TD 03

Mots de Lyndon

MPI/MPI*, lycée Faidherbe

I Mots de Lyndon

On suppose que l'alphabet Σ est $\{0,1\}$. On rappelle que \leq est une relation d'ordre où $u \leq v$ si u est un préfixe de v ou s'il existe un entier $k \leq \min\{|u|,|v|\}$ tel que, en notant $u = x_1x_2\cdots x_n$ et $v = y_1y_2\cdots y_m$, $x_i = y_i$ pour $1 \leq i < k$ et $x_k < y_k$.

Question 1 Écrire une fonction inferieur : int list -> int list-> bool qui prend pour deux mots u et v et renvoie pour résultat le booléen true si $u \prec v$ et false sinon.

Définition 1

Conjugués Un conjugué d'un mot u est un mot de la forme v=u''.u' avec $u=u'.u'',\,u'\neq\varepsilon$ et $u''\neq\varepsilon$.

Un mot non vide est un **mot de Lyndon** si $u \prec v$ pour tout conjugué v de u.

Question 2 Écrire la fonction conjugue : int list \rightarrow int \rightarrow int list telle que conjugue u i renvoie le conjugué w.v de u=v.w avec |v|=i.

Question 3 Écrire une fonction lyndon : int list -> bool qui teste si un mot est un mot de Lyndon.

Question 4 Soit u un mot. Démontrer que s'il existe un mot qui est à la fois un préfixe et un suffixe de u, alors u n'est pas un mot de Lyndon.

Question 5 Démontrer qu'un mot u est un mot de Lyndon si et seulement si pour tout suffixe propre h de u, on a $u \prec h$.

Question 6 Démontrer que si un mot u de longueur au moins 2 est un mot de Lyndon alors il existe deux mots de Lyndon f et g tels que u=f.g et $f \prec g$ et, réciproquement, si f et g sont des mots de Lyndon tels que $f \prec g$ alors f.g est un mot de Lyndon.

Question 7 Donner la liste de tous les mots de Lyndon de longueur 5.

Question 8 Écrire la fonction Lyndon n qui calcule, dans un tableau de listes, tous le mots de Lyndon de longueur inférieure ou égale à n. Les mots de Lyndon de longueur k devront être ordonnés dans la composante d'indice k du tableau.

Définition 2

Factorisation de Lyndon Une factorisation de Lyndon d'un mot u est une suite $u^{(1)}, u^{(2)}, \ldots, u^{(p)}$ de mots de Lyndon telle que $u = u^{(1)}.u^{(2)}.\cdots.u^{(p)}$ et $u^{(p)} \leq u^{(p-1)} \leq \cdots \leq u^{(1)}$.

Par exemple, pour u = 10100101100100, une factorisation de Lyndon est 1,01,001011,011,0,0.

Question 9 Prouver qu'un mot admet au plus une décomposition de Lyndon.

Pour construire une factorisation de Lyndon d'un mot $u=u_1u_2\cdots u_n$ on construit une suite de décompositions de u en mots de Lyndon (mais pas encore une décomposition de Lyndon) à partir

de la suite $u^{(1)}, u^{(2)}, \ldots, u^{(n)}$ avec $u^{(i)} = u_i$. À chaque étape $v^{(1)}, v^{(2)}, \ldots, v^{(p)}$ de mots de Lyndon telle que $u = v^{(1)}.v^{(2)}.\cdots.v^{(p)}$ on cherche s'il existe un indice k tel que $v^{(k)} \prec v^{(k+1)}$: si oui, on remplace la suite par $v^{(1)}, \ldots, v^{(k-1)}, v^{(k)}.v^{(k+1)}, v^{(k+2)}, \ldots, v^{(p)}$.

S'il n'y en a pas, on a fini : la séquence obtenue est une factorisation de Lyndon.

Question 10 Écrire la fonction factorisation qui calcule une factorisation de Lyndon du mot u passé en paramètre et renvoie le résultat sous forme de la liste des facteurs.