TD 07

Lemme de pompage (hors programme)

MPI/MPI*, lycée Faidherbe

Formes normales

I.1 Grammaires réduites

Pour toute grammaire $G = (\Sigma, V, P, S)$ et pour $X \in V$, on note $G(X) = (\Sigma, V, P, X)$; c'est la grammaire obtenue en changeant la variable de départ.

On note alors $L_G(X)$ le langage engendré par G(X). En particulier $L(G) = L_G(S)$.

Une grammaire $G(\Sigma, V, P, S)$ est réduite si, pour toute variable $X \in V$, $L_G(X) \neq \emptyset$ et il existe une dérivation $S \stackrel{*}{\Longrightarrow} \alpha X \beta$ avec $\alpha, \beta \in (\Sigma \cup V)^*$. Une grammaire est donc réduite si toutes les variables sont utiles, elle interviennent dans au moins une dérivation possible d'un mot de L(G).

Exercice 1

Prouver que tout langage algébrique non vide est engendré par une grammaire réduite.

On peut formuler le résultat sous la forme

"Toute grammaire est faiblement équivalente à une grammaire réduite."

Grammaires propres

Dans une grammaire $G = (\Sigma, V, P, S)$, une variable X est annulable si $X \stackrel{*}{\Longrightarrow} \varepsilon$.

Exercice 2

Prouver que, pour tout langage algébrique L, il existe une grammaire $G = (\Sigma, V, P, S)$ qui ne contient aucune règle de la forme $X \to \varepsilon$ qui engendre $L \setminus \{\varepsilon\}$.

Un grammaire $G = (\Sigma, V, P, S)$ est propre si elle ne contient aucune règle de la forme $X \to \varepsilon$ ou $X \to Y \text{ avec } Y \in V.$

Exercice 3

Prouver que, si L est algébrique, il existe une grammaire propre qui engendre $L \setminus \{\varepsilon\}$.

Pour ajouter ε , il suffit d'ajouter la règle $S \to \varepsilon$.

I.3 Forme normale de Chomsky

Prouver que tout langage L ne contenant pas ε est engendré par une grammaire pour laquelle les règles de production sont de la forme $\bullet\ X\to X_1X_2\cdots X_p\ {\rm avec}\ X_i\in V\ {\rm pour\ tout}\ i,$

Une grammaire en forme normale de Chomsky ou grammaire quadratique est une grammaire (Σ, V, P, S) dont les règles de production sont de la forme

- $X \to YZ$ avec $Y, Z \in V \setminus \{S\}$,
- $X \to x \text{ avec } x \in \Sigma$,

Exercice 5

Prouver que tout langage L ne contenant pas ε est engendré par une grammaire en forme normale de Chomsky.

Exercice 6

Montrer que l'intersection d'un langage algébrique et d'un langage rationnel est algébrique. On pourra considérer une grammaire de Chomsky $G=(\Sigma,V,P,S)$ qui engendre le premier langage et un automate déterministe $Q=(\Sigma,\mathbb{S},\delta,s_0,T)$ qui reconnaît le second et créer une grammaire de Chomsky dont les variables sont de la forme X_s^t avec $X\in V$ et $s,t\in\mathbb{S}$.

II Lemme de pompage

On va ici énoncer un résultat qui s'apparente au lemme de l'étoile. La principale différence est qu'il impose une itération simultanée en deux endroits d'un mot généré.

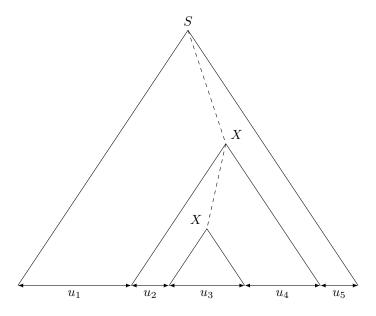
Exercice 7

Prouver que si $G = (\Sigma, V, P, S)$ est une grammaire en forme normale de Chomsky et si $u \in L(G)$ admet un arbre de dérivation de hauteur h alors $h \leq |u| \leq 2^{h-1}$.

Exercice 8

Prouver que si $G = (\Sigma, V, P, S)$ est une grammaire en forme normale de Chomsky et si $u \in L(G)$ vérifie $|u| \ge N = 2^{|V|}$ alors il existe une branche dans un arbre de dérivation de u contenant deux nœuds de même étiquette parmi les |V| + 1 derniers nœuds de la branche.

On a donc la situation suivante



Exercice 9

Avec les notations ci-dessus, prouver qu'on a $|u_2u_3u_4| \leq N$ et $u_2u_4 \neq \varepsilon$.

Exercice 10 - Lemme de pompage

En déduire que si L est algébrique, il existe un entier N tel que tout mot $u \in L$ avec $|u| \ge N$ peut s'écrire $u = u_1u_2u_3u_4u_5$ avec $|u_2u_3u_4| \le N$ et $u_2u_4 \ne \varepsilon$ et $u_1u_2^ku_3u_4^ku_5 \in L$ pour tout $k \in \mathbb{N}$.

Exercice 11 - Application

Prouver que $L_1 = \{a^n b^n c^n ; n \in \mathbb{N}\}$ et $L_2 = \{u \cdot v ; u, v \in \{a, b\}^*, |u| = |v[\}$ ne sont pas algébriques.