TD 05

Automate minimal

MPI/MPI*, lycée Faidherbe

I Langages dérivés

On suppose que $Q = (\Sigma, S, \delta, s_0, T)$ est un automate déterministe complet qui reconnaît L. Pour tout $s \in S$ on définit l'automate $Q_s = (\Sigma, S, \delta, s_0, T)$ et $L_s(Q)$ le langage reconnu par Q_s , appelé langage à droite de s.

Exercice 1

Pour $u \in \Sigma^*$, on pose $s = \delta^*(s_0, u)$; montrer que $L_s(Q) = \{v \in \Sigma^* ; u \cdot v \in L\} = u^{-1}L$.

Les langages de la forme $u^{-1}L$ sont les langages dérivés de L.

Exercice 2

Prouver qu'un langage rationnel admet au plus |Q| langages dérivés.

Exercice 3

Prouver que $v^{-1}.(u^{-1}.L) = (u.v)^{-1}.L$.

On suppose maintenant que le langage L sur l'alphabet Σ admet un nombre fini de langages dérivés. On définit l'automate $Q_L = (\Sigma, \Lambda, \delta_L, L, \Lambda_T)$ où

- Λ est l'ensemble des résiduels de L, il contient $L = \varepsilon^{-1} L$,
- Λ_T est l'ensemble des résiduels contenant ε ,
- $\delta_L(\lambda, x) = x^{-1}\lambda$ pour $x \in \Sigma$ et pour tout résiduel λ .

L'exercice 2 signifie que tout automate reconnaissant L a au moins $|\Lambda|$ états.

Exercice 4

Prouver que Q_L reconnaît L.

On a donc prouvé

- 1. L'est rationnel si et seulement si il admet un nombre fini de langages dérivés
- 2. il existe un automate avec le nombre minimal d'états, $|\Lambda|$.

Définition 1 : automates équivalents

Deux automates sur un même langage Σ , $Q = (\Sigma, S, \delta, s_0, T)$ et $Q' = (\Sigma, S', \delta', s'_0, T')$, sont équivalents s'il existe une bijection p de S vers S' telle que

- $p(s_0) = s'_0$,
- p(T) = T' et
- $\delta'(p(s), x) = p(\delta(s, x))$ pour tout $s \in S$ et pour tout $x \in \Sigma$.

p est un **isomorphisme** de Q vers Q'.

Exercice 5

Prouver que si un automate déterministe complet $Q = (\Sigma, S, \delta, s_0, T)$ à $|\Lambda|$ états reconnaît L alors il est équivalent à Q_L .

\mathbf{II} Algorithme de Brzozowski

Si $Q = (\Sigma, S, \Delta, I, T)$ est un automate non-déterministe sans transition spontanée, on note

- d(Q) le déterminisé émondé de Q,
- $r(Q) = (\Sigma, S, \Delta^{-1}, T, I)$ avec $\Delta^{-1} = \{(t, x, s) ; (s, x, t) \in \Delta\}$ le transposé de Q, On le nomme aussi automate miroir. On remarque qu'on a r(r(Q)) = Q.
- $L^{s}(Q)$ le langage reconnu par $(\Sigma, S, \Delta, I, \{s\})$, le langage à gauche de s,
- $L_s(Q)$ le langage reconnu par $(\Sigma, S, \Delta, \{s\}, T)$, le langage à droite de s.

Pour tout mot $u = x_1 x_2 \cdots x_p$, le transposé (ou miroir) de u est $u^{\mathsf{T}} = x_p x_{p-1} \cdots x_1$. Le transposé d'un langage L est le langage $[{}^{\mathsf{T}}L]$ des transposés des mots de L : $[^{\mathsf{T}}L] = \{u^{\mathsf{T}} \; ; \; u \in L\}.$ On remarque qu'on a $[L^{\mathsf{T}}]^{\mathsf{T}} = L$

Exercice 6

Montrer que r(Q) reconnaît $[L(Q)]^{\mathsf{T}}$.

Montrer que $L_s(r(Q)) = [L^s(Q)]^\mathsf{T}$ et $L^s(r(Q)) = [L_s(Q)]^\mathsf{T}$.

Exercice 8 Montrer que si $A \subset S$ est un état de d(Q) alors $[L_A(d(Q))]^{\mathsf{T}} = \bigcup_{s \in A} L^s(Q)$.

Exercice 9

Montrer que Q est déterministe si et seulement si I est un singleton et $L^s(Q) \cap L^t(Q) = \emptyset$ pour toute paire d'états distincts : $s \neq t$. On suppose que tous les états sont accessibles.

Exercice 10

Prouver qu'un automate déterministe complet et émondé Q est minimal si et seulement si $L_s(Q) \neq L_t(Q)$ pour toute paire d'états distincts : $s \neq t$.

Exercice 11

Montrer que si Q est déterministe complet émondé alors d(r(Q)) est un automate minimal.

Exercice 12

Montrer que d(r(d(r(Q)))) est un automate minimal pour L(Q).