TD 04

Automates

MPI/MPI*, lycée Faidherbe

I Automates déterministes

Exercice 1 Solution page 3

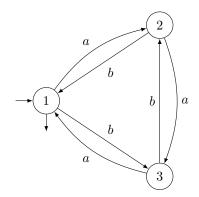
 Σ désigne l'alphabet $\{a,b\}$ et L l'ensemble des mots qui contiennent au moins 3 occurrences de la lettre $a: L = \{u \in \Sigma^*/|u|_a \geqslant 3\}$.

Donner une expression rationnelle dénotant L.

Décrire un automate fini reconnaissant L.

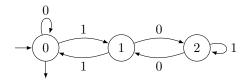
Exercice 2 Solution page 3

Quel est le langage reconnu par l'automate suivant?



Exercice 3 Solution page 3

Prouver que l'automate suivant teste la divisibilité par trois d'un nombre exprimé en binaire.



Que se passe-t-il si on change l'état final?

Exercice 4 - Petits automates

Solution page 3

Énumérer tous les automates déterministes complets à 2 états sur $\Sigma = \{a, b\}$ et donner une expression régulière dénotant la langage reconnu.

Exercice 5 - Alphabet à une lettre

Solution page 5

Déterminez la forme des automates déterministes sur un alphabet à une lettre.

En déduire la structure des langages reconnaissables sur un alphabet à une lettre.

Exercice 6

Solution page 5

À quelle condition sur le langage reconnu un automate complet n'a-t-il que des états co-accessibles?

Exercice 7 Solution page 5

Un automate déterministe est local si, pour tout $x \in \Sigma$, $\delta(s,x)$ est indépendant de s.

Prouver que le langage reconnu par un automate local est un langage local.

TT Automates non déterministes

Exercice 8 Solution page 6

Construire un automate reconnaissant tous les mots qui finissent par aba.

Déterminiser l'automate obtenu.

Exercice 9 - Exemple avant l'exercice suivant

Solution page 6

Donner un automate déterministe qui reconnaît le langage sur $\Sigma = \{a, b\}$ des mots de 3 lettres au moins qui finissent par a.u avec u de longueur 2.

Exercice 10 - Le pire peut arriver

Solution page 6

Donner un automate (non-déterministe) à n+1 états qui reconnaît L, le langage sur $\Sigma = \{a,b\}$ des mots de n lettres au moins qui finissent par a.u avec u de longueur n-1.

Prouver que tout automate déterministe qui reconnaît L admet au moins 2^n états.

Exercice 11 - Langage transposé

Solution page 7

 $Q = (\Sigma, S, \Delta, I, T)$ est un automate non déterministe.

On définit $Q^T = (\Sigma, S, \Delta^T, T, I)$ avec Δ^T tel que $G_{\Delta^T} = \{(s, x, s') ; (s', x, s) \in G_{\Delta}\}$. Q^T est l'automate obtenu en inversant les transitions.

Pour tout mot $u = u_1 u_2 \cdots u_n$ le miroir de u est $u^T = u_n u_{n-1} \cdots u_1$.

Pour tout langage L le le langage miroir de L, L^T , est $L^T = \{u^T ; u \in L\}$.

Prouver que $L(Q^T) = (L(Q))^T$.

Exercice 12 - Le barman aveugle

Solution page 7

On dispose de 4 jetons placés en carré, chacun ayant une face noire et une face blanche. Un joueur (le barman) a les yeux bandés. Son but est de retourner les 4 jetons sur la même couleur (dès que les 4 jetons sont retournés la partie s'arrête et le barman a gagné). Pour cela, il peut retourner à chaque tour 1, 2 ou 3 jetons. Un autre joueur perturbe le jeu en tournant le plateau sur lequel reposent les jetons d'un quart de tour, d'un demi-tour ou de trois quarts de tour entre chaque opération du barman.

Montrer que le barman a une stratégie gagnante, c'est-à-dire que quoi que fasse celui qui tourne le plateau, le barman gagnera.

III Utilisation des automates

Exercice 13 Solution page 8

Si L est rationnel, prouver que $u^{-1}L = \{v \in \Sigma^* : u \cdot v \in L\}$ est rationnel.

Exercice 14 Solution page 8

Soit $L = \{u \in \{a, b\}^* ; |u|_a > |u|_b\}$. Prouver que L n'est pas rationnel.

Solution page 8

Soit $L = \{a^p : p \text{ premier}\}$. Prouver que L n'est pas rationnel.

Solution page 8 Exercice 16

On utilise les notations de l'exercice 11 Soit $L = \{u \cdot u^T ; \}$. Prouver que L n'est pas rationnel.

Exercice 17 Solution page 8

Si L est rationnel, prouver que $\sqrt{L} = \{u \in \Sigma^* ; u \cdot u \in L\}$ est rationnel.

Exercice 18 Solution page 9

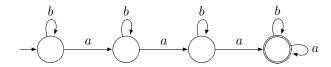
Soient L un langage rationnel et Q un automate déterministe le reconnaissant.

Peut-on déterminer si L est vide, fini ou infini?

Solutions

Exercice 1

L est dénoté par (b*.a).(b*.a).(b*.a).(a+b)* est reconnu par



Exercice 2

Les mots pour lesquels $|u|_a \equiv |u|_b$ modulo 3.

Exercice 3

Si on veut calculer le reste de la division par 3 d'un nombre écrit en binaire, à chaque nouveau bit lu le nombre est multiplié par 2 et on ajoute le bit :

Reste	0	1	2						
0	0	2	1	0.n = i est donc équivalent à	n	mod	3	=	i.
1	1	0	2						

Exercice 4

On note $S = \{0, 1\}$, il y a deux choix pour chaque transition $\delta(0, a), \delta(0, b), \delta(1, a), \delta(1, b) \in \{0, 1\}$ donc il y a 16 machines possibles.

On choisit 0 pour état initial; il reste à choisir T.

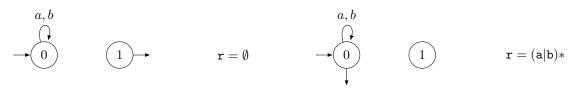
Si $T = \emptyset$, le langage reconnu est dénoté par \emptyset ,

Si $T = \{0,1\}$, le langage reconnu est dénoté par $(\mathtt{a}|\mathtt{b})*$.

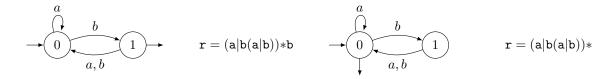
 $T = \{0\}$ ou $T = \{1\}$ donnent deux langages complémentaires.

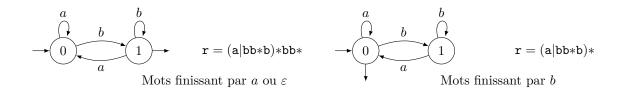
Cas $\delta(0, a) = 0$, $\delta(0, b) = 0$

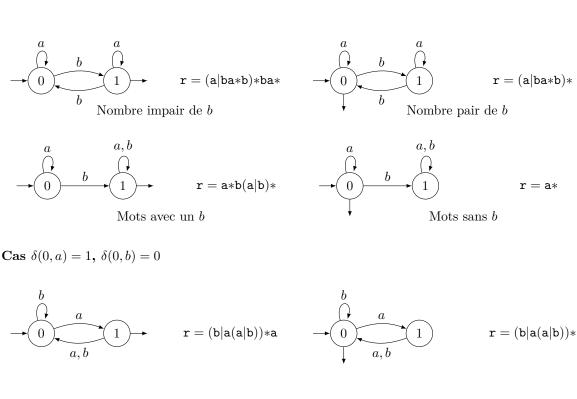
Dans ce cas 1 n'est pas accessible, le langage reconnu ne dépend pas des transitions issues de 1.

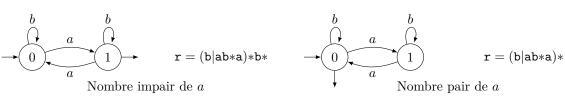


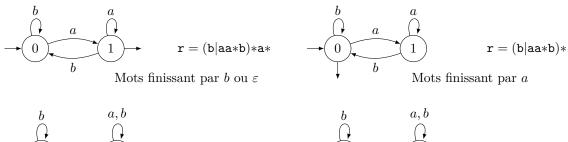
Cas $\delta(0, a) = 0$, $\delta(0, b) = 1$

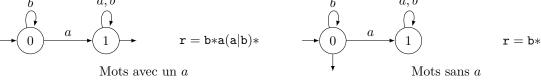












Cas $\delta(0, a) = 1$, $\delta(0, b) = 1$

Exercice 5

On part de l'état initial, noté 1, et on numérote les états tant que l'image par δ est un nouvel état. Le dernier état accessible est envoyé dans un état déjà visité.

$$1 \xrightarrow{a} 2 \xrightarrow{a} \cdots \xrightarrow{a} n \xrightarrow{a} p$$
 avec $1 \leq p \leq n$

On obtient une forme de poêle.

Si les états finaux sont $f_1 < f_2 < \cdots < f_r$ avec $f_s alors le langage reconnu est <math>\{a^n \; ; \; n \in A\}$ avec, en notant T = n - p + 1 et $A = \{f_1, f_2, \ldots, f_s\} \cup \{f_{s+1} + Tn, f_{s+2} + Tn, \ldots, f_r + Tn \; ; \; n \in \mathbb{N}\}.$

Exercice 6

- Si tous les états sont co-accessibles alors, pour tout u, $\delta^*(s_0, u)$ est co-accessible donc il existe v tel que $\delta^*(\delta^*(s_0, u), v) \in T$ donc u.v est un mot reconnu. On a prouvé que tout mot est un préfixe d'un mot reconnu.
- On suppose que tout mot est un préfixe d'un mot reconnu. Pour tout état accessible s, on peut écrire $s = \delta^*(s_0, u)$. u est un préfixe d'un mot reconnu u', u' = u.v. On a $\delta^*(s_0, u') \in T$ donc $\delta^*(s, v) = \delta^*(\delta^*(s_0, u), v) \in T$ Tout état accessible est donc co-accessible.

Exercice 7

 $Q = (\Sigma, S, \delta, s_0, T)$ est un automate local. On définit

- $P = \{x \in \Sigma ; \delta(s_0, x) \text{ est défini}\},$
- $S = \{x \in \Sigma ; \exists s \in S, \delta(s, x) \in T\},\$
- $T = \{xy \in \Sigma^2 ; \exists s, t \in S, \delta(s, x) = t \text{ et } \delta(t, y) \text{ est défini} \}.$

On note L le langage local défini par (P, S, F) qui contient ou non ε selon que s_0 est final ou non.

- 1. Par construction ε appartient à L et L(Q) ou a aucun des deux.
- 2. Si un mot non vide est reconnu par Q alors sa première lettre est dans P, sa dernière lettre est dans S et ses facteurs (s'il y en a) sont dans F, par construction. Ainsi $L(Q) \setminus \{\varepsilon\}$ est inclus dans le, noté L.

3. Inversement supposons que u appartienne au langage local défini par (P, S, F) avec $u \neq \varepsilon$. On écrit $u = x_1 x_2 \cdots x_n$.

 $x_1 \in P$ donc $\delta(s_0, x_1)$ est défini : on note $s_1 = \delta(s_0, x_1).$

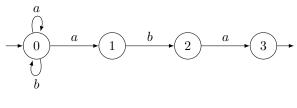
 $x_1x_2 \in F$ donc il existe une transition $s \xrightarrow{x_1} t \xrightarrow{x_2} r$. On a donc $t = \delta(s, x_1)$ et $r = \delta(t, x_2)$.

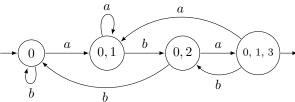
Comme $\delta(s,x_1)$ et $\delta(s_0,x_1)$ sont définis dans l'automate local, ils sont égaux donc $t=s_1$ et on peut définir $s_2=r=\delta(s_1,x_2)$.

On peut ainsi définir un chemin dans Q d'étiquette u qui aboutit dans T car on a $x_n \in S$. Ainsi u est reconnu par $Q: L \setminus \{\varepsilon\} \subset L(Q)$.

On a donc L = L(Q).

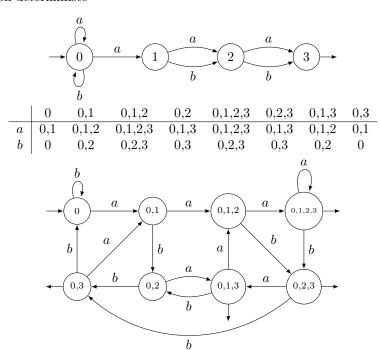
Exercice 8



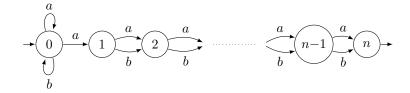


Exercice 9

Un automate non déterministe



Exercice 10



Soit $Q = (\Sigma, S, \delta, s_0, T)$ un automate déterministe qui reconnaît Σ .

On définit φ de Σ^n vers S par $\varphi(u) = \delta^*(s_0, u)$.

On montre que φ est injective. On suppose qu'on a $u \neq u'$ avec $u, u' \in \Sigma^n$.

On considère la première position k telle que $u_k \neq u_k'$: on a $1 \leqslant k \leqslant n, u = v \cdot a \cdot w, u' = v \cdot b \cdot w'$ (ou l'inverse) avec |v| = k - 1 et |w| = |w'| = n - k. On a $u \cdot a^{k-1} = v \cdot a \cdot (w \cdot a^{k-1}) \in L$ car $|w \cdot a^{k-1}| = n - 1$ mais $u' \cdot a^{k-1} \notin L$. Ainsi $\varphi(u) \cdot a^{k-1} = \delta^*(s_0, u \cdot a^{k-1}) \in T$ mais $\varphi(u') \cdot a^{k-1} = \delta^*(s_0, u' \cdot a^{k-1}) \notin T$: Or $\varphi(u) \cdot a^{k-1} \neq \varphi(u') \cdot a^{k-1}$ implique $\varphi(u) \neq \varphi(u')$ pour $u \neq u' : \varphi$ est injective.

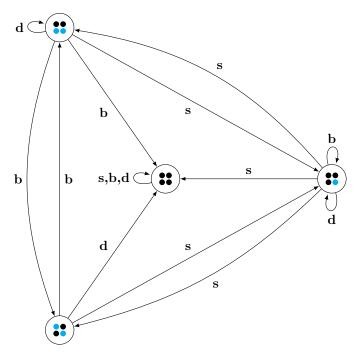
On a une injection de Σ^n dans S donc $|S| \ge |\Sigma^n| = 2^n$.

Exercice 11

Les calculs dans Q^T sont les inverses des calculs dans Q.

Exercice 12

Voici un automate décrivant les mouvements :



- s (pour singleton) consiste à retourner 1 jeton (ou 3 jetons)
- **b** (pour bord) consiste à retourner 2 jeton adjacents
- d (pour diagonale) consiste à retourner 2 jeton en diagonale.
- Depuis l'état de 4 couleurs identiques les transformations renvoie au même état car on est dans un état gagnant.

On note

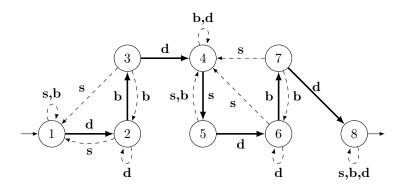
- T l'état dans lequel tous les jetons sont de la même couleur,
- U l'état dans lequel un jeton a une couleur et les 3 autres ont l'autre couleur,

- B l'état dans lequel 2 jetons côte-à-côte ont une couleur et les 2 autres ont l'autre couleur,
- D l'état dans lequel 2 jetons en diagonale ont une couleur et les 2 autres ont l'autre couleur.

La déterminisation, avec T, U, P et D états initiaux, donne

	U, B, D, T	U, B, T	U, D, T	U,T	B, D, T	B,T	D,T	T
s	U, B, D, T	U, B, D, T	U, B, D, T	B, D, T	U,T	U,T	U,T	T
b	U, B, D, T	U, D, T	U, B, T	U,T	U, T	D,T	B,T	$\mid T \mid$
d	U, B, T	U, B, T	U,T	U, T	B, T	B,T	T	$\mid T \mid$
état	1	2	3	4	5	6	7	8

L'état final qui nous intéresse est $\{T\}$: on veut être certain d'arriver.



La suite de mouvement **dbdsdbd** permet d'arriver au résultat.

Exercice 13

Si $Q = (\Sigma, S, \delta, s_0, T)$ est un automate déterministe complet qui reconnaît L, on pose $s = \delta^*(s_0, u)$. $\left[v \in u^{-1}L\right] \iff \left[uv \in L\right] \iff \left[\delta^*(s_0, uv) \in T\right] \iff \left[\delta^*(s_0, u), v\right) \in T\right] \iff \left[\delta^*(s, v) \in T\right]$ Ainsi $u^{-1}L$ est le langage reconnu par $(\Sigma, S, \delta, s_0, T)$: L est rationnel.

Exercice 14

S'il était rationnel, le lemme de l'étoile donnerait une borne N.

Pour le mot $u=a^Nb^{N-1}$ on doit avoir une décomposition $u=u_1\cdot u_2\cdot u_3$ avec

- $|u_1 \cdot u_2| \leq N$ donc $u_1 = a^p$, $u_2 = a^q$ et $u_3 = a^{N-p-q}b^{N-1}$,
- $u_2 \neq \varepsilon \text{ donc } q \geqslant 1$,
- $u_1 \cdot u_2^k \cdot u_3 \in L$ pour tout $k \in \mathbb{N}$

Pour k=0 cela donne $u_1\cdot u_3=a^{N-q}b^{N-1}\in L$ ce qui est impossible car $N-q\leqslant N-1$. L n'est pas rationnel.

Exercice 15

S'il était rationnel, le lemme de l'étoile donnerait une borne N.

Pour le mot $u = a^p$ avec $p \ge N$ on doit avoir une décomposition $u = u_1 \cdot u_2 \cdot u_3$ avec $u_1 = a^m$, $u_2=a^n$ et $u_3=a^q,\ p+q\leqslant N,\ q\geqslant 1$ et m+n+q=p. De plus $u_1\cdot u_2^k\cdot u_3\in L,$ c'est-à-dire $a^{p+(k-1)n}\in L$ pour tout k.

Pour k = p + 1 on aboutit à $a^{p.(1+q)} \in L$ avec p.(n+1) non premier, impossible. L n'est pas rationnel.

Exercice 16

S'il était rationnel, le lemme de l'étoile donnerait une borne N.

Pour le mot $u=a^Nb\cdot ba^N$ on doit avoir une décomposition $u=u_1\cdot u_2\cdot u_3$ avec $u_1=a^p,\ u_2=a^q$ et $u_3=a^{N-p-q}b^2a^N$ et $u_1\cdot u_2^k\cdot u_3\in L$, c'est-à-dire $a^{N+(k-1)qb^2a^N}\in L$ ce qui est faux pour $k\neq 1$. L n'est pas rationnel.

Exercice 17

On considère un automate déterministe $Q=(\Sigma,S,\delta,s_0,T)$ qui reconnaît L. $u\in\sqrt{L}\iff\delta^*(s_0,uu)\in T\iff\delta^*\left(\delta^*(s_0,u),u\right)\in T.$ En nommant $\delta^*(s_0,u)=s$ on a $u\in\sqrt{L}\iff(\exists s\in S\ ;\ \delta^*(s_0,u)=s$ et $\delta^*(s,u)\in T)$. On note L_s le langage reconnu par (Σ,S,δ,s,T) et L^s le langage reconnu par $(\Sigma,S,\delta,s_0,\{s\})$. L'équivalence devient $u\in\sqrt{L}\iff(\exists s\in S\ ;\ u\in L^s$ et $u\in L_s)$. Ainsi $\sqrt{L}=\bigcup_{s\in S}L^s\cap L_s$ est rationnel car L_s et L^s sont rationnels.

Exercice 18