
𝑙𝑜𝑔 (

[𝐶𝑟2𝑂7
2−][𝐻+]14

[𝐶𝑟3+]2
) 



𝐸(𝐼2/𝐼
−) = 𝐸°(𝐼2/𝐼

−) +
0,06

2
𝑙𝑜𝑔 (

[𝐼2]

[𝐼−]2
) 

𝐾° = 10
6(𝐸°(𝐶𝑟2𝑂7

2−/𝐶𝑟3+)−𝐸°(𝐼2/𝐼
−))

0,06 = 10
6(𝐸°𝑜𝑥−𝐸°𝑟𝑒𝑑)

0,06  

Pour les ** : démo  

A l’équilibre, 𝐸(𝐶𝑟2𝑂7
2−/𝐶𝑟3+)é𝑞 = 𝐸(𝐼2/𝐼

−)é𝑞  soit    

 𝐸°(𝐶𝑟2𝑂7
2−/𝐶𝑟3+) +

0,06

6
𝑙𝑜𝑔 (

[𝐶𝑟2𝑂7
2−]

é𝑞
[𝐻+]

14

é𝑞

[𝐶𝑟3+]é𝑞
2 ) = 𝐸°(𝐼2/𝐼

−) +
0,06

2
𝑙𝑜𝑔 (

[𝐼2]é𝑞

[𝐼−]2é𝑞
) 

𝐸°(𝐶𝑟2𝑂7
2−/𝐶𝑟3+) − 𝐸°(𝐼2/𝐼

−) =
0,06 × 3

6
𝑙𝑜𝑔 (

[𝐼2]é𝑞
[𝐼−]2é𝑞

) −
0,06

6
𝑙𝑜𝑔 (

[𝐶𝑟2𝑂7
2−]é𝑞[𝐻

+]14
é𝑞

[𝐶𝑟3+]é𝑞
2 ) 

𝐸°(𝐶𝑟2𝑂7
2−/𝐶𝑟3+) − 𝐸°(𝐼2/𝐼

−) =
0,06

6
𝑙𝑜𝑔(𝐾°) 

𝐾° = 10
6(𝐸°(𝐶𝑟2𝑂7

2−/𝐶𝑟3+)−𝐸°(𝐼2/𝐼
−))

0,06 = 10
6(𝐸°𝑜𝑥−𝐸°𝑟𝑒𝑑)

0,06  

 

4.   On considère la pile étain/mercure schématisée comme suit  

(2) Pt |Sn4+, Sn2+ ‖Hg2+, Hg2
2+ | Pt (1) 

Les solutions de chacune des deux demi-piles ont le même volume 𝑉 =  50,0 mL, avec les concentrations suivantes : 

[Hg2+]0 = 𝑐0 =  5,0.10-1 mol.L-1, [Hg2
2+]0 = [Sn4+]0 = 𝑐1 =  1,0.10-2 mol.L-1 , [Sn2+]0  = 𝑐2 =  1,0.10-1 mol.L-1.  

On donne 𝐸1
° = 𝐸°(Hg2+/Hg2

2+) =  0,91 V et 𝐸2
° = 𝐸°(Sn4+/Sn2+)  =  0,15 V. 

Faire un schéma de la pile en commentant (jonction électrolytique notamment). Déterminer la polarité de la pile et l’équation 

de sa réaction de fonctionnement, en indiquant l’anode et la cathode. Quel est le critère vérifié lorsque la pile est « usée » ? 

Pour déterminer la polarité de la pile, il faut déterminer quelle électrode a le 

potentiel le plus élevé. 

Demi-pile 1 : demi-équation rédox : 2 𝐻𝑔2+ + 2𝑒− =  𝐻𝑔2
2+ 

formule de Nernst à l’état initial  : 

𝐸1,0 = 𝐸1
° +

0,06

2
𝑙𝑜𝑔

[𝐻𝑔2+]0
2

[𝐻𝑔2
2+]0𝑐°

 

A.N. : 𝐸1,0 = 0,91 + 0,03 𝑙𝑜𝑔 50 = 𝟎, 𝟗𝟔 𝑽 = 𝑬𝟏,𝟎 

Demi-pile 2 : demi-équation rédox : 𝑆𝑛4+ + 2𝑒− = 𝑆𝑛2+ 

   𝐸2,0 = 𝐸2
° +

0,06

2
𝑙𝑜𝑔

[𝑆𝑛4+]0
[𝑆𝑛2+]0

 

A.N. : 𝐸2,0 = 0,15 + 0,03 𝑙𝑜𝑔 10
−1 = 𝟎, 𝟏𝟐 𝑽 = 𝐸2,0 

 𝑬𝟏,𝟎 > 𝑬𝟐,𝟎 : la demi pile au mercure constitue la borne positive de la pile, lieu d’arrivée des électrons, donc de la réduction : 

il s’agit de la cathode. La demi-pile au sélénium constitue sa borne négative, lieu de départ des électrons, donc de 

l’oxydation : il s’agit de l’anode . 

 En fonctionnement, la réaction de la pile est  

𝟐𝑯𝒈𝟐+ + 𝑺𝒏𝟐+ =  𝑯𝒈𝟐
𝟐+ + 𝑺𝒏𝟒+ 

Pile usée quand 𝑬𝟏,é𝒒 = 𝑬𝟐,é𝒒 

5.   On étudie le dosage des ions hypochlorite ClO− à la concentration 𝐶𝑠 dans une solution (S) par iodométrie. 

Données : 𝐸°(S4O6
2−/S2O3

2−)  =  0,09 V ; 𝐸°(I2/I
−) = 0,62  𝑉 ; 𝐸°(ClO−/Cl−) = 1,70 V 



Etape (1) : Prélever un volume 𝑉𝑆 =  20,0 mL de solution (S) et y ajouter 𝑉𝐼 =  20 mL d'une solution d’iodure de potassium 

(K+, I−) à 𝐶𝐼 = 0,1  mol.L-1 en milieu acide, les ions iodure étant en excès. 

Etape (2) : Doser ce mélange par du thiosulfate S2O3
2− à 𝐶 =  0,10 mol.L-1 ; le volume équivalent est 𝑉𝑒  =  13,0 mL. 

Ecrire les équations des réactions mises en jeu au cours des étapes (1) et (2) et déterminer la concentration 𝐶𝑠  en ions 

hypochlorite de la solution (S). 

1. Etape 1 : mélange d’ions 𝐶𝑙𝑂−, 𝐶𝑙− et 𝐼−.  

réaction thermodynamiquement la plus favorisée : meilleur oxydant (de potentiel 𝐸° le plus élevé)  sur le 

meilleur réducteur (de potentiel 𝐸° le plus faible), soit ici, après avoir équilibré la réaction redox : 

𝐶𝑙𝑂− + 2 𝐼− + 2  𝐻+  = 𝐼2 + 𝐶𝑙− + 𝐻2𝑂          𝐾1° 

∆𝐸° é𝑙𝑒𝑣é𝑒, 𝑜𝑛 𝑎 𝑑𝑜𝑛𝑐 𝐾1° ≫ 1 ∶ la réaction est quasi-totale ; les ions iodure 𝐼− étant en excès, les ions  

𝐶𝑙𝑂− sont quasi totalement consommés. 

en moles         𝐶𝑙𝑂−           +             2 𝐼−    + 2  𝐻+  =   𝐼2                    +    𝐶𝑙
−       + 𝐻2𝑂          

E.I.          𝐶𝑠𝑉𝑠                             𝐶𝐼𝑉𝐼                           0                        𝑥 

E.F.    𝐶𝑠𝑉𝑠 − 𝜉𝐹 = 0         𝐶𝐼𝑉𝐼 − 2𝜉𝐹                    𝜉𝐹 = 𝐶𝑠𝑉𝑠           𝑥 + 𝜉𝐹 = 𝑥 + 𝐶𝑠𝑉𝑠 

                                    = 𝐶𝐼𝑉𝐼 − 2𝐶𝑠𝑉𝑠  

Il y a donc formation de 𝜉𝐹 = 𝐶𝑠  𝑉𝑆 moles de 𝐼2 (voir bilan ci-dessus). 

Etape 2 : Dosage du mélange obtenu, soit 𝐼−, 𝐼2 et 𝐶𝑙− par le thiosulfate 𝑆2𝑂3
2−. Cf. échelle des potentiels 𝐸° ∶ la réaction 

ayant lieu est celle du meilleur oxydant sur le meilleur réducteur, soit ici : 

𝐼2 + 2 𝑆2𝑂3
2− = 𝑆4𝑂6

2−  +2 𝐼− 

en moles             𝐼2                  +        2 𝑆2𝑂3
2−            =     𝑆4𝑂6

2−     +           2 𝐼−          

E.I.          𝐶𝑠𝑉𝑠                             𝐶𝑉                           0                           𝐶𝐼𝑉𝐼 − 2𝐶𝑠𝑉𝑠  

E.F. pour 

𝑉 = 𝑉𝑒 

   𝐶𝑠𝑉𝑠 − 𝜉𝑒 = 0         𝐶𝑉𝑒 − 2𝜉𝑒 = 0                    𝜉𝑒                    𝐶𝐼𝑉𝐼 − 2𝐶𝑠𝑉𝑠 + 2𝜉𝑒 

relation à l’équivalence en tenant compte de la stœchiométrie de la réaction de dosage : 

𝜉𝑒 = 𝐶𝑠 𝑉𝑆 =
1

2
𝐶𝑉𝑒  

 

6.   On considère une OPPM de pulsation 𝜔 envoyée sur un conducteur ohmique, caractérisé par densité volumique 𝑛𝑒 

d’électrons correspondant aux porteurs de charges. Les électrons se déplacent avec une vitesse d’ensemble 𝑣→ et sont 

soumis dans leur mouvement à des collisions modélisées par à une force de type frottement 𝐹⃗ = −
𝑚

𝜏
𝑣⃗ avec un temps de 

relaxation 𝜏 = 1014𝑠. Etablir l’expression d’une loi d’Ohm généralisée en définissant une conductivité complexe du milieu. 

Quelle est son expression dans le modèle des conducteurs en régime lentement variable ? domaine de validité de ce 

modèle ? 

PFD : 𝑚𝑎⃗ = 𝑞𝐸⃗⃗ −
𝑚


 𝑣⃗ soit 

𝑑𝑣⃗⃗

𝑑𝑡
+
𝑣⃗⃗


=

𝑞

𝑚
𝐸⃗⃗ =

−𝑒𝐸⃗⃗

𝑚
       

en notation complexe : 𝑖𝜔𝑣⃗ = −𝑣⃗/𝜏 −
𝑒𝐸⃗⃗

𝑚
     soit     𝑣⃗ =

−𝑒𝐸⃗⃗

𝑖𝑚𝜔+𝑚/𝜏
=

−
𝑒𝜏

𝑚
𝐸⃗⃗

1+𝑖𝜔𝜏
 

𝑗 = 𝑛𝑒𝑞𝑣⃗ = −𝑛𝑒𝑒𝑣⃗ =
𝑛𝑒
𝑒2𝜏
𝑚

1 + 𝑖𝜔𝜏⏟    
𝛾(𝜔)

𝐸⃗⃗ =⏟
𝑙𝑜𝑖 𝑑′𝑂ℎ𝑚
𝑙𝑜𝑐𝑎𝑙𝑒

𝛾(𝜔)𝐸⃗⃗ 

𝛾(𝜔) =

𝑛𝑒𝑒
2𝜏

𝑚
1 + 𝑖𝜔𝜏

=
𝛾(𝜔 = 0)

1 + 𝑖𝜔𝜏
=
𝛾(𝑟é𝑔𝑖𝑚𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑢)

1 + 𝑖𝜔𝜏
 

On a donc 𝛾(𝑟é𝑔𝑖𝑚𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑢) = 𝛾0 = 𝑛𝑒𝑒
2𝜏 𝑚⁄     

𝐸° 

ClO− Cl− 

I2 I− 

S4O6
2− S2O3

2− 



pour 𝜔𝜏 << 1 : 𝛾(𝜔) =
𝛾0

1+𝑖𝜔𝜏
≈  𝛾0      

7.    Etablir l’équation de propagation du champs électrique dans un conducteur ohmique en régime lentement variable 

après avoir rappelé les hypothèses et conséquences de ce modèle. 

Voir cours 

rot⃗⃗ ⃗⃗ ⃗⃗ (rot⃗⃗ ⃗⃗ ⃗⃗  𝐸⃗⃗) = grad⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ (div(𝐸⃗⃗) − ∆⃗⃗⃗𝐸⃗⃗ =⏟
𝑀𝐺

− ∆⃗⃗⃗𝐸⃗⃗ =⏟
𝑀.𝐹.

rot⃗⃗ ⃗⃗ ⃗⃗ (−
𝜕𝐵⃗⃗

𝜕𝑡
) 

rot⃗⃗ ⃗⃗ ⃗⃗ (−
𝜕𝐵⃗⃗

𝜕𝑡
) = −∆⃗⃗⃗𝐸⃗⃗ 

∆⃗⃗⃗𝐸⃗⃗ =
𝜕

𝜕𝑡
(rot⃗⃗ ⃗⃗ ⃗⃗ 𝐵⃗⃗) =⏟

𝑀.𝐴.

𝜕

𝜕𝑡
(𝜇0𝛾0𝐸⃗⃗) = 𝜇0𝛾0

𝜕𝐸⃗⃗

𝜕𝑡
 

∆⃗⃗⃗𝐸⃗⃗ = 𝜇0𝛾0
𝜕𝐸⃗⃗

𝜕𝑡
 

8.   Nous étudions la propagation d’une onde électromagnétique vérifiant l’équation de propagation ∆⃗⃗⃗𝐸⃗⃗ = 𝜇0𝛾0
𝜕𝐸⃗⃗

𝜕𝑡
. On 

recherche 𝐸⃗⃗ solution sous la forme 𝐸⃗⃗ = 𝐸0𝑒
𝑖(𝜔𝑡−𝑘𝑥)𝑒𝑦 en supposant un forçage sinusoïdal imposé en 𝑥 =  0+ à un métal 

occupant tout le demi espace 𝑥 >  0. O. Établir la relation de dispersion associée, déterminer l’expression du vecteur 

d’onde 𝑘 et celle de 𝐸⃗⃗  sachant que l’on cherche des solutions bornées.  

La relation de dispersion s’obtient en injectant dans l’équation de propagation la forme générique du champ électrique 

𝐸⃗⃗ = 𝐸0𝑒
𝑖(𝜔𝑡−𝑘𝑥)𝑒𝑦 

∆⃗⃗⃗𝐸⃗⃗ = 𝜇0𝛾0
𝜕𝐸⃗⃗

𝜕𝑡
=
𝜕2𝐸⃗⃗

𝜕𝑥2
 

(−𝑖𝑘)
2
𝐸⃗⃗ = 𝜇0𝛾0(𝑖𝜔)𝐸⃗⃗ 

Soit 

𝑘2 = −𝑖𝜇0𝛾0𝜔 

Avec 𝑘 = 𝑘𝑟 + i𝑘𝑖  : 

Avec −𝑖 = 𝑒−𝑖𝜋 2⁄ , on a 𝑘2 = −𝑖𝜇0𝛾0𝜔 = 𝑒
−𝑖𝜋 2⁄ 𝜇0𝛾0𝜔 

𝑘 = ±𝑒−𝑖𝜋 4⁄ √𝜇0𝛾0𝜔 = ±(
1 − 𝑖

√2
)√𝜇0𝛾0𝜔 

On définit la grandeur 𝛿 homogène à une longueur : 

𝛿 = √
2

𝜇0𝛾0𝜔
 

𝑘 = ±
(1 − 𝑖)

𝛿
 

On obtient 𝑘𝑟 = −𝑘𝑖 = ±
1

𝛿
= ±

1

√
2

𝜇0𝛾0𝜔

= ±√
𝜇0𝛾0𝜔

2
 

Puisque deux valeurs de 𝑘 sont possibles, forme la plus générale des solutions de l’équation de propagation :  

𝐸⃗⃗ = 𝐴0𝑒
𝑖(𝜔𝑡−

(1−𝑖)
𝛿

𝑥)
𝑒𝑦 + 𝐴0

′ 𝑒
𝑖(𝜔𝑡+

(1−𝑖)
𝛿

𝑥)
𝑒𝑦 = 𝐴0 𝑒

−
x
𝛿  𝑒𝑖

(𝜔𝑡−
x
𝛿
)
𝑒𝑦 + 𝐴0

′ 𝑒+
x
𝛿  𝑒𝑖

(𝜔𝑡+
x
𝛿
)
 

Si 𝐸0
′ ≠ 0 alors l’onde diverge pour 𝑥 →  +∞, ce qui est physiquement impossible puisque l’onde ne reçoit pas d’énergie mais 

en perd (effet Joule) au cours de la propagation dans le métal. Par conséquent, dans un métal semi infini (épaisseur ≫  𝛿), seul 

le signe ⊕ est pertinent, avec 𝑘 =
(1−𝑗)

𝛿
 : 



𝐸⃗⃗ = 𝐸0𝑒
𝑖(𝜔𝑡−

(1−𝑖)
𝛿

𝑥)
𝑒𝑦 = 𝐸0 𝑒

−
x
𝛿 𝑒𝑖

(𝜔𝑡−
x
𝛿
)
𝑒𝑦 

En repassant en notation réelle : 

𝐸⃗⃗ = 𝐸0 𝑒−𝑥 𝛿⁄⏟  
atténuation
par effet Joule

cos (𝜔𝑡 − 𝑥 𝛿⁄ + 𝜑)⏟            
terme de propagation

𝑒𝑦 

 

9. Pour un milieu vérifiant la relation de dispersion 𝑘2 = −𝑖𝜇0𝛾0𝜔, établir les expressions des vitesses de phase et de groupe. 

Les conducteurs ohmiques en régime lentement variable constituent-ils des milieux dispersifs ? 

On a 𝑘𝑟 = −𝑘𝑖 =
1

𝛿
, et 𝛿 = √

2

𝜇0𝛾0𝜔
 or par définition, la vitesse de phase est 𝑣𝜑 =

𝜔

𝑘𝑟
= 𝛿𝜔 = √

2

𝜇0𝛾0𝜔
𝜔 

𝑣𝜑 =
𝜔

𝑘𝑟
= √

2𝜔

𝜇0𝛾0
= 𝑓(𝜔) 

Milieu dispersif avec une vitesse de phase qui augmente avec 𝜔, contrairement au cas des plasmas dilués. 

Vitesse de groupe : 𝑣𝑔 =
𝑑𝜔

𝑑𝑘𝑟
   or   𝑘𝑟 =

1

𝛿
= √

𝜇0𝛾0𝜔

2
      soit    𝑘𝑟

2 =
𝜇0𝛾0𝜔

2
   ou encore   𝜔 =

2𝑘𝑟
2

𝜇0𝛾0
 d’où 

𝑣𝑔 =
𝑑𝜔

𝑑𝑘𝑟
=
4𝑘𝑟
𝜇0𝛾0

=
4

𝜇0𝛾0
√
𝜇0𝛾0𝜔

2
= 2√

2𝜔

𝜇0𝛾0
= 2𝑣𝜑 

𝑣𝑔 et 𝑣𝜑 dépendent de 𝜔 : milieu dispersif 

10. Considérons une onde électromagnétique se propageant dans un conducteur ohmique, de champ électrique  

𝐸⃗⃗ = 𝐸0𝑒
−𝑥 𝛿⁄ cos (𝜔𝑡 −

𝑥

𝛿
+ 𝜑0) 𝑒𝑦 

Etablir l’expression du vecteur de Poynting moyen et interpréter le résultat obtenu 

Exprimons le vecteur de Poynting dans le cas d’une onde polarisée selon 𝑒𝑦, de la forme  

𝐸⃗⃗ = 𝐸0𝑒
−𝑥 𝛿⁄ cos (𝜔𝑡 −

𝑥

𝛿
+ 𝜑0) 𝑒𝑦 

𝐵⃗⃗ =
𝑘

𝜔
𝑒𝑥 ∧ 𝐸⃗⃗0𝑒

𝑖(𝜔𝑡−𝑘𝑥) =
𝑘

𝜔
𝑒𝑥 ∧ 𝑒𝑦𝐸0𝑒

−𝑥 𝛿⁄ 𝑒𝑖(𝜔𝑡−𝑥 𝛿+𝜑0⁄ ) =
(1 − 𝑖)

𝛿𝜔
𝐸0𝑒𝑧𝑒

−𝑥 𝛿⁄ 𝑒𝑖(𝜔𝑡−𝑥 𝛿+𝜑0⁄ ) 

𝐵⃗⃗ =
√2

𝛿𝜔
𝐸0𝑒𝑧𝑒

−𝑥 𝛿⁄ cos (𝜔𝑡 −
𝑥

𝛿
+ 𝜑0 −

𝜋

4
) 

Π⃗⃗⃗ =
𝐸⃗⃗ ∧ 𝐵⃗⃗

𝜇0
=
𝐸0
𝜇0
𝑒𝑦𝑒

−𝑥 𝛿⁄ cos (𝜔𝑡 −
𝑥

𝛿
+ 𝜑0) ∧

√2

𝛿𝜔
𝐸0𝑒𝑧𝑒

−𝑥 𝛿⁄ cos (𝜔𝑡 −
𝑥

𝛿
+ 𝜑0 −

𝜋

4
) 

Π⃗⃗⃗ =
√2𝐸0

2

𝛿𝜔𝜇0
𝑒𝑥𝑒

−2𝑥 𝛿⁄ cos (𝜔𝑡 −
𝑥

𝛿
+ 𝜑0) cos (𝜔𝑡 −

𝑥

𝛿
+ 𝜑0 −

𝜋

4
) 

〈Π⃗⃗⃗〉 =
√2𝐸0

2

𝛿𝜔𝜇0
𝑒𝑥𝑒

−2𝑥 𝛿⁄ 〈cos (𝜔𝑡 −
𝑥

𝛿
+ 𝜑0) cos (𝜔𝑡 −

𝑥

𝛿
+ 𝜑0 −

𝜋

4
)〉 

〈cos (𝜔𝑡 −
𝑥

𝛿
+ 𝜑0) cos (𝜔𝑡 −

𝑥

𝛿
+ 𝜑0 −

𝜋

4
)〉

= 〈cos2 (𝜔𝑡 −
𝑥

𝛿
+ 𝜑0)〉 cos (

𝜋

4
) + 〈cos (𝜔𝑡 −

𝑥

𝛿
+ 𝜑0) sin (𝜔𝑡 −

𝑥

𝛿
+ 𝜑0)〉 sin (

𝜋

4
) 

⇒ 〈cos (𝜔𝑡 −
𝑥

𝛿
+ 𝜑0) cos (𝜔𝑡 −

𝑥

𝛿
+ 𝜑0 −

𝜋

4
)〉 =

1

2
cos (

𝜋

4
) =

√2

4
 

〈Π⃗⃗⃗〉(𝑥) =
𝐸0

2

2𝛿𝜔𝜇0
𝑒𝑥𝑒

−2𝑥 𝛿⁄  



 

11. ** On étudie la propagation d’une perturbation thermique 𝑇(𝑥 ≤ 0) = 𝑇0 + 𝑎0 cos(𝜔𝑡) dans le sol caractérisé par 𝑥 ≥

0. On note 𝑫 = 
𝝀

𝜌𝒄
 la diffusivité thermique du sol ; l’équation de de la diffusion thermique de l’onde dans le sol est  (

𝜕𝑇

𝜕𝑡
)

x
=

𝐷 (
𝜕2𝑇

𝜕𝑥2
)
𝑡
. On recherche la réponse à la profondeur 𝑥 ≥ 0 sous la forme 𝑇(𝑥, 𝑡) = 𝑇0 + 𝑎(𝑥) cos(𝜔𝑡 + 𝜑(𝑥)), à laquelle on 

associe 𝜃(𝑥, 𝑡) =  𝑇(𝑥, 𝑡) − 𝑇0 = 𝑎(𝑥) cos(𝜔𝑡 + 𝜑(𝑥)). Etablir l’expression de 𝜃(𝑥, 𝑡) donc de 𝑇(𝑥, 𝑡). 

A 𝑇(𝑥, 𝑡) = 𝑇0 + 𝑎(𝑥) cos(𝜔𝑡 + 𝜑(𝑥)), on associe     𝜃(𝑥, 𝑡) =  𝑇(𝑥, 𝑡) − 𝑇0 = 𝑎(𝑥) cos(𝜔𝑡 + 𝜑(𝑥)), qui par linéarité 

vérifie également l’équation de la diffusion thermique. 

𝜃(𝑥, 𝑡) = 𝑎(𝑥) exp (𝑖 (𝜔𝑡 + 𝜑(𝑥))) = 𝑎(𝑥) exp(𝑖𝜔𝑡) exp(𝑖𝜑(𝑥)) 

Soit en introduisant l’amplitude complexe :  𝜃(𝑥, 𝑡) = 𝑎(𝑥) exp(𝑖𝜔𝑡)    où    𝑎(𝑥) =  𝑎(𝑥) exp(𝑖𝜑(𝑥)) 

(
𝜕𝜃

𝜕𝑡
)
𝑥
= 𝑖𝜔𝑎(𝑥) exp(𝑖𝜔𝑡) 

(
𝜕𝜃

𝜕𝑥
)
𝑡
=
𝑑𝑎(𝑥)

𝑑𝑥
exp(𝑖𝜔𝑡)         (

𝜕2𝜃

𝜕𝑥2
)
𝑡

=
𝑑2𝑎(𝑥)

𝑑𝑥2
exp(𝑖𝜔𝑡) 

D’où , en exploitant l’équation de diffusion (
𝜕𝜃

𝜕𝑡
)

x
− 𝐷 (

𝜕2𝜃

𝜕𝑥2
)
𝑡
= 0 : 

𝑖𝜔 𝑎(𝑥) exp(𝑖𝜔𝑡) − 𝐷 
𝑑2𝑎

𝑑𝑥2
exp(𝑖𝜔𝑡) = 0 

et, en simplifiant le terme oscillant (non nul), on obtient finalement 

𝑖𝜔 𝑎(𝑥) − 𝐷 
𝑑2𝑎

𝑑𝑥2
= 0 

Ou, sous forme plus habituelle, 

𝒅𝟐𝒂

𝒅𝒙𝟐
−
𝒊𝝎

𝑫
𝒂(𝒙) = 𝟎 

Équation différentielle d’ordre 2 en 𝑎(𝑥), linéaire, à coefficients constants, sans second membre, les coefficients étant 

cependant complexes. 

Équation caractéristique :  𝑟2 −
𝑖𝜔

𝐷
= 0 

Soit 𝑟2 =
𝑖𝜔

𝐷
  

Soit  𝑟2 =
𝑖𝜔

𝐷
=

𝜔

𝐷
exp (𝑖

𝜋

2
),  d’où  𝑟 = ±√

𝜔 

𝐷
 𝑒
𝑖𝜋

4       avec  

𝑒𝑖𝜋/4 = cos
𝜋

4
+ 𝑖 sin

𝜋

4
=
1

√2
+ 𝑖

1

√2
=
1 + 𝑖

√2
  

𝑟 = ±√
𝜔 

𝐷
 
1 + 𝑖

√2
 

Démarche classique !!     On pose 𝛿 tel que 𝒓 = ±
𝟏+𝒊

𝜹
  

c’est-à-dire 𝜹 = √
𝟐𝑫 

𝝎
     avec     [𝑟] = [√

𝜔 

𝐷
] = 𝐿−1              [𝛿] = 𝐿 

Solution générale de l’équation différentielle en 𝑎(𝑥) : 

𝑎(𝑥) = 𝐴 exp (−
1 + 𝑖

𝛿
𝑥) + 𝐵 exp (+

1 + 𝑖

𝛿
𝑥) 

ou 

𝑎(𝑥) = 𝐴 exp (−
𝑥

𝛿
) exp (−𝑖 

𝑥

𝛿
) + 𝐵 exp (+

𝑥

𝛿
) exp (+𝑖 

𝑥

𝛿
) 



Le premier terme donne une amplitude qui décroît quand on descend dans le sol, c’est cohérent avec la seconde condition 

aux limites donnée. 

Le second terme est quant à lui à exclure, l’amplitude augmenterait avec 𝑥 et divergerait : 𝐵 est nécessairement nul. On 

retient donc une solution : 

𝑎(𝑥) = 𝐴 exp (−
𝑥

𝛿
) exp (−𝑖 

𝑥

𝛿
) 

Ce qui donne, pour l’écart de température à la moyenne en fonction de 𝑥 et 𝑡 : 

𝜃(𝑥, 𝑡) = 𝐴 exp (−
𝑥

𝛿
) exp (−𝑖 

𝑥

𝛿
) exp(𝑖𝜔𝑡) = 𝑨 𝐞𝐱𝐩 (−

𝒙

𝜹
) 𝐞𝐱𝐩 (𝒊 (𝝎𝒕 −

𝒙

𝜹
)) 

En 𝑥 = 0, il y a continuité de la température  CL(0) 

(𝑇(0, 𝑡))𝑠𝑜𝑙 = (𝑇(𝑡))𝑎𝑖𝑟 = 𝑇0 + 𝑎0 cos(𝜔𝑡) 

(𝜃(0, 𝑡))𝑠𝑜𝑙 − 𝑇0 = +𝑎0 cos(𝜔𝑡) 

Soit, en complexes, 

𝜃(0, 𝑡) = 𝑎0 exp(𝑖 𝜔𝑡) 

Or 

𝜃(0, 𝑡) = 𝐴 exp (−
0

𝛿
) exp (𝑖 (𝜔𝑡 −

0

𝛿
)) = 𝐴 exp(𝑖 𝜔𝑡) 

d’où     𝐴 exp(𝑖 𝜔𝑡) = 𝑎0  exp(𝑖 𝜔𝑡)  

par identification : 𝐴 = 𝑎0  

On revient à l’écriture réelle de la température en prenant la partie réelle de l’expression précédente : 

𝑇(𝑥, 𝑡) = 𝑇0 + ℛ𝑒(𝑎(𝑥) exp(𝑖𝜔𝑡)) 

𝑇(𝑥, 𝑡) = 𝑇0 + 𝑎0 exp (−
𝑥

𝛿
) cos (𝜔𝑡 −

𝑥

𝛿
) 

12. On considère la propagation d'ondes vérifiant une équation de d’Alembert de la forme 
𝜕2𝑦

𝜕𝑥2
−

1

𝑣2

𝜕2𝑦

𝜕𝑡2
= 0, et on recherche 

les solutions de la forme : 𝑦(𝑥, 𝑡) = 𝑌0(𝑥) sin(𝜔𝑡) où 𝜔 est la pulsation de l’onde et 𝑌0(𝑥) est une fonction que l'on souhaite 

étudier. Montrer que 𝑌0(𝑥) doit vérifier l'équation 
𝑑2𝑌0(𝑥)

𝑑𝑥2
+ 𝑘2𝑌0(𝑥) = 0 où 𝑘 > 0 et résoudre cette équation. 

𝑦(𝑥, 𝑡) = 𝑌0(𝑥) sin(𝜔𝑡) doit être solution de l’équation de d’Alembert :   
𝜕2𝑦

𝜕𝑥2
−

1

𝑣2

𝜕2𝑦

𝜕𝑡2
= 0 

𝜕2  

𝜕𝑥2
(𝑌0(𝑥) sin(𝜔𝑡)) =

𝑑2𝑌0

𝑑𝑥2
sin(𝜔𝑡)    et      

𝜕2  

𝜕𝑡2
(𝑌0(𝑥) sin(𝜔𝑡)) = −𝜔

2𝑌0(𝑥) sin(𝜔𝑡) d’où 

𝑑2𝑌0
𝑑𝑥2

sin(𝜔𝑡) −
1

𝑣2
× (−𝜔2)𝑌0(𝑥) sin(𝜔𝑡) = 0 

soit 

(
𝑑2𝑌0
𝑑𝑥2

+
𝜔2

𝑣2
𝑌0(𝑥)) sin(𝜔𝑡) = 0 

ceci devant être vrai à chaque instant, on en déduit que 𝒀𝟎(𝒙) est solution de l’équation 

𝒅𝟐𝒀𝟎(𝒙)

𝒅𝒙𝟐
+ 𝒌𝟐𝒀𝟎(𝒙) = 𝟎  𝐚𝐯𝐞𝐜 𝒌 =

𝝎

𝒗
  

Les solutions de l’équation précédente sont de la forme : 𝑌0(𝑥) = 𝐴 cos(𝑘𝑥 + ) avec 𝐴 et  deux constantes. 

 

13. **Considérons un milieu régi par l'équation : 



𝜕2𝜉

𝜕𝑡2
− 𝑐2

𝜕2𝜉

𝜕𝑥2
= 0 

On recherche la solution sous la forme stationnaire suivante :  𝜉(𝑥, 𝑡) = 𝑓(𝑥)𝑔(𝑡). 

Déterminer la forme de 𝑓 et 𝑔 permettant de vérifiant l’équation de propagation de d'Alembert. 

 

Afin de déterminer la forme de 𝑓 et 𝑔, on injecte la fonction 𝜉(𝑥, 𝑡) = 𝑓(𝑥)𝑔(𝑡) dans l’équation de propagation  

𝜕2𝜉

𝜕𝑡2
− 𝑐2

𝜕2𝜉

𝜕𝑥2
= 0 

𝜕2𝜉

𝜕𝑡2
− 𝑐2

𝜕2𝜉

𝜕𝑥2
= 0 ⟹ 𝑔′′(𝑡)𝑓(𝑥) − 𝑐2𝑓′′(𝑥)𝑔(𝑡) = 0 ⟹

𝑔′′(𝑡)

𝑔(𝑡)
= 𝑐2

𝑓′′(𝑥)

𝑓(𝑥)
 

Lorsqu'une fonction qui dépend uniquement de temps est égale à une fonction qui ne dépend que de 𝑥 alors 

nécessairement, ces fonctions sont égales ! En effet, si la fonction en temps varie, on peut faire varier 𝑡 en maintenant 𝑥 

constant et donc la fonction en 𝑡 varie alors que la fonction en 𝑥 reste constante. Ce résultat est général et peut 

s'appliquer à deux variables indépendantes quelconques. On a alors : 

𝑔′′(𝑡)

𝑔(𝑡)
= 𝑐2

𝑓′′(𝑥)

𝑓(𝑥)
= 𝐾 

On va maintenant distinguer les 3 cas portant sur le signe de 𝐾 : 

si 𝐾 > 0, on peut écrire 𝐾 = 𝜔2 et on a l'équation pour 𝑔(𝑡) qui 'écrit : 

𝑔′′ −𝜔2𝑔 = 0 ⟹ 𝑔(𝑡) = 𝐴exp(−𝜔𝑡) + 𝐵exp(𝜔𝑡) 

Cette solution n'est pas physiquement intéressant puisqu'elle diverge à l'infini et qu'on cherche une solution valable à 

tout instant. Le cas 𝐾 > 0 n'est donc pas intéressant. 

si 𝐾 = 0, on a 𝑔(𝑡) = 𝐴𝑡 + 𝑏. De même, cette solution n'est pas intéressant car elle diverge (ou ne dépend pas du temps) 

et ne permet donc pas de décrire les phénomènes physiques qui nous intéressent. 

resta alors seulement le cas 𝐾 < 0 soit 𝐾 = −𝜔2. On a alors : 

𝑔′′ + 𝜔2𝑔 = 0 ⟹ 𝑔(𝑡) = 𝐴cos (𝜔𝑡) + 𝐵sin (𝜔𝑡) = 𝐶cos (𝜔𝑡 + 𝜑) 

De plus, l'équation portant sur 𝑓(𝑥) s'écrit quant à elle : 

𝑓′′ +
𝜔2

𝑐2
𝑓 = 0 ⟹ 𝑓(𝑥) = 𝐴′cos(𝑘𝑥) + 𝐵′sin(𝑘𝑥) = 𝐶′cos (𝑘𝑥 + ) avec 𝑘 =

𝜔

𝑐
 

La solution générale de l'équation de d'Alembert sous forme stationnaire peut alors s'écrire : 

 𝜉(𝑥, 𝑡) = 𝜉0cos (𝜔𝑡 + 𝜑) cos (𝑘𝑥 + ) avec 𝜔 = 𝑘𝑐 et 𝜉0 = 𝐶𝐶′  

Les valeurs de 𝜔 n'étant pas spécifiées, on a donc une famille de solutions vérifiant l'équation de d'Alembert ! 
 

14.   Considérons une onde stationnaire d’expression 𝑠(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥) cos(𝜔𝑡 + 𝜑). Etablir les expressions des positions 

des nœuds et des ventres associés. 

  Positions 𝒙𝑵 des nœuds telles que ∀𝑡, 𝑦(0, 𝑡) = 0 avec 𝑦(𝑥, 𝑡) = 𝐴 𝑠𝑖𝑛(𝜔𝑡 + 𝜑) 𝑠𝑖𝑛(𝑘𝑥), soit sin(𝑘𝑥𝑁) = 0  

d’où 𝑘𝑥𝑁 = 0[𝜋] 

Les différents nœuds ont alors comme positions 𝑘𝑥𝑁,𝑝 = 𝑝𝜋 avec 𝑝 ∈ ℤ soit 
2𝜋

𝜆
 𝑥𝑁,𝑝 = 𝑝𝜋  ou encore 𝑥𝑁,𝑝 =

𝑝𝜆

2
   

Distance entre deux nœuds successifs : 𝑥𝑁,𝑝+1 − 𝑥𝑁,𝑝 =
𝜆

2
. Tout fuseau a une taille de 

𝜆

2
. 

Positions 𝒙𝒗 des ventres telles que l’amplitude 𝒜(𝑥) = |𝐴 𝑠𝑖𝑛(𝑘𝑥)| soit maximale soit 𝑠𝑖𝑛(𝑘𝑥𝑣) = ±1,  

d’où 𝑘𝑥𝑣 =
𝜋

2
[𝜋] 

Les différents nœuds ont alors comme positions 𝑘𝑥𝑣,𝑝 =
𝜋

2
+ 𝑝𝜋 =

𝜋

2
(1 + 2𝑝) avec 𝑝 ∈ ℤ soit 

2𝜋

𝜆
 𝑥𝑣,𝑝 =

𝜋

2
(1 + 2𝑝)   ou 

encore 𝑥𝑣,𝑝 =
𝜆

4
+
𝑝𝜆

2
   



Distance entre deux ventres successifs : 𝑥𝑣,𝑝+1 − 𝑥𝑣,𝑝 =
𝜆

2
.  

Distance entre un nœud et une ventre successifs : 
𝜆

4
 

 

15. ♥♥On considère une corde de longueur 𝐿 fixée aux 2 

extrémités (en 𝑥 = 0 et en 𝑥 = 𝐿) oscillant selon : 

𝑦(𝑥, 𝑡) = 𝐴 𝑐𝑜𝑠(𝑘𝑥 + ) 𝑐𝑜𝑠(𝜔𝑡 + 𝜑) 

Etablir les caractéristiques des modes propres en rappelant le lien entre 

les différentes grandeurs caractéristiques.  

Cherchons la solution sous la forme générale :  

𝑦(𝑥, 𝑡) = 𝐴 𝑐𝑜𝑠(𝜔𝑡 + 𝜑) 𝑐𝑜𝑠(𝑘𝑥 + ) 

On considère une corde de longueur 𝐿 fixe aux deux extrémités (corde de guitare) situées en 𝑥 = 0 et en 𝑥 = 𝐿. 

On en déduit deux conditions aux limites : ∀𝑡, 𝑦(0, 𝑡) = 0 et   ∀𝑡, 𝑦(𝐿, 𝑡) = 0  

Avec 𝑦(𝑥, 𝑡) = 𝐴 cos(𝜔𝑡 + 𝜑) cos(𝑘𝑥 + ), les conditions aux limites imposent : 

cos() = 0 (1)      et            cos(𝑘𝐿 + ) = 0    (2) 

(1)   = ±
𝜋

2
  

(2)  cos (𝑘𝐿 ±
𝜋

2
 ) = 0          sin(𝑘𝐿) = 0           𝑘𝑛𝐿 = 𝑛𝜋,  avec 𝑛 entier         𝑘𝑛 = 𝑛

𝜋

𝐿
, avec 𝑛 entier 

Les seules valeurs de 𝑘 envisageables sont les valeurs  𝒌𝒏 = 𝒏
𝝅

𝑳
,  avec 𝑛 entier. La norme du vecteur d’onde est donc 

quantifiée. 

On en déduit que la pulsation et la fréquence sont également quantifiées, les valeurs admissibles étant : 

𝝎𝒏 = 𝒏
𝝅𝒄

𝑳
 et 𝒇𝒏 =

𝝎𝒏

𝟐𝝅
= 𝒏 

𝒄

𝟐𝑳
,   avec 𝑛 entier 

Les modes propres (solutions stationnaires possibles) sont donc donnés par : 

𝑦𝑛(𝑥, 𝑡) = 𝐴𝑛 cos (𝒏
𝝅𝒄

𝑳
𝐭 + φ𝑛 ) sin (𝒏

𝝅

𝑳
𝑥)  ; 𝑛 étant un entier. 

Relation entre 𝑳 et 𝛌 

𝑘𝑛 = 𝑛
𝜋

𝐿
= 

2𝜋

𝜆𝑛
 On en déduit :  𝑳 = 𝒏 

𝜆𝑛

𝟐
  

Le mode fondamental correspond à 𝑛 = 1 :  𝒇𝟏 =
𝒄

𝟐𝑳
 

Les modes suivants sont des harmoniques :  𝒇𝒏 = 𝒏𝒇𝟏 

 

16.  On considère une OemPPH de champ 𝐸⃗⃗𝑖 = 𝐸0 cos(𝜔𝑡 − 𝑘𝑥) 𝑒𝑦 se propageant dans le vide et arrivant en incidence 

normale sur un conducteur parfait occupant le demi-espace 𝑥 > 0.  

Rappel des relations de passage : Le champ électrique et le 

champ magnétique subissent des discontinuités finies à la 

traversée d’une surface chargée :  𝐸⃗⃗2 − 𝐸⃗⃗1 =
𝜎

𝜺0
𝑒12 ou d’une 

nappe de courant surfacique : 𝐵⃗⃗2 − 𝐵⃗⃗1 = 𝜇0 𝑗𝑠 ∧ 𝑒12. 

Déterminer les expressions des champs électrique et magnétique réfléchis, puis les expressions et les caractéristiques des 

champs électrique et magnétique de l’onde résultante. 

a. Relation de structure : 𝐵⃗⃗ =
𝑢⃗⃗⃗𝑘 ∧ 𝐸⃗⃗

𝑐
=

𝑘⃗⃗ ∧ 𝐸⃗⃗

𝜔
 d’où   𝐵⃗⃗𝑖(𝑥, 𝑡) = 𝐵0 𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑥) 𝑒𝑧      𝑎𝑣𝑒𝑐 𝐵0 =

𝐸0

𝑐
 

Conducteur parfait : 𝐸⃗⃗(0+) = 0⃗⃗ et 𝐵⃗⃗(0+) = 0⃗⃗, soit dans les relations de passage avec 𝑒12 = 𝒆⃗⃗𝒙 ∶ 

 

 



 𝐸⃗⃗2 − 𝐸⃗⃗1 =
𝜎

𝜀0
𝑒12 = 0⃗⃗ − 𝐸⃗⃗(0

−)  𝑬⃗⃗⃗(𝟎−) = −
𝝈

𝜺𝟎
𝒆⃗⃗𝒙 (1) 

À la limite du conducteur (𝑥 = 0−), on a pour les champs incidents : 𝐸⃗⃗𝑖(0
−, 𝑡) = 𝐸0 𝑐𝑜𝑠(𝜔𝑡) 𝑒𝑦        𝐵⃗⃗𝑖(0

−, 𝑡) = 𝐵0 𝑐𝑜𝑠(𝜔𝑡) 𝑒𝑧 

Le champ 𝐸⃗⃗𝑖  ne satisfait pas à la relation de continuité (1), il doit apparaître un champ réfléchi 𝐸⃗⃗𝑟  se propageant suivant −𝑒𝑥 de 

sorte que 𝐸⃗⃗𝑖 + 𝐸⃗⃗𝑟  vérifie cette relation de continuité. Du fait de la linéarité des équations de Maxwell, l’onde réfléchie a la même 

pulsation 𝜔 que l’onde incidente.  

Soient 𝐸⃗⃗𝑟  et 𝐵⃗⃗𝑟 les champs électrique et magnétique réfléchis. Les relations de passage impliquent : 

𝐸⃗⃗𝑖(0
−, 𝑡) + 𝐸⃗⃗𝑟(0

−, 𝑡) = −
𝜎

𝜀0
𝑒𝑥       𝑑

′𝑜ù    𝐸⃗⃗𝑟(0
−, 𝑡) = −𝐸0 𝑐𝑜𝑠(𝜔𝑡) 𝑒𝑦 −

𝜎

𝜀0
𝑒𝑥  

 Champ électrique réfléchi (par exemple méthode complexe) : on le cherche sous la forme  𝐸⃗⃗𝑟(𝑥, 𝑡) = 𝐸0𝑟𝑦𝑒𝑦𝑒
𝑖(𝜔𝑡+𝑘𝑥) +

𝐸0𝑟𝑧𝑒𝑧𝑒
𝑖(𝜔𝑡+𝑘𝑥) 

𝐸⃗⃗1(𝑥, 𝑡) = 𝐸⃗⃗𝑖(𝑥, 𝑡) + 𝐸⃗⃗𝑟(𝑥, 𝑡) = 𝐸0𝑒
𝑖(𝜔𝑡−𝑘𝑥) 𝑒𝑦 + 𝐸0𝑟𝑦𝑒𝑦𝑒

𝑖(𝜔𝑡+𝑘𝑥) + 𝐸0𝑟𝑧𝑒𝑧𝑒
𝑖(𝜔𝑡+𝑘𝑥) 

Soit en 𝑥 =  0− 

𝐸⃗⃗1(0
−, 𝑡) = 𝐸⃗⃗𝑖(0, 𝑡) + 𝐸⃗⃗𝑟(0, 𝑡) = 𝐸0𝑒

𝑖(𝜔𝑡) 𝑒𝑦 + 𝐸0𝑟𝑦𝑒𝑦𝑒
𝑖(𝜔𝑡) + 𝐸0𝑟𝑧𝑒𝑧𝑒

𝑖(𝜔𝑡) = (𝐸0 𝑒𝑦 + 𝐸0𝑟𝑦𝑒𝑦 + 𝐸0𝑟𝑧𝑒𝑧) 𝑒
𝑖(𝜔𝑡) 

Relation de passage en terme de champs complexes 𝐸⃗⃗1(0
−) = −

𝜎

𝜀0
𝑒𝑥 (1)   projetée :  

𝐸⃗⃗1(0
−, 𝑡) = 𝐸⃗⃗𝑖(0, 𝑡) + 𝐸⃗⃗𝑟(0, 𝑡) = 𝐸0𝑒

𝑖(𝜔𝑡) 𝑒𝑦 + 𝐸0𝑟𝑦𝑒𝑦𝑒
𝑖(𝜔𝑡) + 𝐸0𝑟𝑧𝑒𝑧𝑒

𝑖(𝜔𝑡) = (𝐸0 𝑒𝑦 + 𝐸0𝑟𝑦𝑒𝑦 + 𝐸0𝑟𝑧𝑒𝑧) 𝑒
𝑖(𝜔𝑡) 

Relation de passage en terme de champs complexes 𝐸⃗⃗1(0
−) = −

𝜎

𝜀0
𝑒𝑥 (1)   projetée :  

{
 
 

 
 0 = −

𝜎

𝜀0
𝐸0  + 𝐸0𝑟𝑦 = 0

𝐸0𝑟𝑧 = 0

 

On a donc 𝐸0𝑟𝑦 = −𝐸0 et 𝐸0𝑟𝑧 = 0, soit 

 𝐸⃗⃗𝑟(𝑥, 𝑡) = 𝐸0𝑟𝑦𝑒𝑦𝑒
𝑖(𝜔𝑡+𝑘𝑥) + 𝐸0𝑟𝑧𝑒𝑧𝑒

𝑖(𝜔𝑡+𝑘𝑥) = −𝐸0𝑒𝑦𝑒
𝑖(𝜔𝑡+𝑘𝑥) = −𝐸0𝑒𝑦𝑒

𝑖(𝜔𝑡+𝑘𝑥) 

Finalement, 𝐸⃗⃗𝑟(𝑥, 𝑡) = −𝐸0 cos(𝜔𝑡 + 𝑘𝑥) 𝑒𝑦 = 𝐸0 cos(𝜔𝑡 + 𝑘𝑥 + 𝜋) 𝑒𝑦 

Même amplitude et même polarisation mais déphasage de 𝜋 

 Champ magnétique réfléchi : 𝐵⃗⃗𝑟(𝑥, 𝑡) =
(−𝑒𝑥) ∧ 𝐸𝑟⃗⃗ ⃗⃗ ⃗

𝑐
=

(−𝑒𝑥) ∧(−𝑬𝟎 𝒄𝒐𝒔(𝝎𝒕+𝒌𝒙)𝒆⃗⃗𝒚)

𝑐
=

𝑬𝟎

𝒄
𝒄𝒐𝒔(𝝎𝒕 + 𝒌𝒙)𝑒𝑧 

Le champ magnétique réfléchi a la même amplitude,  la même pulsation et la même phase que le champ incident. 

 

17. On considère une OemPPH de champ 𝐸⃗⃗𝑖 = 𝐸0 cos(𝜔𝑡 − 𝑘𝑥) 𝑒𝑦 et 𝐵⃗⃗𝑖 = 𝐵0 cos(𝜔𝑡 − 𝑘𝑥) 𝑒𝑧 se propageant dans le vide et 

arrivant en incidence normale sur un conducteur parfait occupant le demi-espace 𝑥 > 0. 

 Le champ réfléchi est 𝐵⃗⃗𝑟(𝑥, 𝑡) = 𝐵0 cos(𝜔𝑡 + 𝑘𝑥) 𝑒𝑧. On rappelle la relation de passage pour le champ magnétique : 

 𝑩⃗⃗⃗𝟐 − 𝑩⃗⃗⃗𝟏 = 𝝁𝟎 𝒋⃗𝒔 ∧ 𝒆⃗𝟏𝟐 

Etablir l’expression du courant surfacique 𝑗𝑠 généré à la surface et commenter le résultat obtenu. 
 


