
DS2 (sujet type Mines Centrale)

1 Problème sur les arbres couvrants (C)
Dans ce problème, un graphe G est un couple (S,A) où :

• S est un ensemble fini dont les éléments sont les sommets de G ;

• A = (a0, a1, . . . , am−1) est la suite des arêtes de G, une arête étant une partie a = {s, t} de S de cardinal 2. Les
sommets s et t sont appelés les extrémités de l’arête a et on dira que a relie s et t. Si s et t sont reliés par une
arête, on dit qu’ils sont voisins ou adjacents.

Ainsi, les graphes sont non orientés et il n’y a pas d’arête reliant un sommet à lui-même.
Par convention, nous noterons n (respectivement m) le nombre de sommets (respectivement d’arêtes) du graphe

et nous supposerons que S = {0, 1, . . . , n− 1} = Sn.

Un graphe sera représenté par le type C suivant :

struct graphe = {int size;
int* degrees;
int** adj;};

typedef struct graphe graphe;

Si G est un graphe représenté par g, alors le nombre de sommets n du graphe est donné par le champs size, le
tableau g.degrees de taille n contient dans sa case d’indice i le degré du sommet i et le tableau g.adj[i] est de
taille g.degrees[i] et contient les voisins du sommet i dans G.

Soit G = (S,A) un graphe.

• Un chemin dans G est une suite c = (s0, s1, . . . , sj−1, sj , . . . , sk−1, sk) où pour tout j compris entre 1 et k, sj−1

et sj sont des sommets voisins. On dira que c est un chemin de s0 à sk de longueur k. Par convention, pour s
sommet de G, il existe un chemin de longueur nulle de s à s.

• La composante connexe d’un sommet s de G, notée Cs , est l’ensemble des sommets t de G tels qu’il existe un
chemin de s à t.

• On dit que G est connexe si pour tous sommets s et t de G, il existe un chemin de s à t.

• Un cycle dans G est un chemin de longueur k ≥ 2 d’un sommet à lui-même et dont les arêtes sont deux à deux
distinctes. On dit que G est acyclique s’il ne contient aucun cycle.

• Un arbre est un graphe connexe acyclique.

1.1 Caractérisation des arbres
Soit G = (Sn, A) un graphe à n sommets et m arêtes, représenté par g. Les arêtes de G sont donc numérotées
A = (a0, a1, . . . , am−1).

Q1 Montrer que les composantes connexes de G forment une partition de Sn , c’est-à-dire que :

1. ∀s ∈ Sn, Cs ̸= ∅ ;

2. Sn =
⋃

s∈Sn
Cs ;

3. Pour tous sommets s et t, soit Cs = Ct , soit Cs ∩ Ct = ∅.

Q2 Montrer que si s et t sont deux sommets de G tels que t ∈ Cs, il existe un plus court chemin de s à t et
que les sommets d’un plus court chemin sont deux à deux distincts.

Pour k ∈ {0, 1, . . . ,m}, Gk désigne le graphe (Sn, (a0, a1, . . . , ak−1)) obtenu en ne conservant que les k premières
arêtes de G.

1

Q3 On suppose que G est un arbre. Montrer que pour tout k ∈ {0, 1, . . . ,m − 1}, les extrémités de ak
appartiennent à deux composantes connexes différentes de Gk. En déduire que m = n− 1.

Q4 Montrer que les trois propriétés suivantes sont équivalentes :

1. G est un arbre ;

2. G est connexe et m = n− 1.

3. G est acyclique et m = n− 1.

Nous souhaitons écrire une fonction qui teste si un graphe est un arbre. Nous allons pour cela utiliser une structure
de données permettant de manipuler les partitions de l’ensemble Sn : si P = {X1, X2, . . . , Xk} est une partition de
Sn, on choisit dans chaque partie Xi, un élément particulier ri, appelé représentant de Xi. Notre structure de données
doit nous permettre :

• de calculer, pour s ∈ Sn , le représentant de la partie Xi contenant s ; cet élément sera également appelé
représentant de s ;

• pour deux entiers s et t représentant des parties distinctes Xi et Xj , de transformer P en réunissant Xi et Xj ,
s ou t devenant le représentant de la partie Xi ∪Xj .

Nous représenterons une partition P = {X1, X2, . . . , Xk} de Sn par une forêt : chaque Xi est représenté par un
arbre dont les noeuds sont étiquetés par les éléments de Xi et de racine le représentant ri de Xi , les arcs étant orientés
vers la racine. Nous noterons h(ri) la hauteur de l’arbre Xi , c’est-à-dire la longueur de sa plus longue branche.

Ainsi, P9 = {{0, 2}, {1, 5, 6, 8}, {3, 4, 7}} est une partition de S9 et peut par exemple être représentée
par la forêt de la figure suivante :

Le calcul du représentant d’un entier s ∈ Sn se fait donc en remontant jusqu’à la racine de l’arbre (ce qui
justifie l’orientation des arcs). Dans l’exemple, les représentants de 2, 1 et 7 sont respectivement 0, 6 et 7. Une
partition P de Sn = {0, 1, . . . , n − 1} sera représentée par un tableau d’entiers P de taille n de sorte que pour tout
s ∈ {0, 1, . . . , n−1}, P [s] est le père de s si s n’est pas un représentant, et est égal à −1−h(s) si s est un représentant.
La partition P9 peut ainsi être représentée par le tableau : {-2, 5, 0, 7, 7, 6, -3, -2, 6}

La réunion de deux parties Xi et Xj de représentants s et t distincts se fait selon la méthode suivante :

• si h(s) > h(t), s est choisi pour représentant de la partie Xi ∪Xj et devient le père de t ;

• si h(s) ≤ h(t), t est choisi pour représentant de la partie Xi ∪Xj et devient le père de s.

Q5 Donner le résultat de la réunion de X1 et X2 dans P9.

Q6 Écrire une fonction int representant(int* tab, int size, int s) qui, appliquée à un tableau représentant
une partition de Sn de taille size et à s ∈ Sn , renvoie le représentant de s. On demande que la fonction
proposée soit récursive.

Q7 Écrire une fonction void union(int* tab, int size, int s, int t) qui, appliquée à un tableau représentant
une partition de Sn de taille size et à deux représentants s et t distincts, modifie la partition en réunissant
les arbres associés à s et t, selon la méthode expliquée ci-dessus, sans oublier, si nécessaire, de modifier h(s)
ou h(t).

On note Pn(0) la partition de Sn où toutes les parties sont des singletons.

2

Q8 Soit P une partition de Sn construite à partir de Pn(0) par des réunions successives selon la méthode
précédente. Montrer que si s est le représentant d’une partie X ∈ P, alors le cardinal de X vérifie |X| ≥ 2h(s).

Q9 En déduire les complexités des deux fonctions précédentes dans le pire des cas en fonction de n pour une
partition P construite à partir de Pn(0).

Q10 Citer et expliquer le principe de la méthode au programme qui permet d’améliorer la complexité amortie
de ces opérations. Ecrire une fonction representant_opt qui inclut cette optimisation.

Q11 Écrire une fonction bool est_un_arbre(graphe g) qui, appliquée à un graphe g représentant un graphe
G, renvoie true si G est un arbre et false sinon.

1.2 Algorithme de Wilson : arbre couvrant aléatoire
Soit G = (Sn, A) un graphe connexe et soit un entier r ∈ Sn. Un arbre couvrant de G enraciné en r est un arbre
T = (Sn, B) tel que B ⊂ A et dont r a été choisi pour racine.

On convient de représenter un tel arbre en suivant la même idée que pour représenter une partition dans la partie
précédente : par un tableau tel que la case s du tableau contient l’indice du père de s dans l’arbre si s n’est pas
lui-même la racine, et −1 sinon :

struct arbre = {int size; int* peres;};
typedef struct arbre arbre;

Dans cette partie, nous supposons que G = (Sn, A) est un graphe connexe et r un sommet de ce graphe. Nous
cherchons à construire un arbre couvrant aléatoire de G enraciné en r.

Nous allons pour cela faire évoluer dynamiquement un arbre T , représenté par un tableau parent de longueur n
vérifiant :

• la case r de parent contient −1 ;

• si s ∈ Sn n’est pas un sommet de T , alors la case s de parent contient −2;

• si s ∈ Sn est un sommet de T différent de la racine, alors la case s de parent contient le père de s dans T .

La construction de l’arbre T se fait en suivant l’algorithme 1.

La greffe d’un chemin élémentaire qui termine par un sommet de T et dont c’est le seul sommet en commun avec
T se fait de manière naturelle, en ajoutant ce chemin.

Le calcul d’un chemin aléatoire dans le graphe entre un sommet qui n’appartient pas à l’arbre et un sommet qui
appartient à l’arbre se fait en suivant l’algorithme 2.

3

On représente un chemin élémentaire en C par le type :

struct chemin = {int debut; int fin; int* suivant; int size;};
typedef struct chemin chemin;

de telle sorte que si le chemin c = (s0, s1, . . . , sk) est représenté par c, alors :

• le champ debut de c contient s0,

• son champ fin contient sk,

• son champ suivant est un tableau de taille size et pour tout j ∈ {0, . . . , k−1}, la case d’indice sj de ce tableau
contient la valeur sj+1,

• les valeurs des cases du champ suivant dont les indices n’appartiennent pas à {s0, . . . , sk−1} n’ont pas d’importance.

Q12 Expliquer pourquoi le type chemin ne peut pas représenter un chemin non élémentaire.

Q13 Écrire une fonction void greffer(arbre* a, chemin* c) qui implémente la greffe d’un chemin sur un
arbre, en supposant (sans avoir à le vérifier) que le chemin possède un unique sommet qui appartient à
l’arbre : son dernier sommet.

Q14 Écrire une fonction chemin* chemin_aleatoire(graphe g,arbre* a,int s) qui exécute l’algorithme 2.
On pourra utiliser la commande rand()%n quirenvoie uniformément un entier compris entre 0 et n− 1.

Q15 Écrire une fonction arbre* wilson(graphe g,int r) qui implémente l’algorithme 1. On prendra les
initiatives nécessaires pour éviter les fuites mémoire tout en respectant les prototypes des fonctions imposées.

4

2 Problème sur les automates (Ocaml)

5

N007/2022-03-21 17:50:28 Page 2/9

0 1 2𝑎 𝑏𝑎, 𝑏 𝑎
Figure 1 L’automate 𝒜1

Par exemple, l’automate 𝒜1 de la figure 1 est codé par

let a1 = { nb = 3 ;
init = [0];
final = [2];
trans = [(0, 'a', 0); (0, 'a', 1); (0, 'b', 0); (1, 'b', 2); (2, 'a', 2)] } ;;

On accède au nombre d’états par a1.nb, à la liste des états initiaux par a1.init, à la liste des états finaux par
a1.final et à la liste des transitions par a1.trans.
Expressions rationnelles
Soit Σ un alphabet. On définit la syntaxe des expressions rationnelles par :
— ⌀, 𝜀 et 𝑎 sont des expressions rationnelles, pour toute lettre 𝑎 ∈ Σ ;
— si 𝐸 et 𝐹 sont deux expressions rationnelles, alors (𝐸 + 𝐹), (𝐸 ⋅ 𝐹) et 𝐸⋆ sont des expressions rationnelles.
La sémantique des expressions rationnelles est définie par l’application ℒ qui associe à toute expression ration­
nelle un langage rationnel sur Σ par :⎧{⎨{⎩ℒ(⌀) = ∅ (langage vide)ℒ(𝜀) = {𝜀} (langage contenant le mot vide)ℒ(𝑎) = {𝑎} ∀𝑎 ∈ Σ
et, si 𝐸 et 𝐹 sont deux expressions rationnelles,⎧{⎨{⎩ℒ(𝐸 + 𝐹) = ℒ(𝐸) ∪ ℒ(𝐹)ℒ(𝐸 ⋅ 𝐹) = ℒ(𝐸) ⋅ ℒ(𝐹)ℒ(𝐸⋆) = ℒ(𝐸)⋆
où ⋆ représente l’étoile de Kleene d’un langage et ⋅ représente la concaténation de deux langages.
Programmation
Le seul langage de programmation autorisé dans cette épreuve est Caml. Toutes les fonctions des modules Array
et List, ainsi que les fonctions de la bibliothèque standard (celles qui s’écrivent sans nom de module, comme
max ou incr ainsi que les opérateurs comme / ou mod) peuvent être librement utilisés.
Généralement, les objets mathématiques dans le texte seront notés 𝐴, 𝑚, 𝑖, 𝑛, ℓ, alors qu’ils seront représentés
en Caml par a, m, i, n, l.
Les complexités demandées sont des complexités temporelles dans le pire des cas et seront exprimées sous la
forme 𝑂(𝑓(𝑛,𝑚)), où 𝑓 est une fonction usuelle simple et où 𝑛 et 𝑚 sont des paramètres correspondant aux
tailles des objets en entrée de l’algorithme.

I Mots et automates
I.A – Miroir d’un mot et automate transposé
Pour tout mot 𝑤 = 𝑎0𝑎1...𝑎𝑛−1 de longueur 𝑛 ∈ ℕ∗, on définit son mot miroir 𝑤̃ par 𝑤̃ = 𝑎𝑛−1...𝑎1𝑎0. Par
convention, le mot vide 𝜀 est son propre miroir.
Pour tout langage 𝐿 ⊂ Σ⋆, on définit son langage miroir 𝐿̃ constitué de l’ensemble des mots miroirs du langage 𝐿 :𝐿̃ = {𝑤̃ | 𝑤 ∈ 𝐿}.
Q 1. Décrire le langage 𝐿1 de l’automate 𝒜1 de l’exemple de la figure 1 et décrire son langage miroir 𝐿̃1.
Q 2. Dessiner un automate 𝒜1, reconnaissant le langage miroir 𝐿̃1.
Soit 𝐴 = (𝑄, 𝐼, 𝐹 , 𝑇) un automate non déterministe et 𝐿 = 𝐿𝐴 le langage qu’il reconnait.
Q 3. Donner, en justifiant, la construction de l’automate miroir 𝐴 = (𝑄, 𝐼′, 𝐹 ′, 𝑇 ′) qui reconnait le langage𝐿̃.
Q 4. Écrire une fonction transpose de signature automate -> automate qui étant donné un automate 𝐴
non déterministe en entrée, renvoie un automate non déterministe qui reconnait le miroir de 𝐿𝐴.
Q 5. Quelle est la complexité de cette fonction ?

N007/2022-03-21 17:50:28 Page 3/9

I.B – Palindromes et rationalité
Soit 𝑤 ∈ Σ⋆. On dit que le mot 𝑤 est un palindrome si 𝑤̃ = 𝑤.
Q 6. Écrire une fonction palindrome de signature string -> bool qui teste, en temps linéaire, si un mot
est un palindrome.
On rappelle que pour tout 0 ⩽ 𝑖 < (𝚂𝚝𝚛𝚒𝚗𝚐.𝚕𝚎𝚗𝚐𝚝𝚑 𝚜), le 𝑖-ième caractère de la chaine de caractères s est
obtenu par l’expression s.[i].
Pour un alphabet Σ, on note Pal(Σ) l’ensemble des palindromes de Σ⋆.
Q 7. Montrer que si Σ est un alphabet à une lettre, alors Pal(Σ) est rationnel.
Q 8. Montrer que si Σ contient au moins deux lettres, alors Pal(Σ) n’est pas rationnel.

On pourra utiliser un automate et un mot de Pal(Σ) ∩ 𝑎⋆𝑏𝑎⋆.
Soit 𝐿 ⊂ Σ⋆ un langage reconnu par l’automate 𝐴 = (𝑄, 𝐼, 𝐹 , 𝑇).
Pour (𝑞, 𝑞′) ∈ 𝑄2, on note 𝐿𝑞,𝑞′ le langage de tous les mots 𝑤 qui étiquettent un chemin dans 𝐴 partant de 𝑞 et
arrivant en 𝑞′.
Q 9. Montrer que 𝐿𝑞,𝑞′ est reconnaissable et exprimer le langage 𝐿𝐴 en fonction de langages 𝐿𝑞,𝑞′ .
Q 10. Montrer que Pal(Σ) ∩ (Σ2)⋆ = {𝑢𝑢̃ | 𝑢 ∈ Σ⋆}.
Soit 𝐿 un langage rationnel reconnu par un automate 𝐴 = (𝑄, 𝐼, 𝐹 , 𝑇).
On définit les langages 𝐷(𝐿) = {𝑤𝑤̃ | 𝑤 ∈ 𝐿} et 𝑅(𝐿) = {𝑤 ∈ Σ⋆ | 𝑤𝑤̃ ∈ 𝐿}.
Q 11. Décrire simplement les langages 𝐷(𝑎⋆𝑏) et 𝑅(𝑎⋆𝑏⋆𝑎⋆).
Q 12. Les langages 𝐷(𝐿) et 𝑅(𝐿) sont-ils reconnaissables ?

On pourra faire intervenir les langages 𝐿𝑞,𝑞′ , définis ci-dessus.
I.C – Déterminisation
On rappelle que pour tout automate 𝐴 = (𝑄, 𝐼, 𝐹 , 𝑇) non déterministe, on peut définir l’automate déterminisé
accessible 𝐴det = (𝑌 , {𝐼}, 𝐹 ′, 𝛿) où 𝑌 ⊂ 𝒫(𝑄) est l’ensemble des états accessibles depuis l’état initial {𝐼} dans
l’automate des parties. Cet automate déterminisé accessible reconnait le même langage que l’automate 𝐴.
Q 13. Écrire un automate 𝒜2 non déterministe à 4 états qui reconnait le langage 𝐿2 = (𝑏 + 𝑎𝑏)⋆𝑏𝑎. Cet
automate devra avoir un unique état initial et un unique état final.
Q 14. Appliquer l’algorithme de déterminisation sur l’automate miroir 𝒜2 afin d’obtenir l’automate 𝒜3 =(𝒜2)det. Les états de 𝒜3 seront renommés 𝑒0, 𝑒1,
Q 15. Appliquer l’algorithme de déterminisation sur l’automate miroir 𝒜3 afin d’obtenir l’automate 𝒜4 =(𝒜3)det. Ses états seront renommés 𝑞0, 𝑞1,
Q 16. Quel doit être le langage reconnu par l’automate 𝒜4 ?
On cherche à généraliser cette construction de façon effective. Pour cela, on va implémenter l’algorithme de
déterminisation.
Il faut d’abord choisir une représentation pour les parties de 𝑄 (c’est-à-dire des ensembles d’états). Une solution
naïve consisterait à utiliser des listes d’états. Lors du déroulement de l’algorithme de déterminisation, on peut
être amené à effectuer des réunions d’ensembles. Une concaténation simple des listes génère des doublons qu’il
faut ensuite supprimer afin que les listes codent bien des ensembles d’états.
Q 17. Écrire une fonction supprimer de signature 'a list -> 'a list qui prend une liste en entrée et
supprime toutes les occurrences multiples de ses éléments.
Q 18. Donner la complexité de votre algorithme en fonction de la taille de la liste d’entrée.
On choisit plutôt de coder les ensembles d’états par des entiers.
Pour un automate 𝐴 = (𝑄, 𝐼, 𝐹 , 𝑇) tel que 𝑄 = ⟦0, 𝑛 − 1⟧ , toute partie de 𝑄 va être représentée par un entier
entre 0 et 2𝑛 − 1. Dans la suite, on supposera 𝑛 ⩽ 20. Soit 𝑋 une partie de ⟦0, 𝑛 − 1⟧. On définit le numéro de𝑋 par la fonction suivante numero(𝑋) = ∑𝑖∈𝑋 2𝑖.
On se donne pow un tableau des puissances de 2, qui contient toutes les puissances 2𝑘, pour 0 ⩽ 𝑘 ⩽ 20.

let pow = Array.make 21 1 ;;
for i = 1 to 20 do

pow.(i) <- pow.(i-1) * 2
done ;;

Soit 𝑞 ∈ ⟦0, 𝑛 − 1⟧ un état et 𝑘 ∈ ⟦0, 2𝑛 − 1⟧ le numéro d’un ensemble d’états 𝑋, c’est-à-dire numero(𝑋) = 𝑘.

N007/2022-03-21 17:50:28 Page 4/9

Q 19. Écrire une fonction est_dans de signature int -> int -> bool qui teste, à l’aide d’opérations arith­
métiques, si l’état 𝑞 est dans l’ensemble d’états représenté par le numéro 𝑘 en 𝑂(1) opérations.
Soit ℓ une liste d’états contenant éventuellement plusieurs fois le même état, représentant l’ensemble 𝑋.
Q 20. Écrire une fonction numero de signature int list -> int qui calcule le numéro de l’ensemble 𝑋.
Par exemple ℓ = [1; 5; 2; 5; 2; 5; 2; 2; 1; 2; 1] représente l’ensemble 𝑋 = {1, 2, 5}, de numéro 38 = 21 + 22 + 25.
Soit ℓ une liste d’états et 𝑋 un ensemble d’états représenté par son numéro 𝑘.
Q 21. Écrire une fonction intersecte de signature int list -> int -> bool qui vérifie si un élément deℓ est contenu dans l’ensemble 𝑋 représenté par 𝑘.
On prépare désormais la fonction de transition de l’automate déterminisé accessible.
Soit 𝑋 un ensemble d’états de 𝑄. On suppose désormais que l’automate est sur l’alphabet à deux lettresΣ = {𝑎, 𝑏}.
On cherche à calculer la fonction de transition 𝛿 : 𝒫(𝑄) × Σ → 𝒫(𝑄) de l’automate déterminisé. On rappelle
que, pour 𝑐 ∈ {𝑎, 𝑏} et 𝑋 ∈ 𝒫(𝑄), 𝛿(𝑋, 𝑐) = ⋃𝑞∈𝑋 {𝑞′ ∈ 𝑄 | (𝑞, 𝑐, 𝑞′) ∈ 𝑇} .
La transition (𝑋, 𝑐, 𝛿(𝑋, 𝑐)) sera alors dans l’automate déterminisé.
En parcourant l’ensemble des transitions 𝑇 de l’automate, on va simultanément calculer les états (𝛿(𝑋, 𝑎), 𝛿(𝑋, 𝑏)),
ce qui correspond à la table de transition depuis l’état 𝑋.
Q 22. Écrire une fonction etat_suivant de signature int -> (int*char*int) list -> (int*int) qui,
étant donné en entrée un entier 𝑘 tel que 𝑘 = numero(𝑋) et la liste des transitions 𝑇 , calcule le couple d’entiers(𝑘𝑎, 𝑘𝑏) tels que 𝑘𝑎 = numero(𝛿(𝑋, 𝑎)) et 𝑘𝑏 = numero(𝛿(𝑋, 𝑏)).
Au moment de construire l’automate déterminisé accessible 𝐴det, on va être amené à renommer (c’est-à-dire ici
renuméroter) les états de 𝐴det pour avoir au final un ensemble d’états 𝑌 de la forme ⟦0,𝑁 − 1⟧ où 𝑁 sera le
nombre de parties de 𝑄 accessibles dans l’automate des parties. Pour cela, on va simplement utiliser une liste
contenant des couples (𝑘, 𝑣) où 𝑘 est le numéro d’un ensemble d’états 𝑋 et 𝑣 le numéro final par lequel 𝑘 sera
remplacé. Par exemple, si à un moment donné de l’algorithme, la liste contient (6, 2), "l’ensemble d’états 6" (qui
correspond dans 𝒫(𝑄) à {1, 2}) est renuméroté 2.
Q 23. Écrire une fonction cherche de signature int -> (int*int) list -> int qui renvoie le nouveau
numéro d’un ensemble d’états représenté par son numéro 𝑘 dans une liste comme ci-dessus (−1 si 𝑘 n’est pas
présent).
Q 24. Écrire une fonction determinise de signature automate -> automate qui calcule le déterminisé ac­
cessible de l’automate d’entrée. On expliquera brièvement la démarche utilisée.
Q 25. Quelle est la complexité de votre fonction determinise en fonction du nombre d’états 𝑛 de 𝐴 et du
nombre d’états 𝑁 de 𝐴det ?

I.D – Algorithme de Brzozowski
L’algorithme de Brzozowski permet d’obtenir un automate déterministe ayant un nombre minimal d’états,
reconnaissant le même langage que l’automate initial.
On se donne un automate 𝐴 = (𝑄, 𝐼, {𝑓}, 𝑇) qui reconnait le langage 𝐿 et tel que l’automate miroir 𝐴 est
déterministe et accessible.
On note 𝐴det = (𝑌 , {𝐼}, 𝐹 , 𝛿) le déterminisé accessible de 𝐴.
Si 𝑢 est un mot et 𝐿 un langage, on note 𝑢−1𝐿 = {𝑤 ∈ Σ⋆ | 𝑢𝑤 ∈ 𝐿}.
Q 26. Soit 𝑞 ∈ 𝑄 un état et 𝑢 ∈ Σ⋆ un mot. Montrer que si 𝑞 ∈ 𝛿⋆({𝐼}, 𝑢), alors il existe un mot 𝑤 ∈ Σ⋆ tel
que 𝑢𝑤 ∈ 𝐿.
Q 27. Montrer la propriété (∗) : si l’on prend deux mots 𝑢 et 𝑣 dans Σ⋆ tels que 𝑢−1𝐿 = 𝑣−1𝐿, alors dans
l’automate 𝐴det déterminisé, 𝛿⋆({𝐼}, 𝑢) = 𝛿⋆({𝐼}, 𝑣).
Q 28. En déduire que si 𝐴 est un automate quelconque reconnaissant 𝐿, alors en posant 𝐵 = (𝐴)det, montrer
que (𝐵̃)det reconnait 𝐿 et vérifie la propriété (∗).
Q 29. Écrire une fonction minimal de signature automate -> automate appliquant la construction de Br­
zozowski sur l’automate d’entrée. On fera abstraction de la taille des automates générés, possiblement problé­
matique.

