TD 1

Langages rationnels

MPI/MPI*, lycée Faidherbe

I Démonstrations du cours

Exercice 1 - Propriétés du produit

Prouver les propriétés suivantes.

- 1. Pour $p \leq |u|$ u admet un unique préfixe (resp. suffixe) de longueur p.
- 2. $(u \cdot v) \cdot w = u \cdot (v \cdot w)$ la loi est associative, on omettra les parenthèses dans les produits.
- 3. $|u \cdot v| = |u| + |v|$.
- 4. Si $u \cdot v = \varepsilon$ alors $u = v = \varepsilon$.
- 5. $u^n \cdot u^m = u^{n+m}$.
- 6. Si $u \cdot v = u \cdot v'$ alors v = v' (simplification à gauche).
- 7. Si $u \cdot v = u' \cdot v$ alors u = u' (simplification à droite).

Exercice 2 - Ordre lexicographique

Prouver que l'ordre lexicographique est une relation d'ordre.

Exercice 3 - Ordre total

Prouver que l'ordre lexicographique est une relation d'ordre total.

Exercice 4 - Propriétés de l'étoile

Prouver les propriétés suivantes

- 1. L^* est l'ensemble des produits de mots de L.
- 2. Si $L = \{w\}$ alors $L^* = \{w^n ; n \in \mathbb{N}\}.$
- 3. $\emptyset^* = \{\varepsilon\}^* = \{\varepsilon\}.$
- 4. Si L contient un mot non vide alors L^* est infini.

Exercice 5 - Caractérisation

 $\operatorname{Rat}(\Sigma)$ est le plus petit sous ensemble de $\mathcal{P}(\Sigma^*)$ contenant les langages élémentaires pour Σ et stable par produit, union et étoile (propriétés †).

Exercice 6 - Induction structurelle

Prouver que si une propriété P portant sur des langages est telle que

- $P(\emptyset)$, $P(\{\varepsilon\})$ et $P(\{a\})$ pour $a \in \Sigma$ sont vérifiées
- la vérité de $P(L_1)$ et $P(L_2)$ implique celle de $P(L_1 \cup L_2)$, $P(L_1 \cdot L_2)$ et $P(L_1^*)$

alors P(L) est vraie pour tout langage rationnel.

Exercice 7 - Première équivalence

Prouver que les langages rationnels sont les langages réguliers.

\mathbf{II} Langages

Exercice 8 - Exemples

Prouver les égalités de langages suivantes :

- $1. \ \emptyset \cdot L = L \cdot \emptyset = \emptyset.$
- 3. $\{u\} \cdot \{v\} = \{u \cdot v\}$. 4. $\Sigma^+ = \Sigma \cdot \Sigma^*$.
- 5. $\{a\} \cdot \{b, \varepsilon\} \cdot \{a, b\} = \{a^2, ab, aba, ab^2\}.$
- 6. l'ensemble des mots de Σ qui commencent par a est $\{a\} \cdot \Sigma^*$.
- 7. $\Sigma^* \cdot \{a\} \cdot \Sigma^*$ est le langage des mots contenant au moins une fois la lettre a.

Exercice 9 - Alphabet à une lettre

On considère $\Sigma = \{a\}$ et $L_k = \{a^{3n+k}, n \in \mathbb{N}\}$ pour $k \in \mathbb{N}$.

Déterminer $L_k \cap L_j$.

Déterminer $L_k \cdot L_i$.

Exercice 10 - Racine d'un langage

Pour un langage L, sa racine est $\sqrt{L} = \{u \in \Sigma / u \cdot u \in L\}.$

Déterminer $\sqrt{L_k}$ où $L_k = \{a^{3n+k}, n \in \mathbb{N}\}.$

Montrer que $\epsilon \in L$ si et seulement si $\epsilon \in \sqrt{L}$.

Exercice 11 - Carré d'un langage et langage des carrés

On a toujours $\{w \cdot w \; ; \; w \in L\} \subset L \cdot L$.

Pour quels langages a-t-on $L \cdot L = \{w \cdot w \; ; \; w \in L\}$?

Exercice 12 - Lemme d'Arden

A et B sont deux langages sur un même alphabet. On suppose que L vérifie $L = A \cdot L \cup B$.

- 1. Montrer que $A^* \cdot B \subset L$.
- 2. Montrer que si $\epsilon \notin A$ alors $L = A^* \cdot B$.
- 3. Si $\epsilon \in A$ montrer que les solutions sont les ensembles de la forme $A^* \cdot C$ avec $B \subset C$.

Exercice 13 - Code

Un code sur Σ est un langage L sur Σ tel que l'égalité $u_1 \cdot u_2 \cdots u_p = v_1 \cdot v_2 \cdots v_q$ avec $u_1, \ldots, u_p, v_1, \ldots, v_q$ dans L entraı̂ne p = q et $u_i = v_i$ pour tout i.

- 1. Déterminer les codes parmi les langages finis suivants :
 - $L_1 = \{ab, baa, abba, aabaa\},\$
 - $L_2 = \{b, ab, baa, abaa, aaaa\},$
 - $L_3 = \{aa, ab, aab, bba\},$
 - $L_4 = \{a, ba, bba, baab\}.$
- 2. Soit $u \in \Sigma^*$, montrer que $\{u\}$ est un code si et seulement si $u \neq \varepsilon$.
- 3. Soit u et v deux mots distincts; montrer que $\{u, v\}$ est un code si et seulement si $u \cdot v \neq v \cdot u$.
- 4. Soit L un langage ne contenant pas ϵ et tel qu'aucun mot de L ne soit préfixe d'un autre mot de L. Montrer que L est un code.

III Langages rationnels

Exercice 14 - Exemples de langages rationnels

- Prouver que l'ensemble des mots de longueur n au plus est rationnel.
- Prouver que l'ensemble des mots de longueur n au moins est rationnel.
- Prouver que l'ensemble des mots qui commencent et qui finissent par la même lettre est rationnel.

Exercice 15 - Langage des préfixes

L est un langage rationnel sur un alphabet Σ .

Prouver que le langage des mots préfixes des mots de L est rationnel.

Exercice 16 - Élimination d'une lettre

L est un langage rationnel sur un alphabet Σ et a est une lettre de Σ .

Prouver que chacun des langages suivants est rationnel.

- L'ensemble des mots de L qui ne contiennent pas a.
- L'ensemble des mots de L qui contiennent a.
- L'ensemble des mots obtenus en ôtant le premier a dans les mots de L contenant a.
- L'ensemble des mots obtenus en enlevant un a dans les mots de L contenant a.

IV Expressions régulières

Exercice 17 - 2 lettres

Donner une expression régulière dénotant l'ensemble L des mots sur l'alphabet $\Sigma = \{a, b\}$ tels que deux lettres consécutives soient toujours distinctes.

Même question si on impose de plus que les mots de L sont non vides.

Exercice 18 - 3 lettres

Donner une expression régulière dénotant l'ensemble L des mots sur l'alphabet $\Sigma = \{a, b, c\}$ tels que deux lettres consécutives soient toujours distinctes.

Exercice 19 - Complémentaire

Donner une représentation régulière dénotant \overline{L} avec L dénoté par (a|b)*aba(a|b)*.

Exercice 20 - Expressions équivalentes

- Montrer que (a|b)*, (a*b)*a*, a*|a*b(a|b)* et b*(aa*bb*)*a* sont équivalentes.
- Prouver que $(r_1r_2)*$ et $\epsilon|r_1(r_2r_1)*r_2$ sont équivalentes.

Exercice 21 - Détermination d'expressions régulières

Déterminer une expression régulière dénotant les langages suivants.

- L'ensemble des mots qui contiennent au moins un a,
- L'ensemble des mots qui contiennent au plus un a,
- L'ensemble des mots tels que toute série de a soit de longueur paire,
- L'ensemble des mots dont la longueur n'est pas divisible par 3,
- L'ensemble des mots tels que deux lettres consécutives soient toujours distinctes,
- L'ensemble des mots contenant au moins un a et un b.

Exercice 22 - Application du lemme d'Arden

Sur $\Sigma = \{a, b\}$, on note L_1 le langage des mots ayant un nombre pair de b et L_2 le langage des mots ayant un nombre impair de b. Écrire deux relations linéaires liant L_1 et L_2 puis utiliser le lemme d'Arden pour donner des expression rationnelles les caractérisant. expression.

Parmi les langages élémentaires nous avons ajouté \emptyset et $\{\varepsilon\}$. Nous allons voir qu'en fait ils servent uniquement à fabriquer l'ensemble vide ou, dans certains cas, à ajouter le mot vide.

Exercice 23 - Élimination de zéro

Montrer que toute expression régulière est équivalente à $\mathcal O$ ou à une expression régulière ne contenant pas $\mathcal O$.

Une expression régulière est appelée $r\acute{e}duite$ si elle ne contient ni \varnothing ni ϵ .

Exercice 24 - Réduction

Prouver que tout langage rationnel est dénoté par une expression régulière de la forme \emptyset , ϵ , \mathbf{r} ou $\mathbf{r} | \epsilon$ avec \mathbf{r} réduite.

V Langages locaux

Exercice 25 - Exemples

Prouver que les langages élémentaires sont locaux.

Exercice 26 - Exemples

Prouver que les langages $\{(ab)^n ; n \in \mathbb{N}\}, \{a^nb ; n \in \mathbb{N}^*\} \text{ et } \{a^nb^p ; n, p \in \mathbb{N}\} \text{ sont locaux.}$

Exercice 27

Prouver que l'étoile d'un langage local sur Σ est un langage local.

Exercice 28

Prouver que l'intersection de deux langages locaux sur Σ est un langage local.

Exercice 29

Un langage L sur l'alphabet Σ est local si et seulement si il existe $P \subset \Sigma$, $S \subset \Sigma$ et $N \subset \Sigma^2$ tels que $L \setminus \{\varepsilon\} = (P \cdot \Sigma^* \cap \Sigma^* \cdot S) \setminus \Sigma^* \cdot N \cdot \Sigma^*$.

Exercice 30

Donner un exemple de langage rationnel qui n'est pas local.

Exercice 31

L'alphabet Σ peut s'écrire sous la forme avec $\Sigma = \Sigma_1 \cup \Sigma_2$ avec $\Sigma_1 \cap \Sigma_2 = \emptyset$. L_1 est un langage local sur Σ_1 et L_2 est un langage local sur Σ_2 .

- 1. Montrer que $L_1 \cup L_2$ est un langage local sur Σ .
- 2. Montrer que $L_1 \cdot L_2$ est un langage local sur Σ .
- 3. En déduire que si \mathbf{r} est une expression régulière linéaire alors $L[\mathbf{r}]$ est un langage local.