Centrale Informatique MPI 2023
Un corrigé

1 Probléme du voyageur de commerce

Q 1. Le circuit | BCADB | est un circuit hamiltonien visiblement minimal, de poids 1+14+14+2 =

(5]

Q 2. Pour n > 3, a chaque permutation de [1...n] correspond un circuit; Il y en a donc n!
en distinguant le point de départ (n possibilités) et le sens de parcours (2 possibilités). Sans cette
distinction, il y en a 2n fois moins , soit | (n — 1)!/2].

Tous les circuits sont de poids minimal si toutes les arétes ont le méme poids. En prenant un

poids de 1| pour chaque aréte, chaque circuit aura un poids n.

Q 3.

int poids_chemin(struct Graphe g, struct Chemin c){
int poids = 0, i, j;
for(int k=1; k<c.longueur; k++){ // (lcl-1) arétes
i = c.1_sommets[k-1];
j = c.1l_sommets[k];
poids += g.adjli * g.V + jl;
}

return poids;

}

Le temps d’exécution croit comme la longueur du chemin : ‘ T(g,c) = O(]|c|) ‘

Q 4. Le probléme de Décision du Voyageur de Commerce (DVC dans la suite) se définit ainsi :

— Instance : Un graphe non orienté GG, un entier s.

— Question : Existe-il un circuit hamiltonien de poids p dans G, tel que p < s7?

D’apres la question Q 3, La vérification d’un chemin se fait en temps polynomial, donc

Q 5. Soit la réduction suivante : I = (G(V, E),a,b) étant une instance du probléme du chemin
hamiltonien (CHH dans la suite), une instance I’ = G'(V’, E’) du probléme du cycle hamiltonien (C1H
dans la suite) est construite ainsi :

— V' =V U{z}, z étant un nouveau sommet.
— E'=FU{{a,z},{b,z}}
Il est clair que le circuit C' = zawvg...vebz est hamiltonien si et seulement si le chemin C' =
avy, . . . vpb hamiltonien, car bza est le seul moyen de visiter z.

Pour la suite, il faut une réduction polynomiale. La construction précédente se fait clairement en
un temps linéaire en |I|, donc CHH se réduit pronominalement & C1H :

CHH <p CiH

Q 6. Soit la réduction suivante :
I = G(V,E) étant une instance du probléeme du cycle hamiltonien, l'instance I’ = (G',s) du
probleme de décision du voyageur de commerce est construite ainsi :

— G’ est le graphe complet ayant les mémes sommets que G.

— le poids de chaque aréte a de G’ vaut 0 si a € F, et 1 sinon.
— s5=0.
Reste & montrer que CIH(I) = DVC(I’) :

— CIH(I) =1 = DVC(I’) =1:Si C est un chemin hamiltonien dans G, alors c’est aussi
un chemin hamiltonien de G’, de poids nul par construction. donc I’ est une instancer
positive de DVC.

— DVC(I) =1 = CiH(I') =1 : Si C est un chemin hamiltonien dans G’ de poids
nul, alors il ne passe que par des arétes de poids nul, soit des arétes de G. donc C' est
hamiltonien dans G.

Pour la suite, il faut une réduction polynomiale. La construction précédente se fait clairement en
un temps quadratique en ||, d’ou :

\CIH <p DVC

Q 7. Soit I = (G(V, E),a,b) une instance du probleme du chemin hamiltonien orienté (CHHO
dans la suite). Soit I’ = (G'(V',E’),a”,b") linstance du probléme du chemin hamiltonien (non
orienté) construite ainsi :

— Pour chaque sommet s de V sont créés trois sommets s°, st et s~ dans V’, et deux arétes
{57,5%} et {s°,sT} dans E'.

— Pour chaque arc (u,v) de E est créée 'aréte {u™, v~} non orientée dans E’ :

e e devient
& w0 ()

Il reste & montrer que CHHO(I) = CHH(I') :

— Il est clair que si asg ... sgb est hamiltonien dans G, alors a‘a%ﬁs,?s%sér .. .s[s?szrb_bolfr est
hamiltonien dans G’.

— Si maintenant G’ posséde un chemin hamiltonien C’ allant de a~ & b* : En partant de a—, C’ doit
continuer par a, sinon ce sommet ne sera jamais visité par la suite. Puis de ag il doit atteindre

a™, car a® est de degré 2. Il doit ensuite continuer vers un sommet s; car il n’existe pas d’aréte
+
J
raisonnement peut se faire a partir de s
0

a®sT par construction, et le retour sur a” est impossible sur un chemin hamiltonien. Le méme
J

ats; Vs .. s, 895 b7b0bT . Des lors le chemin C = asy,... s¢b

: Le chemin est donc une succession de sous-chemins
de la forme slzsgsﬁ, soit a”a
associé est également hamiltonien dans G.

Cette construction est linéaire en la taille de I, d’ou :

CHHO <p CHH

Q 8. Il suffit d’ exhiber ces chemins :
1. ejege3838957.
2. e1s1 et esezs3sy.
3. €151, €252 et e3ss.

Q 9. La question est ambigiie. Une formulation plus explicite est : « Montrer que pour tout
modele de la formule, il existe un chemin hamiltonien orienté de vy a v, 1 dans le graphe G ».

Soit un premier chemin construit en passant pour tout i :

— par le graphe Gj si x; = 1 dans le modele, ou par le graphe G; si z; = 0;
— par laréte e,, — sp, dans chaque Ay.

Comme la formule est satisfaite, toutes les clauses le sont et donc chaque Ay est traversé entre une
et trois fois. Il reste alors, en vertu de Q 8 a réarranger le chemin dans chaque Ay pour passer une et
une seule fois par chaque sommet. Le chemin ainsi construit est bien un chemin hamiltonien.

Q 10. La question est ambigiie. Une formulation plus explicite est « Montrer que pour chaque
chemin hamiltonien orienté de vy a v,,+1 dans le graphe G, on peut associer un modéle pour la
formule ».

Comme il ne peut y avoir deux arcs sortants du méme sommet sur un chemin hamiltonien, une
valuation o est définie sans ambiguité ainsi : [x;], = 1 si arc sortant de v; emprunte G;"’, [xi]o =0
s’il emprunte G; . Chaque Ay est ainsi atteint par au moins un arc car le chemin est hamiltonien,
et cet arc rend la clause vraie selon ¢ par construction. Toutes les clauses étant satisfaites, o est un
modele pour la formule.

Q 11. La construction de graphe proposée étant de complexité O(mn), Q 9 et Q 10 permettent
d’établir que ‘ 3SAT <p CHHO ‘
Les questions précédentes permettent finalement de conclure que

Comme 3SAT est NP-complet, et que de plus DVC € NP d’apres Q 3 (ainsi que CiH) |, 11 vient :

‘ Les problemes de décision du voyageur de commerce et du circuit hamiltonien sont NP-complets ‘

Q 12. Le circuit hamiltonien de G est aussi un circuit hamiltonien de G’, de poids n puisque ses
n arétes ont un poids 1 dans G'.

Q 13. Si G ne posséde pas de circuit hamiltonien, alors tout circuit hamiltonien C' de G’ aura au
moins une aréte qui n’est pas dans G. D’ou poids(c) = (n — 1)+ n(1+¢)+1=n(2+¢). CQFD.

Q 14. Soit A un éventuel algorithme polynomial permettant de trouver une 1+ ¢ approximation
de VC. Sur le graphe G, p* = n, A trouve donc une solution de poids inférieur & n(1 + ¢) en temps
polynomial. n(14¢) < n(2+¢), donc d’aprés la contraposée du résultat de Q 13, G’ posséde un cycle
hamiltonien. Ceci résout donc un probleme de NP en temps polynomial, donc P=NP.

Finalement, A existe = P = NP. Soit, par contraposition :

‘P # NP = il n’existe pas de 1 + ¢ approximation au probléme du voyageur de commerce

Q 15.

struct Aretex liste_aretes(struct Graphe g){
int n = g.V, k = 0;
struct Aretex liste = malloc(n*(n-1)/2*sizeof (struct Arete));
for(int i=0;i<n;i++){
for(int j=i+1;j<n;j++){
liste[k].sl1l = i;
listelk].s2 = j;
listel[k].p = g.adjli*n + j1;
k++;
}

return liste;

Q 16. On implémente généralement 'algorithme de KRUKSAL a ’aide d’une structure union-
find : Sont donc supposées définies bool find(int i) et void union_(int i,int j) (union est
réservé en C).

1l vient :

struct Graphe kruksal (struct Graphe g){
int n = g.V;
struct Graphe gk = alloue_graphe(n);
int i, j, k = 0;
for(i = 0; i < n; i+){
for(j = 0; j < n; j+H{
gk.adj[i*n + jl = 0; //initialisation
}
}
struct Aretex liste = liste_aretes(g);
tri_aretes(liste, n*x(n-1)/2);
for (int na = 1 ; na < n; na++){ // n-1 noeuds dans 1l'arbre
struct Arete a = listelk];
i = a.sl;
j = a.s2;
if (find(i) !'= find(j)){
gk.adj[i*n + j] = a.p;
union_(i,j);

}
k++;

}

return gk;

Q 17. Soit n le nombre de sommets du graphe. Le graphe g est connexe par hypothese, donc
liste contient au moins n — 1 arétes.

1. kruskal termine en renvoyant un arbre couvrant : En effet, la boucle for continue tant
que n — 1 arétes n’ont pas été sélectionnées, qui est exactement le nombre d’arétes d’un arbre
couvrant d’un graphe connexe. Si la liste d’arétes était épuisée avant la fin de la boucle for, c’est
qu’au moins une aréte ne formant pas de cycle a été omise. Ceci est impossible puisque toutes
les arétes ne formant pas de cycle sont sélectionnées.

2. kruskal renvoie un arbre couvrant minimal : On considére pour cela I'invariant de boucle
suivant : « les arétes sélectionnées sont un sous-ensemble d’un arbre couvrant minimal M de g ».
C’est vrai initialement car gk est vide au départ. Lorsqu’on ajoute une aréte a :

— Si l'aréte est dans M Dlinvariant est conservé.

— Sinon M U {a} possede nécessairement n arétes et donc un cycle contenant a et une autre
aréte a’ non testée (sinon elle eut été sélectionnée,car sans a elle ne forme pas de cycle).
Donc le poids de a est inférieur ou égal a celui de a’ et M’ = (M\{a’}) U {a} est encore
minimal (en fait a et @’ ont méme poids). Donc a € M’ minimal et 'invariant est conservé.

Donc :

’ KRUSKAL termine et renvoie un arbre couvrant minimal

Q 18.

int degre(struct Graphe g, int i){
int n = g.V, d = 0;
for(int j=0;j<n;j++){

if(g.adj[i*n+j]1>0) d++ ;
}

return d;

Q 19.

int* sommets_impairs(struct Graphe g, int* nb_sommets){
int n = g.V;
*nb_sommets = O;
int* sommets = malloc(n*sizeof(int));
for(int i=0; i<n; i++){
if (degre(g,i) %2 > 0){
sommets [*nb_sommets]=i;
(*nb_sommets)++;

}

return sommets;

Q 20. En appelant J ’ensemble des noeuds de degré pair, le lemme des poignées de main stipule :

Z deg(v) = — Z deg(v) + 2| E|
vel veJ
D’otr), . deg(v) est pair, et donc |I| est pair.
Comme toutes les villes sont reliées entre elles, le graphe G du probleme est complet. G|y =
(I,{{z,y} € E,(x,y) € I?}) l'est donc aussi, et donc il existe bien des couplages parfaits dans G-
L’un d’eux est de poids minimal car c¢’est un ensemble fini.

G| contient un couplage de poids minimal

Q 21. Chaque sommet de degré impair dans T est complété par une unique aréte de M pour
former H, donc tous les sommets de H sont de degré pair. D’ou :

\Il existe un circuit eulérien dans H \

Q 22. Il suffit de parcourir le circuit en « sautant » les sommets déja visités, sauf le premier et
le dernier qui sont identiques par définition d’un circuit.

struct Chemin euler_to_hamilton(struct Chemin c){
int ns = c.longueur;
struct Chemin ch = alloue_chemin(ns); // chemin hamiltonien
int ich = 0; // indice pour ch
struct Chemin vu = alloue_chemin(ns); // pour gérer les doublons
for (int i = 0; i < ns; i++){
vu.l_sommets[i] = O;
}
for (int i = 0; i < ms; i++){
int s = ¢.1_sommets[il];

if (vu.l_sommets[s] == 0){
ch.l_sommets[ich++] = s;
vu.l_sommets[s] = 1;

}

ch.l_sommets[ich++] = c.l_sommets[0]; // le dernier
libere_chemin(vu) ;

ch.longueur = ich;

return ch;

Q 23.

Le circuit eulérien est ici sans doublon, le circuit K est a la fois eulérien et hamiltonien car la
derniere étape est sans effet.

Q 24.

struct Chemin christofides(struct Graphe g){
struct Graphe t = kruksal(g);
int ns;
int *i = sommets_impairs(t, &uns);
struct Graphe gi = graphe_induit(g, ns, i);
struct Graphe m = couplage(gi);
struct Multigraphe h = multigraphe(m, t);
struct Chemin ce = eulerien(h);
euler_to_hamilton(ce);

struct Chemin ch
libere_graphe(t);
libere_graphe(gi);
libere_graphe (m);
libere_multigraphe(h);
libere_chemin(ce);
return (ch);

Q 25. D’apres Q 21, eulerien renvoie un cycle eulérien. Reste a montre que euler_to_hamilton
fonctionne correctement. Le chemin ce étant eulérien, il passe par toutes les arétes de h , qui contient
toutes les arétes de t. Il contient donc toute les sommets de t, donc de g. En supprimant tous les
doublons (sauf le dernier qui ferme le circuit), on obtient bien un chemin hamiltonien de g.

Q 26. Soit respectivement ng et n, le nombre de sommets et d’arétes de G. Les complexités des
différentes fonctions sont :

— kruskal : O(nglog(ng)). Le tri est en effet la tache la plus complexe avec une structure union-find
efficace.

— sommets_impairs : O(ny).

— graphe_induit : O(ns) car G|; est plus petit que G.

— couplage : polynomiale d’aprés I'énoncé (L’algorithme de LAWLER est en O(n2)).
— multigraphe : O(ns + ng).

— eulerien : O(n,).

— hamiltonien : O(ng).

