DS2 (sujet type Mines Centrale)

1 Probléme sur les arbres couvrants (C)

Dans ce probléme, un graphe G est un couple (S, A) ou :
e S est un ensemble fini dont les éléments sont les sommets de G ;

e A= (ap,ai,...,amn—1) est la suite des arétes de G, une aréte étant une partie a = {s,t} de S de cardinal 2. Les
sommets s et t sont appelés les extrémités de 'aréte a et on dira que a relie s et t. Si s et t sont reliés par une
aréte, on dit qu’ils sont voisins ou adjacents.

Ainsi, les graphes sont non orientés et il n’y a pas d’aréte reliant un sommet & lui-méme.
Par convention, nous noterons n (respectivement m) le nombre de sommets (respectivement d’arétes) du graphe
et nous supposerons que S = {0,1,...,n —1} = 5,,.

Un graphe sera représenté par le type C suivant :

struct graphe = {int size;
int* degrees;
int** adj;};

typedef struct graphe graphe;

Si G est un graphe représenté par g, alors le nombre de sommets n du graphe est donné par le champs size, le
tableau g.degrees de taille n contient dans sa case d’indice i le degré du sommet i et le tableau g.adj[i] est de
taille g.degrees[i] et contient les voisins du sommet i dans G.

Soit G = (S, A) un graphe.

e Un chemin dans G est une suite ¢ = (sg, $1,...,5j-1,5j,...,Sk—1, Sg) Oll pour tout j compris entre 1 et k, s;_1
et s; sont des sommets voisins. On dira que ¢ est un chemin de sy a s de longueur k. Par convention, pour s
sommet de G, il existe un chemin de longueur nulle de s & s.

e La composante connexe d’un sommet s de G, notée C; , est 'ensemble des sommets t de G tels qu’il existe un
chemin de s a t.

e On dit que G est connexe si pour tous sommets s et t de @, il existe un chemin de s & t.

e Un cycle dans G est un chemin de longueur k£ > 2 d’un sommet & lui-méme et dont les arétes sont deux a deux
distinctes. On dit que G est acyclique s’il ne contient aucun cycle.

Un arbre est un graphe connexe acyclique.

1.1 Caractérisation des arbres

Soit G = (Sp,A) un graphe a n sommets et m arétes, représenté par g. Les arétes de G sont donc numérotées
A= (CL(),CLl, cee 7am,—1)-

Q1 Montrer que les composantes connexes de G forment une partition de .S, , c’est-a-dire que :
1. Vs € 8,,Cs £ 0 ;
2. Sn = Uses, Cs 3
3. Pour tous sommets s et ¢, soit Cy = C , soit Cs N Cy = 0.

Q2 Montrer que si s et ¢ sont deux sommets de G tels que t € C, il existe un plus court chemin de s a ¢ et
que les sommets d’un plus court chemin sont deux & deux distincts.

Pour k € {0,1,...,m}, Gy, désigne le graphe (Sy, (ag,a1,...,ar—1)) obtenu en ne conservant que les k premiéres
arétes de G.

Q3 On suppose que G est un arbre. Montrer que pour tout k € {0,1,...,m — 1}, les extrémités de ay
appartiennent & deux composantes connexes différentes de G. En déduire que m =n — 1.

Q4 Montrer que les trois propriétés suivantes sont équivalentes :
1. G est un arbre ;
2. G est connexe et m =n — 1.

3. G est acyclique et m =n — 1.

Nous souhaitons écrire une fonction qui teste si un graphe est un arbre. Nous allons pour cela utiliser une structure
de données permettant de manipuler les partitions de ’ensemble S, : si P = {X1, Xo,..., X} est une partition de
S, on choisit dans chaque partie X;, un élément particulier r;, appelé représentant de X;. Notre structure de données
doit nous permettre :

e de calculer, pour s € S, , le représentant de la partie X; contenant s ; cet élément sera également appelé
représentant de s ;

e pour deux entiers s et ¢ représentant des parties distinctes X; et X, de transformer P en réunissant X; et X,
s ou t devenant le représentant de la partie X; U Xj;.

Nous représenterons une partition P = {Xl,Xg, e, X k} de S,, par une forét : chaque X; est représenté par un
arbre dont les noeuds sont étiquetés par les éléments de X; et de racine le représentant r; de X; , les arcs étant orientés
vers la racine. Nous noterons h(r;) la hauteur de Parbre X; , c’est-a-dire la longueur de sa plus longue branche.

Ainsi, Py = {{0, 2}, {1, 5, 6, 8}, {3, 4, 7}} est une partition de Sy et peut par exemple étre représentée
par la forét de la figure suivante :

h(0) =1 h(6) = 2 h(T) =1

© O—© —®
Figure 3 Une représentation de Py = {{0,2},{1,5,6,8},{3,4,7}}

Le calcul du représentant d'un entier s € S, se fait donc en remontant jusqu’a la racine de l'arbre (ce qui
justifie orientation des arcs). Dans 'exemple, les représentants de 2, 1 et 7 sont respectivement 0, 6 et 7. Une
partition P de S,, = {0,1,...,n — 1} sera représentée par un tableau d’entiers P de taille n de sorte que pour tout
s€{0,1,...,n—1}, P[s] est le pére de s si s n’est pas un représentant, et est égal & —1 — h(s) si s est un représentant.
La partition Py peut ainsi étre représentée par le tableau : {-2, 5, 0, 7, 7, 6, -3, -2, 6}

La réunion de deux parties X; et X; de représentants s et ¢ distincts se fait selon la méthode suivante :

e si h(s) > h(t), s est choisi pour représentant de la partie X; U X, et devient le pére de ¢ ;

e si h(s) < h(t), t est choisi pour représentant de la partie X; U X et devient le pére de s.

Q5 Donner le résultat de la réunion de X; et X5 dans Py.

Q6 Ecrire une fonction int representant(int* tab, int size, int s) qui, appliquée & un tableau représentant
une partition de S,, de taille size et & s € S, , renvoie le représentant de s. On demande que la fonction
proposée soit récursive.

Q7 Ecrire une fonction void union(int* tab, int size, int s, int t) qui, appliquée & un tableau représentant
une partition de S, de taille size et & deux représentants s et ¢ distincts, modifie la partition en réunissant
les arbres associés a s et t, selon la méthode expliquée ci-dessus, sans oublier, si nécessaire, de modifier h(s)

ou h(t).

On note P, (0) la partition de S,, ou toutes les parties sont des singletons.

Q8 Soit P une partition de S,, construite a partir de P, (0) par des réunions successives selon la méthode
précédente. Montrer que si s est le représentant d’une partie X € P, alors le cardinal de X vérifie | X | > 27(9).

Q9 En déduire les complexités des deux fonctions précédentes dans le pire des cas en fonction de n pour une
partition P construite & partir de P, (0).

Q10 Citer et expliquer le principe de la méthode au programme qui permet d’améliorer la complexité amortie
de ces opérations. Ecrire une fonction representant_opt qui inclut cette optimisation.

Q11 Ecrire une fonction bool est_un_arbre(graphe g) qui, appliquée 4 un graphe g représentant un graphe
G, renvoie true si G est un arbre et false sinon.

1.2 Algorithme de Wilson : arbre couvrant aléatoire

Soit G = (S,, A) un graphe connexe et soit un entier € S,,. Un arbre couvrant de G enraciné en r est un arbre
T = (S,, B) tel que B C A et dont r a été choisi pour racine.

On convient de représenter un tel arbre en suivant la méme idée que pour représenter une partition dans la partie
précédente : par un tableau tel que la case s du tableau contient I'indice du pére de s dans l’arbre si s n’est pas
lui-méme la racine, et —1 sinon :

struct arbre = {int size; int* peres;};
typedef struct arbre arbre;

Dans cette partie, nous supposons que G = (S, A) est un graphe connexe et r un sommet de ce graphe. Nous
cherchons & construire un arbre couvrant aléatoire de G enraciné en r.

Nous allons pour cela faire évoluer dynamiquement un arbre 7' , représenté par un tableau parent de longueur n
vérifiant :

e la case r de parent contient —1 ;
e si s € 5, n'est pas un sommet de 7', alors la case s de parent contient —2;

e si s € 5, est un sommet de T différent de la racine, alors la case s de parent contient le pére de s dans 7.

La construction de I'arbre 1" se fait en suivant ’algorithme 1.

Algorithme 1 Algorithme de Wilson de création d’un arbre couvrant aléatoire

entrée: G graphe connexe, r sommet de G

sortie: arbre couvrant aléatoire de G enraciné en r
: T—({r}0)

2: pour tout sommet s de G faire

3 si s n’est pas un sommet de T alors
4 ¢ — chemin-aléatoire(G, T, s)
5: greffer(c, T)
6
7
8

—

fin si
: fin pour
: renvoyer T

La greffe d’'un chemin élémentaire qui termine par un sommet de T" et dont c’est le seul sommet en commun avec
T se fait de maniére naturelle, en ajoutant ce chemin.

Le calcul d’'un chemin aléatoire dans le graphe entre un sommet qui n’appartient pas a ’arbre et un sommet qui
appartient a ’arbre se fait en suivant I’algorithme 2.

Algorithme 2 Algorithme chemin-aléatoire

entrée: G graphe connexe, T arbre sous-graphe de G, s sommetde G et pasde T
sortie: ¢ =(s5=s,$,...,S;) chemin aléatoire élémentaire de G partant de s dont le seul sommet dans T est s

1: ¢ —(s)

2: tant que le dernier sommet de ¢ n’appartient pas a T faire

3: on note ¢ =($y, $y,...,5t)

4: soit u un voisin de s; dans G (choisi aléatoirement et uniformément)
5: siilexiste i € [0, k] tel que u =s; alors

6: c—(Spy..r5;)

7: sinon ¢ — (sp,..., S, U)

8: fin si

9: fin tant que
10: renvoyer ¢

On représente un chemin élémentaire en C par le type :

struct chemin = {int debut; int fin; int* suivant; int size;};
typedef struct chemin chemin;

de telle sorte que si le chemin ¢ = (sg, s1, ..., sk) est représenté par c, alors :
e le champ debut de c contient sg,
e son champ fin contient s,

e son champ suivant est un tableau de taille size et pour tout j € {0,...,k—1}, la case d’indice s; de ce tableau
contient la valeur s;1,

e les valeurs des cases du champ suivant dont les indices n’appartiennent pas a {so, . . ., sy—1} n’ont pas d’importance.

Q12 Expliquer pourquoi le type chemin ne peut pas représenter un chemin non élémentaire.

Q13 Ecrire une fonction void greffer(arbrex a, chemin* c) qui implémente la greffe d’'un chemin sur un
arbre, en supposant (sans avoir a le vérifier) que le chemin posséde un unique sommet qui appartient &
I’arbre : son dernier sommet.

Q14 Ecrire une fonction chemin* chemin_aleatoire(graphe g,arbre* a,int s) qui exécute I’algorithme 2.
On pourra utiliser la commande rand () %n quirenvoie uniformément un entier compris entre 0 et n — 1.

Q15 Ecrire une fonction arbre* wilson(graphe g,int r) qui implémente I’algorithme 1. On prendra les
initiatives nécessaires pour éviter les fuites mémoire tout en respectant les prototypes des fonctions imposées.

2 Probléme sur les automates (Ocaml)

Langages et mots
On appelle alphabet tout ensemble fini de lettres. On note généralement ’alphabet 3.
On note X* 'ensemble de tous les mots formés sur 'alphabet X.

La longueur (ou la taille) d’'un mot w € ¥* est son nombre de lettres et se note |w|. Le mot vide, noté e, est le
seul mot de longueur nulle.

Si un mot w € X* est de longueur |w| = n, on le note w = aya;...a ol les a; sont des lettres de X.

n—1

Un langage sur l'alphabet ¥ est un ensemble L C X*.

L’étoile de Kleene d'un langage L, notée L*, est le plus petit langage qui inclut L, qui contient € et qui est
stable par concaténation.

La concaténation de deux langages L et L’ est notée L-L’, souvent abrégé en LL’ lorsqu’il n’y a pas d’ambiguité.
Automates finis

Un automate fini non déterministe sur un alphabet 3 est un quadruplet A = (Q, I, F,T), ou @ est un ensemble
fini d’états, I C @ est le sous-ensemble des états initiaux, F C @ est le sous-ensemble des états finaux et
I'ensemble T' C @ x ¥ x @ est 'ensemble des transitions, étiquetées par les lettres de I’alphabet .

a
Si (q,a,q") € T, on note ¢ — ¢’ cette transition.

Pour représenter graphiquement un automate, on utilise une fleche entrante pour désigner un état initial et une
fleche sortante pour désigner un état final, comme l'illustre I'exemple de la figure 1.

Un mot w = ag...a,,_; est reconnu par 'automate A s’il existe une succession de transitions :

Qg ay p1

QO =@ = Qo1 = Gy avec g€l et g,€F.

On dira que le mot w étiquette un chemin dans I'automate A allant de ¢, a ¢,,.

Le langage d’un automate A, noté L ,, est exactement 1’ensemble des mots reconnus par 'automate A. On dit
alors que A reconnait L 4. Un langage est dit reconnaissable s’il est le langage d’'un automate fini.

Un automate fini déterministe sur un alphabet ¥ est un quadruplet A = (Q,{qy}, F,), olt 'ensemble des états
initiaux est un singleton (un unique état initial) et ot 'ensemble des transitions T est remplacé par une fonction
de transition ¢ définie sur un sous-ensemble de Q X ¥ et & valeurs dans Q. Pour chaque couple (¢,a) € Q X X,
il existe au plus une transition (g, a,q’) qui, si elle existe, est telle que ¢’ = d(q, a).

I’automate est déterministe complet si la fonction de transition § est définie sur @ x X. Dans ce cas, on définit
la fonction de transition étendue 6* sur @ X X* par

6*((]78) =dq
vieQ {5*(% wa) = §(6*(q,w),a) Ywe X VaeX

Les automates seront représentés par le type Caml suivant

type automate = { nb : int; (* nombre d'états *)
init : int list ; (x états initiaux *)
final : int list; (x états finaux *)
trans : (int * char * int) list} ;; (* transitions *)

lensemble d’états @ d’un automate implémenté étant toujours supposé étre un intervalle d’entiers [0,n — 1].

a7b a

3
O ONSO

Figure 1 L’automate A,

Par exemple, 'automate A; de la figure 1 est codé par

let a1 = { nb = 3 ;
init = [0];
final = [2];
trans = [(0, 'a', 0); (0, 'a', 1); (0, 'p', 0); (1, 'b', 2); (2, 'a', 2] } ;;

On accede au nombre d’états par al.nb, a la liste des états initiaux par al.init, a la liste des états finaux par
al.final et a la liste des transitions par al.trans.

Expressions rationnelles

Soit ¥ un alphabet. On définit la syntaxe des expressions rationnelles par :

— &, € et a sont des expressions rationnelles, pour toute lettre a € ¥ ;

— si F et F sont deux expressions rationnelles, alors (E 4 F), (E - F) et E* sont des expressions rationnelles.

La sémantique des expressions rationnelles est définie par 'application £ qui associe & toute expression ration-
nelle un langage rationnel sur ¥ par :

£(®) =0 (langage vide)
£(e) ={e} (langage contenant le mot vide)
L(a)={a} Vaelx

et, si E et F' sont deux expressions rationnelles,

£(E+F) £(E) U £(F)
L(E-F)=XL(E)- L(F)
L(E) L(E)*

ou x représente 1’étoile de Kleene d’un langage et - représente la concaténation de deux langages.
Programmation

Le seul langage de programmation autorisé dans cette épreuve est Caml. Toutes les fonctions des modules Array
et List, ainsi que les fonctions de la bibliothéque standard (celles qui s’écrivent sans nom de module, comme
max ou incr ainsi que les opérateurs comme / ou mod) peuvent étre librement utilisés.

Généralement, les objets mathématiques dans le texte seront notés A, m, i, n, £, alors qu’ils seront représentés
en Caml par a, m, i, n, 1.

Les complexités demandées sont des complexités temporelles dans le pire des cas et seront exprimées sous la
forme O(f (n,m)), ou f est une fonction usuelle simple et ou n et m sont des parameétres correspondant aux
tailles des objets en entrée de 1'algorithme.

I Mots et automates

I.A — Miroir d’un mot et automate transposé

Pour tout mot w = aga,...a,,_; de longueur n € N*, on définit son mot miroir w par ¥ = a
convention, le mot vide ¢ est son propre miroir.

n1---a109. Par

Pour tout langage L C ¥*, on définit son langage miroir L constitué de ’ensemble des mots miroirs du langage L :

L={o|welL)

Q1. Décrire le langage L; de 'automate A; de 'exemple de la figure 1 et décrire son langage miroir ﬂl.
Q 2. Dessiner un automate .4, reconnaissant le langage miroir L.

Soit A = (Q,I,F,T) un automate non déterministe et L = L, le langage qu’il reconnait.

Q 3. Donner, en justifiant, la construction de I'automate miroir A = (Q,I’, F’,T") qui reconnait le langage
L.

Q 4. Ecrire une fonction transpose de signature automate -> automate qui étant donné un automate A

non déterministe en entrée, renvoie un automate non déterministe qui reconnait le miroir de L 4.

Q 5. Quelle est la complexité de cette fonction ?

N007/2022-03-21 17:50:28 Page 2/9 (@) BY-NC-sA_|

I.B — Palindromes et rationalité
Soit w € ¥*. On dit que le mot w est un palindrome si W = w.

Q 6. Ecrire une fonction palindrome de signature string -> bool qui teste, en temps linéaire, si un mot
est un palindrome.

On rappelle que pour tout 0 < 7 < (String.length s), le i-itme caractére de la chaine de caractéres s est
obtenu par 'expression s. [i].

Pour un alphabet ¥, on note Pal(¥) ensemble des palindromes de ¥*.

Q. Montrer que si ¥ est un alphabet a une lettre, alors Pal(X) est rationnel.

Q 8. Montrer que si ¥ contient au moins deux lettres, alors Pal(¥) n’est pas rationnel.
On pourra utiliser un automate et un mot de Pal(3) N a*ba*.

Soit L C ¥* un langage reconnu par 'automate A = (Q, I, F,T).

Pour (q,q’) € Q?, on note L, , le langage de tous les mots w qui étiquettent un chemin dans A partant de g et
arrivant en ¢’.

Q9. Montrer que L, ,, est reconnaissable et exprimer le langage L4 en fonction de langages L, .
Q 10. Montrer que Pal(X) N (X2)" = {ua | u € ¥*}.

Soit L un langage rationnel reconnu par un automate A = (Q, I, F,T).

On définit les langages D(L) = {ww | w € L} et R(L) = {w € ¥* | ww € L}.

Q 11. Décrire simplement les langages D(a*b) et R(a*b*a*).

Q 12. Les langages D(L) et R(L) sont-ils reconnaissables ?

On pourra faire intervenir les langages L, définis ci-dessus.

a,q""

I1.C — Déterminisation

On rappelle que pour tout automate A = (Q, I, F,T) non déterministe, on peut définir automate déterminisé
accessible Ay, = (Y, {I}, F’',d) ou Y C P(Q) est 'ensemble des états accessibles depuis I’état initial {I} dans
I’automate des parties. Cet automate déterminisé accessible reconnait le méme langage que 'automate A.

Q 13. Ecrire un automate .4, non déterministe & 4 états qui reconnait le langage L, = (b + ab)*ba. Cet
automate devra avoir un unique état initial et un unique état final.

Q 14. Appliquer 'algorithme de déterminisation sur 'automate miroir ;l; afin d’obtenir 'automate A5 =

(/lQ) . Les états de A3 seront renommés e, ey,
det

Q 15. Appliquer 'algorithme de déterminisation sur ’automate miroir ;42 afin d’obtenir I'automate A, =

(ﬂ3>d - Ses états seront renommés ¢, gy, -...
€

Q 16. Quel doit étre le langage reconnu par ’automate A, ?
On cherche a généraliser cette construction de facon effective. Pour cela, on va implémenter 1’algorithme de
déterminisation.

11 faut d’abord choisir une représentation pour les parties de @ (c’est-a-dire des ensembles d’états). Une solution
naive consisterait a utiliser des listes d’états. Lors du déroulement de I'algorithme de déterminisation, on peut
étre amené a effectuer des réunions d’ensembles. Une concaténation simple des listes génere des doublons qu’il
faut ensuite supprimer afin que les listes codent bien des ensembles d’états.

Q 17. Ecrire une fonction supprimer de signature 'a list -> 'a list qui prend une liste en entrée et
supprime toutes les occurrences multiples de ses éléments.

Q 18. Donner la complexité de votre algorithme en fonction de la taille de la liste d’entrée.
On choisit plutot de coder les ensembles d’états par des entiers.

Pour un automate A = (Q,I, F,T) tel que @ = [0,n — 1] , toute partie de @) va étre représentée par un entier
entre 0 et 2™ — 1. Dans la suite, on supposera n < 20. Soit X une partie de [0,n — 1]. On définit le numéro de
X par la fonction suivante

numero(X) = Z 21,
ieX

On se donne pow un tableau des puissances de 2, qui contient toutes les puissances 2F, pour 0 < k < 20.
let pow = Array.make 21 1 ;;
for i = 1 to 20 do
pow. (i) <- pow.(i-1) * 2

done ;;

Soit g € [0,n — 1] un état et k € [0,2" — 1] le numéro d’un ensemble d’états X, c’est-a-dire numero(X) = k.

N007/2022-03-21 17:50:28 Page 3/9 (@) BY-NC-sA_|

Q 19. Ecrire une fonction est_dans de signature int -> int -> bool qui teste, & 'aide d’opérations arith-
métiques, si I’état ¢ est dans ensemble d’états représenté par le numéro k en O(1) opérations.

Soit ¢ une liste d’états contenant éventuellement plusieurs fois le méme état, représentant ’ensemble X.

Q 20. Ecrire une fonction numero de signature int list -> int qui calcule le numéro de Pensemble X.
Par exemple £ = [1;5;2;5;2; 5;2; 2; 1; 2; 1] représente I'ensemble X = {1,2,5}, de numéro 38 = 2% + 22 4 25,
Soit £ une liste d’états et X un ensemble d’états représenté par son numéro k.

Q 21. Ecrire une fonction intersecte de signature int list -> int -> bool qui vérifie si un élément de
{ est contenu dans I’ensemble X représenté par k.

On prépare désormais la fonction de transition de 'automate déterminisé accessible.

Soit X un ensemble d’états de (. On suppose désormais que l'automate est sur l'alphabet a deux lettres
Y = {a,b}.

On cherche a calculer la fonction de transition ¢ : P(Q) x ¥ — P(Q) de 'automate déterminisé. On rappelle
que, pour ¢ € {a,b} et X € P(Q),

§(X.c)=|J{d €Q|(gcq)eT}.

qgeX

La transition (X, ¢, 0(X,c)) sera alors dans Pautomate déterminisé.

En parcourant 'ensemble des transitions 7' de ’automate, on va simultanément calculer les états (6(X, a), 6(X, b)),
ce qui correspond a la table de transition depuis 1’état X.

Q 22. Ecrire une fonction etat_suivant de signature int -> (int*char*int) list -> (int*int) qui,
étant donné en entrée un entier k tel que k = numero(X) et la liste des transitions T, calcule le couple d’entiers
(kq, ky) tels que k, = numero(§(X, a)) et k, = numero(6(X,b)).

Au moment de construire 'automate déterminisé accessible A, on va étre amené a renommer (c’est-a-dire ici
renuméroter) les états de Ay, pour avoir au final un ensemble d’états Y de la forme [0, N — 1] ot N sera le
nombre de parties de () accessibles dans 'automate des parties. Pour cela, on va simplement utiliser une liste
contenant des couples (k,v) ou k est le numéro d’un ensemble d’états X et v le numéro final par lequel k sera
remplacé. Par exemple, si & un moment donné de 1’algorithme, la liste contient (6,2), "'ensemble d’états 6" (qui
correspond dans P(Q) a {1,2}) est renuméroté 2.

Q 23. Ecrire une fonction cherche de signature int -> (int*int) list -> int qui renvoie le nouveau
numéro d’un ensemble d’états représenté par son numéro k dans une liste comme ci-dessus (—1 si k n’est pas
présent).

Q 24. Ecrire une fonction determinise de signature automate —-> automate qui calcule le déterminisé ac-
cessible de 'automate d’entrée. On expliquera brievement la démarche utilisée.

Q 25. Quelle est la complexité de votre fonction determinise en fonction du nombre d’états n de A et du
nombre d’états N de Ay, 7

I.D — Algorithme de Brzozowski

L’algorithme de Brzozowski permet d’obtenir un automate déterministe ayant un nombre minimal d’états,
reconnaissant le méme langage que 'automate initial.

On se donne un automate A = (Q,I,{f},T) qui reconnait le langage L et tel que lautomate miroir A est
déterministe et accessible.

On note Ay, = (Y, {I}, F,) le déterminisé accessible de A.

Si u est un mot et L un langage, on note u 'L = {w € ¥* | uw € L}.

Q 26. Soit ¢ € @ un état et u € ¥* un mot. Montrer que si ¢ € 6*({I}, u), alors il existe un mot w € ¥* tel
que uw € L.

Q 27. Montrer la propriété (x): si 'on prend deux mots u et v dans X* tels que v 'L = v~ 'L, alors dans
lautomate A, déterminisé, 6*({I},u) = &*({I},v).

Q 28. En déduire que si A est un automate quelconque reconnaissant L, alors en posant B = (/i)d , montrer
et

que (B)det reconnait L et vérifie la propriété (x).

Q 29. Ecrire une fonction minimal de signature automate -> automate appliquant la construction de Br-
zozowski sur I'automate d’entrée. On fera abstraction de la taille des automates générés, possiblement problé-
matique.

N007/2022-03-21 17:50:28 Page 4/9 (@) BY-NC-sA_|

