Langages algébriques

MPI/MPI*, lycée Faidherbe

Exercice 1 - Recherche de grammaires

Prouver que les langages suivants sont algébriques en donnant une grammaire qui les engendre.

- 1. Ensemble des mots sur $\Sigma = \{a, b\}$ de longueur impaire.
- 2. $L = \{a^m b^n \; ; \; n \neq m\}$
- 3. $L = \{a^n b^m c^{n+m} ; n, m \in \mathbb{N}\}.$ 4. $L = \{a^m b^n ; m \le n \le 2m\}$
- 5. Le complémentaire de $\{a^nb^n \mid n \in \mathbb{N}\}.$
- 6. $L = \{a^p b^q c^r \; ; \; p \neq q \text{ ou } q \neq r\}$
- 7. $L = \{a^p b^q c^r d^s : p + q = r + s\}$

Exercice 2 - Langage transposé

Prouver que si L est algébrique alors L^{T} , le langages des mots transposés de L est algébrique.

Exercice 3 - Tautologies

On considère l'alphabet $\Sigma = \{(,), \wedge, \vee, \neg, p, \top, \bot\}$ où \top représente vrai, \bot représente faux et pest une variable booléenne. Déterminer une grammaire qui engendre les tautologies.

Exercice 4

On considère la grammaire $G = (\{a, b\}, \{S\}, \{S \to SbS | a\}, S)$.

Déterminer le langage engendré par G.

Prouver que la grammaire est ambiguë en donnant deux arbres de dérivation pour abababa.

Autant de a que de b

Exercice 5 -

Prouver que le langage $L_{eq} = \{u \in \{a,b\}^* ; |u|_a = |u|_b\}$ est engendré par la grammaire $S \to aSbS|bSaS|\varepsilon$. Étudier son ambiguïté.

Exercice 6

Prouver que le langage $L_{eq} = \{u \in \{a,b\}^* ; |u|_a = |u|_b\}$ est engendré par la grammaire $S \to aSb|bSa|SS|\varepsilon$. Étudier son ambiguïté.

Exercice 7 -

Prouver que le langage $L_{eq}=\left\{u\in\{a,b\}^*\;;\;|u|_a=|u|_b\right\}$ est engendré par la grammaire $S \to aB|bA|\varepsilon,\, A \to aS|bAA,\, B \to bS|aBB.$ Étudier son ambiguïté.

Exercice 8

Prouver que le langage $L_{eq} = \{u \in \{a,b\}^* ; |u|_a = |u|_b\}$ est engendré par la grammaire $S \to aDbS|bIaS|\varepsilon, D \to aDbD|\varepsilon, I \to bIaI|\varepsilon$. Étudier son ambiguïté.

Exercice 9

Prouver que le langage $L_{eq}=\left\{u\in\{a,b\}^*\ ;\ |u|_a=|u|_b\right\}$ est engendré par la grammaire $S \to aAS|bBS|\varepsilon, A \to aAA|b, B \to bBB|a.$ Étudier son ambiguïté.