Automate minimal

MPI/MPI*, lycée Faidherbe

I Langages dérivés

On suppose que $Q = (\Sigma, S, \delta, s_0, T)$ est un automate déterministe complet qui reconnaît L. Pour tout $s \in S$ on définit l'automate $Q_s = (\Sigma, S, \delta, s_0, T)$ et $L_s(Q)$ le langage reconnu par Q_s , appelé langage à droite de s.

Exercice 1 Solution page 3

Pour $u \in \Sigma^*$, on pose $s = \delta^*(s_0, u)$; montrer que $L_s(Q) = \{v \in \Sigma^* ; u \cdot v \in L\} = u^{-1}L$.

Les langages de la forme $u^{-1}L$ sont les **langages dérivés** de L.

Exercice 2 Solution page 3

Prouver qu'un langage rationnel admet au plus |Q| langages dérivés.

Exercice 3 Solution page 3

Prouver que $v^{-1}.(u^{-1}.L) = (u.v)^{-1}.L$.

On suppose maintenant que le langage L sur l'alphabet Σ admet un nombre fini de langages dérivés. On définit l'automate $Q_L = (\Sigma, \Lambda, \delta_L, L, \Lambda_T)$ où

- Λ est l'ensemble des résiduels de L, il contient $L = \varepsilon^{-1} L$,
- Λ_T est l'ensemble des résiduels contenant ε ,
- $\delta_L(\lambda, x) = x^{-1}\lambda$ pour $x \in \Sigma$ et pour tout résiduel λ .

L'exercice 2 signifie que tout automate reconnaissant L a au moins $|\Lambda|$ états.

Exercice 4 Solution page 3

Prouver que Q_L reconnaît L.

On a donc prouvé

- 1. L'est rationnel si et seulement si il admet un nombre fini de langages dérivés
- 2. il existe un automate avec le nombre minimal d'états, $|\Lambda|$.

Définition 1 : automates équivalents

Deux automates sur un même langage Σ , $Q = (\Sigma, S, \delta, s_0, T)$ et $Q' = (\Sigma, S', \delta', s'_0, T')$, sont équivalents s'il existe une bijection p de S vers S' telle que

- $p(s_0) = s'_0$,
- p(T) = T' et
- $\delta'(p(s), x) = p(\delta(s, x))$ pour tout $s \in S$ et pour tout $x \in \Sigma$.

p est un **isomorphisme** de Q vers Q'.

Exercice 5 Solution page 3

Province que di un outernate déterministe complet $O = (\sum S, \delta, e, T)$ à |A| étate reconnect I

Prouver que si un automate déterministe complet $Q = (\Sigma, S, \delta, s_0, T)$ à $|\Lambda|$ états reconnaît L alors il est équivalent à Q_L .

\mathbf{II} Algorithme de Brzozowski

Si $Q = (\Sigma, S, \Delta, I, T)$ est un automate non-déterministe sans transition spontanée, on note

- d(Q) le déterminisé émondé de Q,
- $r(Q) = (\Sigma, S, \Delta^{-1}, T, I)$ avec $\Delta^{-1} = \{(t, x, s) ; (s, x, t) \in \Delta\}$ le transposé de Q, On le nomme aussi automate miroir. On remarque qu'on a r(r(Q)) = Q.
- $L^{s}(Q)$ le langage reconnu par $(\Sigma, S, \Delta, I, \{s\})$, le langage à gauche de s,
- $L_s(Q)$ le langage reconnu par $(\Sigma, S, \Delta, \{s\}, T)$, le langage à droite de s.

Pour tout mot $u = x_1 x_2 \cdots x_p$, le transposé (ou miroir) de u est $u^{\mathsf{T}} = x_p x_{p-1} \cdots x_1$. Le transposé d'un langage L est le langage $[{}^{\mathsf{T}}L]$ des transposés des mots de L : $[^{\mathsf{T}}L] = \{u^{\mathsf{T}} \; ; \; u \in L\}.$ On remarque qu'on a $[L^{\mathsf{T}}]^{\mathsf{T}} = L$

Exercice 6

Solution page 3

Montrer que r(Q) reconnaît $[L(Q)]^{\mathsf{T}}$.

Exercice 7

Solution page 3

Montrer que $L_s(r(Q)) = [L^s(Q)]^\mathsf{T}$ et $L^s(r(Q)) = [L_s(Q)]^\mathsf{T}$.

Solution page 3

Exercice 8 Montrer que si $A \subset S$ est un état de d(Q) alors $\left[L_A(d(Q))\right]^{\mathsf{T}} = \bigcup_{s \in A} L^s(Q)$.

Solution page 4

Montrer que Q est déterministe si et seulement si I est un singleton et $L^s(Q) \cap L^t(Q) = \emptyset$ pour toute paire d'états distincts : $s \neq t$. On suppose que tous les états sont accessibles.

Solution page 4

Prouver qu'un automate déterministe complet et émondé Q est minimal si et seulement si $L_s(Q) \neq L_t(Q)$ pour toute paire d'états distincts : $s \neq t$.

Solution page 4

Montrer que si Q est déterministe complet émondé alors d(r(Q)) est un automate minimal.

Exercice 12

Solution page 4

Montrer que $d\left(r\left(d\left(r(Q)\right)\right)\right)$ est un automate minimal pour L(Q).

Solutions

Exercice 1

$$\begin{bmatrix} v \in L_s(Q) \end{bmatrix} \iff \begin{bmatrix} \delta^*(s,v) \in T \end{bmatrix} \iff \begin{bmatrix} \delta^*(\delta^*(s_0,u),v) \in T \end{bmatrix} \iff \begin{bmatrix} \delta^*(s_0,u \cdot v) \in T \end{bmatrix}$$
$$\iff \begin{bmatrix} u \cdot v \in L \end{bmatrix} \iff \begin{bmatrix} v \in u^{-1}L \end{bmatrix}$$

Exercice 2

À tout état accessible s de Q on associe $L_s(Q)$ qui est un langage dérivé de L.

Tout langage dérivé $u^{-1}L$ est de la forme $L_s(Q)$ pour $s = \delta^*(s_0, u)$.

Ainsi $s \mapsto L_s(Q)$ est une surjection depuis l'ensemble des états accessibles vers l'ensemble des langages dérivés d'où la majoration du cardinal.

Exercice 3

$$w \in v^{-1}.(u^{-1}.L) \iff v.w \in u^{-1}.L \iff u.(v.w) \in L \iff (u.v).w \in L \iff w \in (u.v)^{-1}.L.$$

Exercice 4

Par récurrence sur |u| on montre que $\delta_L^*(\lambda, u) = u^{-1}.\lambda$ pour tout $\lambda \in \Lambda$.

Ainsi $u \in L(Q_L) \iff \delta_L^*(L, u) \in \Lambda_T \iff \varepsilon \in u^{-1}L \iff u \in L.$

Exercice 5

Si l'automate a le nombre minimal d'états alors tous ses états sont accessibles car, sinon, l'automate émondé contiendrait strictement moins d'états en restant déterministe complet.

Dans la démonstration de l'exercice 2, on a défini une application $s \mapsto u^{-1}L$ pour $s = \delta^*(s_0, u)$ dont on a prouvé qu'elle était surjective. On la note π . Comme $|S| = |\Lambda|$, π est une bijection.

- $s_0 = \delta^*(s_0, \varepsilon)$ donc $\pi(s_0) = \varepsilon^{-1}L = L$, état initial de Q_L .
- Si s est terminal alors $s = s_0.u$ avec $u \in L$.

On a donc $\pi(s) = u^{-1}L$ qui contient $\varepsilon : \pi(s) \in \Lambda_T$.

Inversement si $\pi(s)$ est terminal dans Q_L alors il contient ε ; pour $s = \delta^*(s_0, u)$ cela signifie qu'on a $\varepsilon \in \pi(s) = u^{-1}.L$ donc $u \in L$ et $s \in T$.

On a bien $\pi(T) = \Lambda_T$.

• Soit $s = \delta^*(s_0, u) \in S$, $\pi(s) = u^{-1}.L$. $\delta_L(\pi(s), x) = x^{-1}.\pi(s) = x^{-1}.(u^{-1}.L) = (u \cdot x)^{-1}.L$ $\delta(s, x) = \delta(\delta^*(s_0, u), x) = \delta^*(s_0, u \cdot x) \text{ donc } \pi(\delta(s, x)) = \pi(\delta^*(s_0, u \cdot x)) = (u \cdot x)^{-1}.L$. On a bien $\delta_L(\pi(s), x) = \pi(\delta(s, x))$.

Exercice 6

Un calcul réussi d'étiquette $u = x_1 x_2 \cdots x_p$ dans $Q: s_0 \xrightarrow{x_1} s_1 \xrightarrow{x_2} \cdots \xrightarrow{x_p} s_p$ avec $s_0 \in I$ et $s_p \in T$ se renverse en un calcul réussi de U^{T} dans $r(Q): s_p \xrightarrow{x_p} s_{p-1} \xrightarrow{x_{p-1}} \cdots \xrightarrow{x_1} s_0$.

On a donc $[L(Q)]^{\mathsf{T}} \subset L(r(Q))$. Alors, en remplaçant Q par r(Q), $[L(r(Q))]^{\mathsf{T}} \subset L(r(r(Q))) = L(Q)$ puis, en transposant, $L(r(Q)) \subset [L(Q)]^{\mathsf{T}}$. On a bien l'égalité.

Exercice 7

 $L_s(r(Q))$ est le langage reconnu par $(\Sigma, S, \Delta^{-1}, \{s\}, I)$. D'après l'exercice précédent c'est la transposé du langage reconnu par $(\Sigma, S, \Delta, I, \{s\})$ c'est-à-dire $L^s(Q)$ d'où $L_s(r(Q)) = [L^s(Q)]^\mathsf{T}$. En remplaçant Q par r(Q) on a $L_s(Q) = [L^s(r(Q))]^\mathsf{T}$ puis, en transposant, $L^s(r(Q)) = [L_s(Q)]^\mathsf{T}$.

Exercice 8

Pour $Q = (\Sigma, S, \Delta, I, T)$ alors $d(Q) = (\Sigma, S, \delta, I, T')$ avec $S \subset \mathcal{P}(S)$, $\delta(A, x) = \bigcup_{s \in A} \Delta(s, x)$ et $T'=\big\{A\in\mathbb{S}\ ;\ A\cap T\neq\emptyset\}.$ On a alors $\delta^*(A,u)=\bigcup_{s\in A}\Delta^*(s,u).$ Ainsi

$$u \in [L_A(d(Q))]^{\mathsf{T}} \iff u^{\mathsf{T}} \in L_A(d(Q))$$

$$\iff \delta^*(A, u^{\mathsf{T}}) \in T' \iff \delta^*(A, u^{\mathsf{T}}) \cap T \neq \emptyset$$

$$\iff \left(\bigcup_{s \in A} \Delta^*(s, u^{\mathsf{T}})\right) \cap T \neq \emptyset \iff \bigcup_{s \in A} \left(\Delta^*(s, u^{\mathsf{T}}) \cap T\right) \neq \emptyset$$

$$\iff \exists s \in A \ / \ \Delta^*(s, u^{\mathsf{T}}) \cap T \neq \emptyset$$

$$\iff \exists s \in A \ / \ u^{\mathsf{T}} \in L_s(Q) \iff \exists s \in A \ / \ u \in [L_s(Q)]^{\mathsf{T}} = L^s(Q)$$

$$\iff u \in \bigcup_{s \in A} L^s(Q)$$

Exercice 9

Si Q est déterministe alors I est un singleton, $I = \{s_0\}$, et $\Delta(s, x)$ est vide ou est un singleton pour chaque $(s,x) \in S \times \Sigma$ donc il n'existe au plus un seul calcul possible depuis s_0 avec une étiquette u donnée. Ainsi, si $u \in L^s(Q)$, s est l'arrivé du seul calcul depuis s_0 et d'étiquette u donc u ne peut pas appartenir à $L^t(Q)$ pour $t \neq s$. Cela prouve qu'on a $L^s(Q) \cap L^t(Q) = \emptyset$ pour $t \neq s$.

Inversement, si I est un singleton, $I = \{s_0\}$, et $L^s(Q) \cap L^t(Q) = \emptyset$ pour $t \neq s$ on va montrer que $|\Delta(s,x)| \leq 1$ pour tous $(s,x) \in S \times \Sigma$.

Si $\Delta(s_1, x_1)$ admet au moins 2 éléments t_1 et t_2 alors, pour tout $u \in L^{s_1}(Q)$ (qui est non vide par hypothèse d'accessibilité), on a $ux \in L^{t_1}(Q)$ et $ux \in L^{t_2}(Q)$ ce qui est impossible. L'automate est bien déterministe.

Exercice 10

On utilise les notations de la première partie. Q est déterministe complet et émondé, s_0 est son état initial et $\delta(s,x)$ est l'unique élément de $\Delta(s,x)$.

L'application $s \mapsto L_s(Q)$ de S dans Λ est surjective car tout langage dérivé $u^{-1}L$ est de la forme $L_s(Q)$ avec $s = \delta^*(s_0, u)$.

Ainsi $|S| \ge |\Lambda|$ et $|S| = |\Lambda|$ si et seulement si l'application est injective, c'est-à-dire $L_s(Q) \ne L_t(Q)$ pour $s \neq t$.

On a vu à l'exercice 5 que Q est équivalent à l'automate des dérivés si et seulement si $|S| = |\Lambda|$ d'où l'équivalence demandée.

Exercice 11

Si Q est déterministe complet émondé alors les $L^s(Q)$ sont disjoints.

De plus, pour un automate émondé, ils sont non vides.

On a donc $L_s(r(Q)) = [L^s(Q)]^{\mathsf{T}}$ donc les langages $L_s(r(Q))$ sont disjoints. Pour A et B deux états de d(r(Q)) avec $A \neq B$, il existe $s \in A \setminus B$ (ou $s \in B \setminus A$). Dans ce cas $L_s(r(Q))$ est inclus dans $\left[L_A(d(r(Q)))\right]^\mathsf{T}$ mais est disjoint de $\left[L_B(d(r(Q)))\right]^\mathsf{T}$ donc $\left[L_A(d(r(Q)))\right]^\mathsf{T}$ $\left[L_B(d(r(Q)))\right]^\mathsf{T}$ pour $A \neq B$ ce qui implique que d(r(Q)) est minimal.

Exercice 12

Si Q reconnaît L alors d(r(Q)) est déterministe complet et émondé et reconnaît $[L]^{\mathsf{T}}$ donc d(r(d(r(Q))))est un automate minimal pour $[L(d(r(Q)))]^{\mathsf{T}} = L(Q)$.