

TIPE 2025

Introduction : le cas discret

Le cas continu

Méthode Gloutonne

Annexe

TIPE 2025

Problème du transport optimal : Au cœur de l'animation météorologique

Candidat n°17073

Introduction Le problème en lui-même

TIPE 2025

Introduction : le cas discret

Le cas continu

Méthode Gloutonne

Annexe

• Le problème de Monge-Kantorovich :

(a) Gaspard Monge (1746-1818)

(b) Leonid Kantorovich (1912-1968)

Introduction Le problème en lui-même

TIPE 2025

Introduction : le cas discret

Le cas continu

Méthode Gloutonne

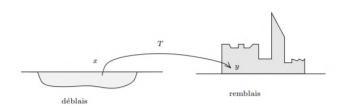


Figure 2: Exemple du déblais/remblais.

Introduction Mon objectif

TIPE 2025

Introduction : le cas discret

Le cas continu

Méthode Gloutonne

Annexe

(b)

Figure 3: (TF1)

Introduction Mon objectif

TIPE 2025

Introduction : le cas discret

Le cas continu

Méthode Gloutonne

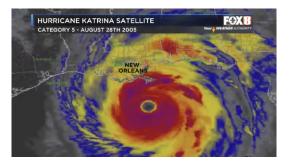


Figure 4: Application à la météorologie. (Fox 8)

Le problème des livreurs/boulangeries

TIPE 2025

Introduction : le cas discret

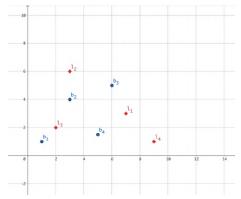
Le cas continu

Méthode Gloutonne

Annexe

• Contexte: n livreurs $\mathcal{L} = \{l_1, \dots, l_n\}$ et n boulangeries $\mathcal{B} = \{b_1, \dots, b_n\}$ des points fixes dans le plan euclidien $E = \mathbb{R}^2$.

Exemple :



TIPE 2025

Introduction : le cas discret

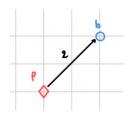
Le cas continu

Méthode Gloutonne

Annexe

o Fonction de coût : On considère une fonction de coût

$$c: E \times E \to \mathbb{R}_+$$



TIPE 2025

Introduction : le cas discret

Le cas continu

Méthode Gloutonne

Annexe

 Plan de transport : Un plan de transport est une bijection

$$T: \mathcal{L} \to \mathcal{B}$$

On notera ${\mathcal T}$ l'ensemble des plans de transport.

$$T_{\mathsf{ex}} : \begin{vmatrix} l_1 & \longmapsto & b_3 \\ l_2 & \longmapsto & b_2 \\ l_3 & \longmapsto & b_1 \\ l_4 & \longmapsto & b_4 \end{vmatrix}$$

TIPE 2025

Introduction : le cas discret

Le cas continu

Méthode Gloutonne

Annexe

Objectif: on désire trouver le plan de transport optimal,
 i.e le plan qui minimise le coût total:

$$T_{\min} = \underset{T \in \mathcal{T}}{\operatorname{arg \, min}} \sum_{l \in \mathcal{L}} c(l, T(l))$$

TIPE 2025

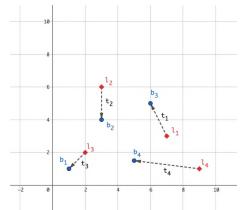
Introduction : le cas discret

Le cas continu

Méthode Gloutonne

Annexe

 Résolution de l'exemple : on prend
 <u>c</u> la distance euclidienne usuelle, on a alors la solution suivante :



L'importance de la fonction de coût : Cas de la dimension 1

TIPE 2025

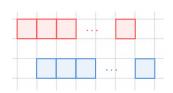
Introduction : le cas discret

Le cas continu

Méthode Gloutonne

Annexe

Maintenant, $E = \mathbb{R}$, \mathcal{L} est un ensemble de n livres collés entre eux. $\mathcal{B} = \{l+1 \mid l \in \mathcal{L}\}$



Deux solutions optimales se présentent :

- o n petits déplacements
- o 1 grand déplacement

L'importance de la fonction de coût : déplacement de livres

TIPE 2025

Introduction : le cas discret

Le cas continu

Méthode Gloutonne

Annexe

Pour c la distance euclidienne.

$$c:(x,y)\mapsto ||x-y||$$

 \circ Version petits déplacements, $:=T_{\mathsf{petits}}$,

$$\sum_{l \in \mathcal{L}} c(l, T_{\mathsf{petits}}(l)) = \sum_{l \in \mathcal{L}} 1 = n$$

 \circ Version grand déplacement, $:= T_{\mathsf{grand}}$,

$$\sum_{l \in \mathcal{L}} c(l, T_{\mathsf{grand}}(l)) = n + \sum_{l \in \mathcal{L}, l \neq l_1} \underbrace{c(l, T_{\mathsf{grand}}(l))}_{=0} = n$$

 \Rightarrow Les deux versions sont bien *optimales*.

L'importance de la fonction de coût : déplacement de livres

TIPE 2025

Introduction : le cas discret

Le cas continu

Méthode Gloutonne

Annexe

• Pour c la distance euclidienne au carré,

$$c:(x,y)\mapsto ||x-y||^2$$

 \circ Version petits déplacements, $:=T_{\mathsf{petits}}$,

$$\sum_{l \in \mathcal{L}} c(l, T_{\mathsf{petits}}(l)) = \sum_{l \in \mathcal{L}} 1^2 = n$$

 \circ Version grand déplacement, $:=T_{\mathsf{grand}}$,

$$\sum_{l \in \mathcal{L}} c(l, T_{\mathsf{grand}}(l)) = n^2 + \sum_{l \in \mathcal{L}, l \neq l_1} \underbrace{c(l, T_{\mathsf{grand}}(l))}_{=0} = n^2$$

⇒ La version 'petits déplacements' est la seule optimale.

L'importance de la fonction de coût : caractère convexe

TIPE 2025

Introduction : le cas discret

Le cas continu

Méthode Gloutonne

Annexe

Utilité de la norme quadratique : Théorie de Brenier

- Unicité de la solution ;
- Régularité de la solution ;
- Usage du gradient ;

Le cas continu Retour à l'animation météorologique

TIPE 2025

Introduction : le cas discret

Le cas continu

Méthode Gloutonne

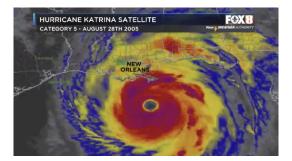


Figure 5: Ouragan Katrina, Fox 8

Le cas continu

Transport optimal entre deux espaces dans le cas continu

TIPE 2025

Introduction : le cas discret

Le cas continu

Méthode Gloutonne

Annexe

Soient μ, ν deux mesures de probabilité sur $E = \mathbb{R}^2$, de même masse totale.

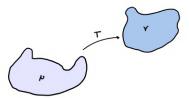
Soit c une fonction de coût *mesurable*.

On veut trouver une application de transport $T: E \to E$ qui :

• Transfère μ sur ν :

$$T_{\#\mu} = \nu$$

notation *push-forward* : $T_{\#\mu}$ est l'image directe de μ par T.



TIPE 2025

Introduction : le cas discret

Le cas continu

Méthode Gloutonne

Annexe

• Minimise le coût du transport total :

$$\inf_{\substack{T \in \mathcal{T} \\ T_{\#}\mu = \nu}} \int_{E} c(x, T(x)) d\mu(x)$$

Le cas continu

TIPE 2025

Introduction : le cas discret

Le cas continu

Méthode Gloutonne

Annexe

Hypothèses supplémentaires : μ doit être absolument continue (par rapport à la mesure de Lebesgue), et c est le coût quadratique :

On prendra ici $c:(x,y)\mapsto \frac{1}{2}||x-y||^2$

Théorie de Brenier

Il existe une application de transport optimale $T:E\to E$ qui répond au problème de Monge et cette application est de la forme :

$$T(x) = \vec{\nabla}\varphi(x)$$

où $\varphi:E\to\mathbb{R}$ est une fonction convexe.

TIPE 2025

Introduction : le cas discret

Le cas continu

Méthode Gloutonne

Annexe

Conformément à la théorie de Brenier, on prendra

$$c:(x,y)\mapsto \frac{1}{2}||x-y||^2 = \frac{1}{2}(x-y)^T(x-y)$$

Proposition 3

c est convexe.

Trouver le φ convexe : descente de gradient

TIPE 2025

Introduction : le cas discret

Le cas continu

Méthode Gloutonne

Annexe

Proposition 4 - Gradient opposé d'une fonction

Soient (E,\langle,\rangle) , $U\subset E$ un ouvert, $a\in U$, $f:U\to\mathbb{R}$ une fonction et différentiable en a, alors :

- $-\vec{\nabla}f(a)$ donne la direction selon laquelle f décroît le plus rapidement en a.
- \Rightarrow Pourrait-on alors simplement s'intéresser au coût quadratique c ?

Méthode gloutonne Représentation d'un nuage

TIPE 2025

Prenons l'exemple d'un cercle décrit par P points :

Introduction : le cas discret

Le cas continu

Méthode Gloutonne

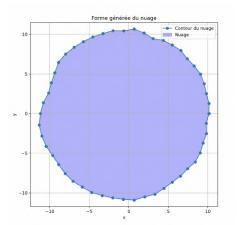


Figure 6: Nuage en python décrit avec une liste de coordonnées (x,y).

Trouver le φ convexe : exemple du cercle

TIPE 2025

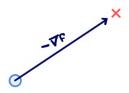
Introduction : le cas discret

Le cas continu

Méthode Gloutonne

Annexe

(a) Point source et point cible.



(b) Transition la moins coûteuse.

on applique alors la descente de gradient aux \boldsymbol{P} points.

Trouver le φ convexe : exemple du cercle

TIPE 2025

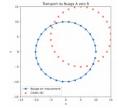
Introduction : le cas discret

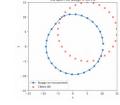
Le cas continu

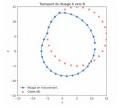
Méthode Gloutonne

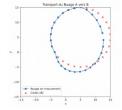
Annexe

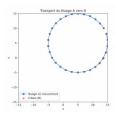
On a alors la transition suivante :











Trouver le φ convexe : prendre en compte les obstacles

TIPE 2025

Introduction : le cas discret

Le cas continu

Méthode Gloutonne

Annexe

De manière empirique, on peut déduire des zones sur une carte qu'un cumulus pourrait difficilement traverser (zone montagneuse) ou au contraire très facilement (zone de grands vents) :

Figure 10: Nuage accroché au Mont Fuji au Japon.

Trouver le φ convexe : prendre en compte les obstacles

TIPE 2025

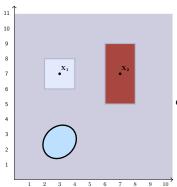
Introduction : le cas discret

Le cas continu

Méthode Gloutonne

Annexe

On va alors simplement cartographier les zone *difficiles/faciles* en modifiant le coût :



$$c(x,y) = \frac{1}{2} ||x-y||^2 + \sum_{i} v_i ||y-X_i||^2$$

Premier test : problème de séparation du nuage

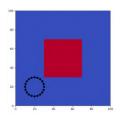
TIPE 2025

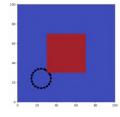
On a le premier test suivant :

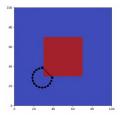
Introduction : le cas discret

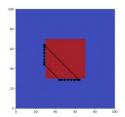
Le cas continu

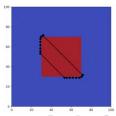
Méthode Gloutonne











Premier test : problème de séparation du nuage

TIPE 2025

Introduction : le cas discret

Le cas continu

Méthode Gloutonne

Annexe

Correction du problème : calculer l'écart moyen entre chaque points voisins et faire en sorte qu'il n'y ait aucun écart significativement plus grand que la moyenne.

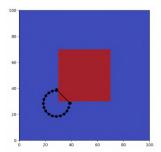


Figure 13: Exemple de situation à éviter.

Deuxième test : problème de densité

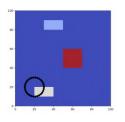
TIPE 2025

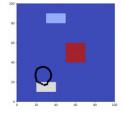
On a le second test suivant :

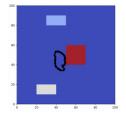
Introduction : le cas discret

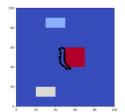
Le cas continu

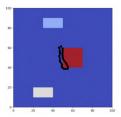
Méthode Gloutonne











Deuxième test : problème de densité

TIPE 2025

Introduction : le cas discret

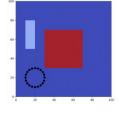
Le cas continu

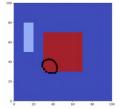
Méthode Gloutonne

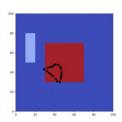
Annexe

Correction du problème : Calculer la densité initiale d_0 et l'écart autorisé $\varepsilon_d>0$ à cette densité pour qu'à chaque instant de la transition :

$$d \in [d_0 - \varepsilon_d, d_0 + \varepsilon_d]$$







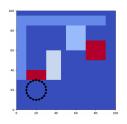
Troisième test : dans des conditions plus compliquées

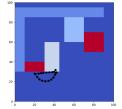
TIPE 2025

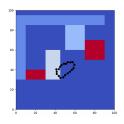
Introduction : le cas discret

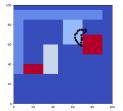
Le cas continu

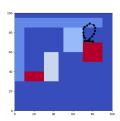
Méthode Gloutonne











TIPE 2025

Conservation de la masse entre une forme ${\cal A}$ et une forme ${\cal B}$ du nuage :

Introduction : le cas discret

Le cas continu

Méthode Gloutonne

Annexe

$$\int_E \mu(x) dx = \boxed{\int_A \mu(x) dx = 1 = \int_B \nu(x) dx} = \int_E \nu(x) dx$$

Hypothèse forte : répartition uniforme de la matière¹,

Figure 19: Ouragan Katrina, Fox 8

¹cas d'une sous-surface

Méthode gloutonne Conservation de la masse

TIPE 2025

Introduction : le cas discret

Le cas continu

Méthode Gloutonne

Annexe

Si $x \in A$,

$$\mu(x) = \ \mathsf{cte} \ = \frac{1}{\mathcal{A}(A)}$$

où $\mathcal{A}(A)$ est l'aire décrite par A.

Sinon,

$$\mu(x) = \text{cte } = 0$$

Calcul de l'aire d'un nuage : méthode de Monte-Carlo

TIPE 2025

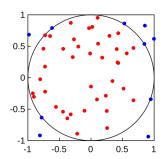
On utilise pour cela la méthode de *Monte Carlo* :

Introduction : le cas discret

Le cas continu

Méthode Gloutonne

Annexe



À l'aide d'une loi uniforme, on lance N points sur une surface S comprenant notre nuage, on récupère alors le pourcentage p de points dans le nuage, l'aire du nuage est donc approximativement de $p \times S$.

Calcul de l'aire d'un nuage : méthode de Monte-Carlo

TIPE 2025

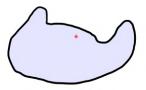
Introduction : le cas discret

Le cas continu

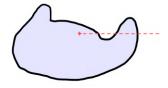
Méthode Gloutonne

Annexe

Appartenance au nuage :



(a) Point dans le nuage.



(b) Calcul d'appartenance.

 \Rightarrow Calcul en temps constant : $\mathcal{O}(1)$.

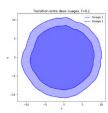
Calcul de l'aire d'un nuage : méthode de Monte-Carlo

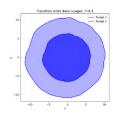
TIPE 2025

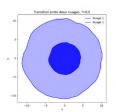
Introduction : le cas discret

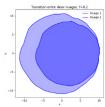
Le cas continu

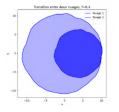
Méthode Gloutonne

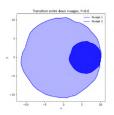












Calcul de l'aire d'un nuage : méthode de Monte-Carlo

TIPE 2025

Complexité :

 $\mathcal{O}(N)$

Introduction : le cas discret

Le cas continu

Méthode Gloutonne

Annexe

avec N le nombre de points utilisés.

Pour le nuage de la figure 6, avec 3000 points :

Aire estimée (m^2)	Temps requis (s)
289.06	0.0816
289.58	0.0799
288.61	0.0783
289.35	0.0781
289.22	0.0780

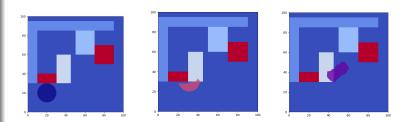
[⇒] Moins d'un dixième de seconde pour calculer l'aire.

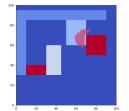
TIPE 2025

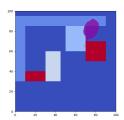
Introduction : le cas discret

Le cas continu

Méthode Gloutonne







TIPE 2025

Introduction :

Le cas continu

Méthode Gloutonne

```
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from scipy.ndimage import map_coordinates
# Creation d'une carte des couts (ex : 100x100 avec differentes zones)
def generer_carte_cout(taille=100):
    carte = np.ones((taille, taille)) # Fond facile (valeur 1)
    # Rectangle central - difficulte movenne
    carte[30:45. 30:60] = 4
    # Rectangle easy - difficulte legere
    carte[0:10,30:95] = 2
    carte[10:90. 85:95] = 2
    # Rectangle en bas a gauche - difficulte elevee
    carte[10:30. 30:40] = 8
    carte[70:90,50:70]=8
    # Rectangle difficulte moyenne
    carte [50:70,60:85]=3
    return carte
```


TIPE 2025

Introduction :

Le cas continu

Méthode Gloutonne

```
# Generer un nuage de points dans l'espace
def generer nuage(nb points, centre=(50, 50), ravon=10);
    angles = np.linspace(0, 2 * np.pi, nb_points, endpoint=False)
    points = [(centre[0] + rayon * np.cos(a), centre[1] + rayon * np.sin(a))
          for a in angles]
    return np.array(points)
# Fonction de cout en fonction de la carte des couts
def fonction cout(point, carte):
   x, y = point
    return map_coordinates(carte, [[x], [y]], order=1)[0]
# Calcul du gradient du cout
def calculer_gradient(point, carte, epsilon=1.0):
    x, y = point
    grad_x = (fonction_cout((x + epsilon, y), carte) - fonction_cout((x -
         epsilon, v), carte)) / (2 * epsilon)
    grad_y = (fonction_cout((x, y + epsilon), carte) - fonction_cout((x, y -
          epsilon), carte)) / (2 * epsilon)
    return np.array([grad_x, grad_y])
```


TIPE 2025

Introduction : le cas discret

Le cas continu

Méthode Gloutonne

```
# Movenner les ecarts
def regulariser positions(points, facteur seuil=1.5):
    # Ajuste les positions des points pour eviter qu'ils ne se dispersent
         trop.
    nouveaux_points = points.copy()
    nb_points = len(nouveaux_points)
    # Calcul des distances entre tous les points voisins
    distances = [np.linalg.norm(nouveaux_points[i] - nouveaux_points[i-1])
         for i in range(nb points)]
    distance movenne = np.mean(distances)
    for i in range(nb points):
        i = (i + 1) % nb points # Voisin suivant (avec boucle)
        d = np.linalg.norm(nouveaux_points[i] - nouveaux_points[i])
        if d > facteur seuil * distance movenne: # Trop eloignes
            correction = (nouveaux_points[i] + nouveaux_points[i]) / 2 #
                 Movenne entre les deux
            nouveaux points[i] = correction # Ajustement
    return np.array(nouveaux_points)
```


TIPE 2025

Introduction :

Le cas continu

Méthode Gloutonne

Annexe

```
# Deplacement glouton en minimisant le cout total
def calculer_deplacement(A, B, carte, pas=1.0, force_repulsion=0.1,
     rayon_repulsion=10.0):
    nouveaux A = []
    nb points = len(A)
    for i, ((xA, yA), (xB, yB)) in enumerate(zip(A, B)):
        direction = np.array([xB - xA, yB - yA])
        direction /= np.linalg.norm(direction) + 1e-8 # Normalisation
        gradient = calculer_gradient((xA, yA), carte) # Gradient du cout
        direction -= 0.5 * gradient
        # Repulsion
        repulsion = np.zeros(2)
        for j, (xj, vj) in enumerate(A):
            if i != i:
                vecteur = np.array([xA - xj, yA - yj])
                distance = np.linalg.norm(vecteur)
                if 0 < distance < rayon repulsion:
                    # Correction de la force de repulsion
                    repulsion += vecteur / (distance ** 2 + 1e-8)
        direction += force_repulsion * repulsion
        direction /= np.linalg.norm(direction) + 1e-8 # Renormalisation
             finale
        nouveaux_A.append((xA + pas * direction[0], yA + pas * direction[1])
    # On conserve la regularisation pour la cohesion
```

return regulariser_positions(np.array(nouveaux_A))

TIPE 2025

Introduction :

Le cas continu

Méthode Gloutonne

```
# Simulation complete du transport
def simulation_transport(A, B, carte, iterations=100, pas=1.0):
    historique = [A]
    points = A
    for in range(iterations):
        points = calculer_deplacement(points, B, carte, pas)
        historique.append(points)
    return historique
# Parametres et generation des donnees
nb points = 20
carte_cout = generer_carte_cout()
A = generer_nuage(nb_points, centre=(20, 20))
B = generer nuage(nb points, centre=(80, 80))
historique = simulation transport(A. B. carte cout)
# Animation
fig. ax = plt.subplots(figsize=(6, 6))
ax.imshow(carte_cout.T, cmap='coolwarm', origin='lower', extent=[0, 100, 0,
     1001)
points_plot, = ax.plot([], [], 'o-', color='black')
ax.set xlim(0, 100)
ax.set_vlim(0, 100)
plt.show()
```