
Centrale Informatique MPI 2023
Un corrigé

1 Problème du voyageur de commerce

Q 1. Le circuit BCADB est un circuit hamiltonien visiblement minimal, de poids 1+1+1+2 =
5 .

Q 2. Pour n � 3, à chaque permutation de �1 . . . n� correspond un circuit ; Il y en a donc n!
en distinguant le point de départ (n possibilités) et le sens de parcours (2 possibilités). Sans cette
distinction, il y en a 2n fois moins , soit (n− 1)!/2 .

Tous les circuits sont de poids minimal si toutes les arêtes ont le même poids. En prenant un
poids de 1 pour chaque arête, chaque circuit aura un poids n.

Q 3.

int poids_chemin(struct Graphe g, struct Chemin c){
int poids = 0, i, j;
for(int k=1; k<c.longueur; k++){ // (|c|-1) arêtes

i = c.l_sommets[k-1];
j = c.l_sommets[k];
poids += g.adj[i * g.V + j];

}
return poids;

}

Le temps d’exécution croit comme la longueur du chemin : T (g, c) = O(|c|) .

Q 4. Le problème de Décision du Voyageur de Commerce (DVC dans la suite) se définit ainsi :
— Instance : Un graphe non orienté G, un entier s.
— Question : Existe-il un circuit hamiltonien de poids p dans G, tel que p � s ?

D’après la question Q 3, La vérification d’un chemin se fait en temps polynomial, donc

DVC ∈ NP

Q 5. Soit la réduction suivante : I = (G(V,E), a, b) étant une instance du problème du chemin
hamiltonien (ChH dans la suite), une instance I � = G�(V �, E�) du problème du cycle hamiltonien (CiH
dans la suite) est construite ainsi :

— V � = V ∪ {z}, z étant un nouveau sommet.
— E� = E ∪ {{a, z}, {b, z}}

Il est clair que le circuit C � = zavk . . . v�bz est hamiltonien si et seulement si le chemin C =
avk . . . v�b hamiltonien, car bza est le seul moyen de visiter z.

Pour la suite, il faut une réduction polynomiale. La construction précédente se fait clairement en
un temps linéaire en |I|, donc ChH se réduit pronominalement à CiH :

ChH �P CiH

Q 6. Soit la réduction suivante :
I = G(V,E) étant une instance du problème du cycle hamiltonien, l’instance I � = (G�, s) du

problème de décision du voyageur de commerce est construite ainsi :
— G� est le graphe complet ayant les mêmes sommets que G.

1

— le poids de chaque arête a de G� vaut 0 si a ∈ E, et 1 sinon.
— s = 0.

Reste à montrer que CiH(I) = DVC(I �) :
— CiH(I) = 1 =⇒ DVC(I �) = 1 : Si C est un chemin hamiltonien dans G, alors c’est aussi

un chemin hamiltonien de G�, de poids nul par construction. donc I � est une instancer
positive de DVC.

— DVC(I) = 1 =⇒ CiH(I �) = 1 : Si C est un chemin hamiltonien dans G� de poids
nul, alors il ne passe que par des arêtes de poids nul, soit des arêtes de G. donc C est
hamiltonien dans G.

.
Pour la suite, il faut une réduction polynomiale. La construction précédente se fait clairement en

un temps quadratique en |I|, d’où :

CiH �P DVC

Q 7. Soit I = (G(V,E), a, b) une instance du problème du chemin hamiltonien orienté (ChHO
dans la suite). Soit I � = (G�(V �, E�), a−, b+) l’instance du problème du chemin hamiltonien (non
orienté) construite ainsi :

— Pour chaque sommet s de V sont créés trois sommets s0, s+ et s− dans V �, et deux arêtes
{s−, s0} et {s0, s+} dans E�.

— Pour chaque arc (u, v) de E est créée l’arête {u+, v−} non orientée dans E � :

q

r

s t

u

devient
q+

r+

s− s0 s+ t−

u−

Il reste à montrer que ChHO(I) = ChH(I �) :
— Il est clair que si ask . . . s�b est hamiltonien dans G, alors a−a0a+s−k s

0
ks

+
k . . . s−� s

0
�s

+
� b

−b0b+ est
hamiltonien dans G�.

— Si maintenant G� possède un chemin hamiltonien C � allant de a− à b+ : En partant de a−, C � doit
continuer par a0, sinon ce sommet ne sera jamais visité par la suite. Puis de a0 il doit atteindre
a+, car a0 est de degré 2. Il doit ensuite continuer vers un sommet s−j car il n’existe pas d’arête
a+s+j par construction, et le retour sur a0 est impossible sur un chemin hamiltonien. Le même
raisonnement peut se faire à partir de s−j : Le chemin est donc une succession de sous-chemins
de la forme s−k s

0
ks

+
k , soit a−a0a+s−k s

0
ks

+
k . . . s−� s

0
�s

+
� b

−b0b+ . Dès lors le chemin C = ask . . . s�b
associé est également hamiltonien dans G.

Cette construction est linéaire en la taille de I, d’où :

ChHO �P ChH

Q 8. Il suffit d’ exhiber ces chemins :
1. e1e2e3s3s2s1.
2. e1s1 et e2e3s3s2.
3. e1s1, e2s2 et e3s3.

Q 9. La question est ambigüe. Une formulation plus explicite est : « Montrer que pour tout
modèle de la formule, il existe un chemin hamiltonien orienté de v1 à vm+1 dans le graphe G ».

Soit un premier chemin construit en passant pour tout i :

2

— par le graphe G+
i si xi = 1 dans le modèle, ou par le graphe G−

i si xi = 0 ;
— par l’arête epi → spi dans chaque Ak.
Comme la formule est satisfaite, toutes les clauses le sont et donc chaque Ak est traversé entre une

et trois fois. Il reste alors, en vertu de Q 8 à réarranger le chemin dans chaque Ak pour passer une et
une seule fois par chaque sommet. Le chemin ainsi construit est bien un chemin hamiltonien.

Q 10. La question est ambigüe. Une formulation plus explicite est « Montrer que pour chaque
chemin hamiltonien orienté de v1 à vm+1 dans le graphe G, on peut associer un modèle pour la
formule ».

Comme il ne peut y avoir deux arcs sortants du même sommet sur un chemin hamiltonien, une
valuation σ est définie sans ambiguïté ainsi : �xi�σ = 1 si l’arc sortant de vi emprunte G+

i , �xi�σ = 0
s’il emprunte G−

i . Chaque Ak est ainsi atteint par au moins un arc car le chemin est hamiltonien,
et cet arc rend la clause vraie selon σ par construction. Toutes les clauses étant satisfaites, σ est un
modèle pour la formule.

Q 11. La construction de graphe proposée étant de complexité O(mn), Q 9 et Q 10 permettent
d’établir que 3SAT �P ChHO .

Les questions précédentes permettent finalement de conclure que

3SAT �P ChHO �P ChH �P CiH �P DVC.

Comme 3SAT est NP-complet, et que de plus DVC ∈ NP d’après Q 3 (ainsi que CiH) , Il vient :

Les problèmes de décision du voyageur de commerce et du circuit hamiltonien sont NP-complets

Q 12. Le circuit hamiltonien de G est aussi un circuit hamiltonien de G�, de poids n puisque ses
n arêtes ont un poids 1 dans G�.

Q 13. Si G ne possède pas de circuit hamiltonien, alors tout circuit hamiltonien C de G� aura au
moins une arête qui n’est pas dans G. D’où poids(c) � (n− 1) + n(1 + ε) + 1 = n(2 + ε). CQFD.

Q 14. Soit A un éventuel algorithme polynomial permettant de trouver une 1+ε approximation
de VC. Sur le graphe G�, p∗ = n, A trouve donc une solution de poids inférieur à n(1 + ε) en temps
polynomial. n(1+ ε) < n(2+ ε), donc d’après la contraposée du résultat de Q 13, G� possède un cycle
hamiltonien. Ceci résout donc un problème de NP en temps polynomial, donc P=NP.

Finalement, A existe =⇒ P = NP. Soit, par contraposition :

P �= NP =⇒ il n’existe pas de 1 + ε approximation au problème du voyageur de commerce

Q 15.

struct Arete* liste_aretes(struct Graphe g){
int n = g.V, k = 0;
struct Arete* liste = malloc(n*(n-1)/2*sizeof(struct Arete));
for(int i=0;i<n;i++){

for(int j=i+1;j<n;j++){
liste[k].s1 = i;
liste[k].s2 = j;
liste[k].p = g.adj[i*n + j];
k++;

}
}
return liste;

}

3

Q 16. On implémente généralement l’algorithme de Kruksal à l’aide d’une structure union-
find : Sont donc supposées définies bool find(int i) et void union_(int i,int j) (union est
réservé en C).

Il vient :

struct Graphe kruksal (struct Graphe g){
int n = g.V;
struct Graphe gk = alloue_graphe(n);
int i, j, k = 0;
for(i = 0; i < n; i++){

for(j = 0; j < n; j++){
gk.adj[i*n + j] = 0; //initialisation

}
}
struct Arete* liste = liste_aretes(g);
tri_aretes(liste, n*(n-1)/2);
for (int na = 1 ; na < n; na++){ // n-1 noeuds dans l'arbre

struct Arete a = liste[k];
i = a.s1;
j = a.s2;
if (find(i) != find(j)){

gk.adj[i*n + j] = a.p;
union_(i,j);

}
k++;

}
return gk;

Q 17. Soit n le nombre de sommets du graphe. Le graphe g est connexe par hypothèse, donc
liste contient au moins n− 1 arêtes.

1. kruskal termine en renvoyant un arbre couvrant : En effet, la boucle for continue tant
que n − 1 arêtes n’ont pas été sélectionnées, qui est exactement le nombre d’arêtes d’un arbre
couvrant d’un graphe connexe. Si la liste d’arêtes était épuisée avant la fin de la boucle for, c’est
qu’au moins une arête ne formant pas de cycle a été omise. Ceci est impossible puisque toutes
les arêtes ne formant pas de cycle sont sélectionnées.

2. kruskal renvoie un arbre couvrant minimal : On considère pour cela l’invariant de boucle
suivant : « les arêtes sélectionnées sont un sous-ensemble d’un arbre couvrant minimal M de g ».
C’est vrai initialement car gk est vide au départ. Lorsqu’on ajoute une arête a :

— Si l’arête est dans M l’invariant est conservé.
— Sinon M ∪ {a} possède nécessairement n arêtes et donc un cycle contenant a et une autre

arête a� non testée (sinon elle eut été sélectionnée,car sans a elle ne forme pas de cycle).
Donc le poids de a est inférieur ou égal à celui de a� et M � = (M\{a�}) ∪ {a} est encore
minimal (en fait a et a� ont même poids). Donc a ∈ M � minimal et l’invariant est conservé.

Donc :

Kruskal termine et renvoie un arbre couvrant minimal

Q 18.

int degre(struct Graphe g, int i){
int n = g.V, d = 0;
for(int j=0;j<n;j++){

4

if(g.adj[i*n+j]>0) d++ ;
}
return d;

}

Q 19.

int* sommets_impairs(struct Graphe g, int* nb_sommets){
int n = g.V;
*nb_sommets = 0;
int* sommets = malloc(n*sizeof(int));
for(int i=0; i<n; i++){

if (degre(g,i) %2 > 0){
sommets[*nb_sommets]=i;
(*nb_sommets)++;

}
}
return sommets;

}

Q 20. En appelant J l’ensemble des nœuds de degré pair, le lemme des poignées de main stipule :
�

v∈I
deg(v) = −

�

v∈J
deg(v) + 2|E|

D’où
�

v∈I deg(v) est pair, et donc |I| est pair.
Comme toutes les villes sont reliées entre elles, le graphe G du problème est complet. G|I =

(I, {{x, y} ∈ E, (x, y) ∈ I2}) l’est donc aussi, et donc il existe bien des couplages parfaits dans G|I .
L’un d’eux est de poids minimal car c’est un ensemble fini.

G|I contient un couplage de poids minimal

Q 21. Chaque sommet de degré impair dans T est complété par une unique arête de M pour
former H, donc tous les sommets de H sont de degré pair. D’où :

Il existe un circuit eulérien dans H

Q 22. Il suffit de parcourir le circuit en « sautant » les sommets déjà visités, sauf le premier et
le dernier qui sont identiques par définition d’un circuit.

struct Chemin euler_to_hamilton(struct Chemin c){
int ns = c.longueur;
struct Chemin ch = alloue_chemin(ns); // chemin hamiltonien
int ich = 0; // indice pour ch
struct Chemin vu = alloue_chemin(ns); // pour gérer les doublons
for (int i = 0; i < ns; i++){

vu.l_sommets[i] = 0;
}
for (int i = 0; i < ns; i++){

int s = c.l_sommets[i];
if (vu.l_sommets[s] == 0){

ch.l_sommets[ich++] = s;
vu.l_sommets[s] = 1;

}
}

5

ch.l_sommets[ich++] = c.l_sommets[0]; // le dernier
libere_chemin(vu);
ch.longueur = ich;
return ch;

}

Q 23.

A B

D C

2

1 1

3

21

G

A B

D C

1 11

T

B

D

2

M

A B

D C

1 11 2

H

A B

D C

1 11 2

K

Le circuit eulérien est ici sans doublon, le circuit K est à la fois eulérien et hamiltonien car la
dernière étape est sans effet.

Q 24.

struct Chemin christofides(struct Graphe g){
struct Graphe t = kruksal(g);
int ns;
int *i = sommets_impairs(t, &ns);
struct Graphe gi = graphe_induit(g, ns, i);
struct Graphe m = couplage(gi);
struct Multigraphe h = multigraphe(m, t);
struct Chemin ce = eulerien(h);
struct Chemin ch = euler_to_hamilton(ce);
libere_graphe(t);
libere_graphe(gi);
libere_graphe(m);
libere_multigraphe(h);
libere_chemin(ce);
return (ch);

}

Q 25. D’après Q 21, eulerien renvoie un cycle eulérien. Reste à montre que euler_to_hamilton
fonctionne correctement. Le chemin ce étant eulérien, il passe par toutes les arêtes de h , qui contient
toutes les arêtes de t. Il contient donc toute les sommets de t, donc de g. En supprimant tous les
doublons (sauf le dernier qui ferme le circuit), on obtient bien un chemin hamiltonien de g.

Q 26. Soit respectivement ns et na le nombre de sommets et d’arêtes de G. Les complexités des
différentes fonctions sont :

— kruskal : O(nalog(na)). Le tri est en effet la tâche la plus complexe avec une structure union-find
efficace.

— sommets_impairs : O(ns).
— graphe_induit : O(ns) car G|I est plus petit que G.
— couplage : polynomiale d’après l’énoncé (L’algorithme de Lawler est en O(n3

a)).
— multigraphe : O(ns + na).
— eulerien : O(na).
— hamiltonien : O(na).

6

