Apprentissage supervisé (apprendre a partir d’exemples)

janvier 2026

L’apprentissage automatique est un domaine de l'intelligence artificielle qui consiste a concevoir des modéles
capables de s’adapter et de s’améliorer a partir de 'analyse d’'une grande quantité de données.

On dit qu'un agent apprend s’il améliore ses performances lors de taches futures apres avoir fait des ob-
servations sur le monde. On remarque quun algorithme n’a pour sa part pas de capacité d’apprentissage et
peut donc devenir inefficace face a des changements imprévus. Par exemple, il est trop compliqué de chercher
a écrire un algorithme capable de prédire le prix du marché de demain alors que la conjoncture peut radi-
calement changer. L'apprentissage permet aussi de travailler sur des problémes pour lesquels les algorithmes
envisageables auraient des complexité inexploitables (comme pour les jeux) voire des problémes pour lesquelles
aucune solution algorithmique n’est connue (reconnaissance de visage par exemple).

Dans ce chapitre, nous allons uniquement parler d’apprentissage supervisé : il s’agit a partir de couples
(entrée,sortie) d’apprendre une fonction qui permettra d’associer une sortie & une entrée donnée.

Si les valeurs de sortie possibles forment un ensemble fini alors on parle de probléme de classification et si
elles forment un ensemble infini alors on parle de probléme de régression.

Par exemple, un probléme de classification peut consister a reconnaitre un chiffre entre 0 et 9 écrit de
maniére manuscrite et un probléme de régression peut consister a prévoir la distance de freinage dans une
configuration de conduite donnée.

Le programme nous demande d’étudier quelques algorithmes qui permettent de travailler sur des problémes
de classification dans le cadre de 'apprentissage supervisé.

Ainsi notre cadre formel d’étude sera le suivant :

On cherche a apprendre une fonction f : R — U avec U un ensemble fini.

On fixe un entier N qui correspond au nombre de données d’apprentissage et une famille de N couples
{(z:,yi) }1<i<n avec chaque z; € R? et chaque y; € U.

On cherche alors a déterminer une fonction f en cohérence avec les données d’apprentissage (c’est-a-dire
qui minimise 'erreur entre les f(z;) et les y; dans un sens a déterminer).

Notre propos ne sera pas de discuter les techniques permettant d’estimer la qualité concréte d'un modéle ni

les maniéres de fixer les parameétres permettant d’obtenir des résultats jugés satisfaisants mais de présenter
quelques grandes méthodes algorithmiques qui permettent d’aborder ce probléme.

1 CLASSIFICATION PAR k-PLUS PROCHES VOISINS

Dans cet algorithme, les données d’entrainement constituent directement le modele, il n'y a pas de phase
d’apprentissage. On se place dans R? et on dispose donc d’'un ensemble Z de données d’entrainement de la
forme (z;,y;) o z; € R? et y; est une classe.

Pour classifier une donnée nouvelle z, on utilise les &£ plus proches voisins de z (au sens d’'une distance ¢
sur R%), et on choisit la classe majoritairement représentée parmi les k voisins.

Dans cet algorithme, on peut jouer sur deux parametres : la valeur de & et le choix de la distance §.

Une implémentation possible est :

let plus_proches_voisins donnees k delta x =
let distances = List.map (fun (xi, yi) -> (delta x xi, yi)) donnees in
let plusProches = plus_petits k distances in
mode (List.map snd plusProches);;

La fonction plus_petits peut étre écrite comme un tri partiel (on obtient une complexité en O(N log N)).
Le calcul des distances cotte O(dN) a priori. La fonction mode donne le mode (ou valeur modale) d’'une liste,
c’est-a-dire la valeur la plus présente, on peut utiliser un comptage en temps linéaire si les classes sont des
entiers de O a C'— 1 par exemple, ou un comptage par dictionnaire dans le cas général. La complexité totale peut
étre estimée a O(dN + Nlog N + k) dans le meilleur cas pour chaque recherche.

Lycée Faidherbe-MPI-2025/2026 1

Remarque 1. En cas d’ambiguité dans la décision, ie s’il y a au moins deux classes modales dans les k plus
proches voisins, on peut tirer au hasard entre les différentes classes modales. Pour éviter au maximum les ambi-
guité, on peut également pondérer le vote en fonction de la distance a x.

Remarque 2. On choisit généralement k impair proche de +/n.

Exemple 1. On souhaite classifier des données en quatre classes (ici modélisées par chaque quadrant). On
dispose d’un jeu initial de 15 données étiquetées (par des étoiles, cercles, carrés ou triangles) réparties de la
maniére suivante :

A *
A
A w *
A w
o m] O
¢}
o O
o

o o o
] [m} [e) m] o m]
o o o
Le point est correctement Le point est correctement Le point est incorrectement
classifié comme un triangle. classifié comme un carré. classifié comme un triangle.
Remarque 3. — Dans l'exemple précédent, on peut voir que Ualgorithme peut se tromper dans la classifica-

tion, méme pour un point déja étiqueté.

— Le choix de la valeur de K peut changer les résultats obtenus. Il n’y a pas de méthode générale, mais on
peut remarquer les faits suivants : si K est trop petit, le choix peut étre trop sensible au bruit statistique; si
K = N, alors le résultat dépend uniquement de la répartition des classes des données étiquetées. Le choix
de K peut étre fait empiriquement, en utilisant les données étiquetées elles-mémes.

On remarque que le principe de I'algorithme K NN peut également servir pour faire de la régression : on peut
identifier les k plus proches voisins et prédire avec la moyenne des classes associées a chaque valeur.
On peut ainsi :

— identifier z, 2o, ..., zx des éléments distincts dans {z1,...,zy} minimisant §(z, 2;) ;
K
c(z:)
. K 2:1 o(w,zi)
o =
— renvoyer la moyenne - Z; ¢(z;) ou la moyenne pondeérée — —
2 5
1=
Pour la moyenne pondérée, on utilise l'inverse de la distance pour donner plus de poids aux sommets les

plus proches. On suppose alors que x n’est pas 'un des z;.

Classification Régression
Vote majoritaire Moyenne
10 “e o e
* o o 10
\ .4 . .
05 L . 0.8 LRd
° L .-. . ° oe .

Lycée Faidherbe-MPI-2025/2026 2

1.1 REPRESENTATION DE Z PAR UN ARBRE k-DIMENSIONNEL

La recherche naive des plus proches voisins présentée dans la partie précédente est fort couteuse. Pour
obtenir les plus proches voisins de facon plus efficace, on peut représenter 'ensemble Z par une structure
adaptée.

Attention le t de arbre © dimensionnel n’est pas le k des k plus proches voisins mais la dimension !

On parlera aussi d’arbre k£ — d ou1 k£ correspond a la dimension (d pour nos notations) et d est une abréviation
de dimensionnel.

Nous allons commencer par rappeler quelques définitions géométriques :

Définition 1. Un ensemble P de R? sera appelé pavé s’il existe des scalaires (a1, ...,aq) et (bi,...,bq) tels que
P={reR?:V1l<i<da <z <b;}.Ilsagit par exemple d'un rectangle dans R? et d'un parallélépipéde rectangle
dans R3.

Définition 2. Soit 2 € R?, si on fixe une coordonnée 1 < k < d et un réel ¢ alors on peut partitionner un pavé P en
deux sous ensembles PN {z € R% : z, <} et PN {x € R : z;, > ¢} qui sont eux méme des pavés situés de part et
d’autre de Uhyperplan affine {x € R? : 2, = ¢} normal au vecteur e;, (k-ieme vecteur de la base canonique de R?).

En particulier : si on fixe un vecteur z € R et une coordonnée 1 < k < d alors P N {z € Re ;2 < 2} et
Pn{r eR?:z;, > 2} correspondent aux points de P situés de part et d’autre de U'hyperplan affine passant par z
et de vecteur normal ey,.

Définition 3. Un arbre k — d est un arbre binaire de recherche qui sépare Uespace des données qui est un pavé en
deux sous-espaces qui sont eux méme des pavés. Il facilite la recherche des plus proches voisins. Il sera étiqueté
par les données (z1, ...,z) d’entrainement.

Un arbre k — d satisfait la propriété suivante :
pour chaque noeud z de Uarbre, les points dans le sous arbre gauche et dans le sous arbre droit sont de part et
d’autre de U'hyperplan passant par x et de vecteur normal e, ol p est la profondeur du noeud xz modulo k (la
dimension).

Afin d’obtenir un arbre équilibré, on choisira comme valeur de noeud l'élément dont la coordonnée selon laquelle
on fait le découpage est médiane dans Uensemble des valeurs considérées.

En dimension 2, on remarque que les profondeurs paires correspondent aux abscisses et les profondeurs
impaires aux ordonnées.

Exemple 2. On suppose que d = 2 et on cherche a créer un arbre d-dimensionnel pour le jeu de données suivant :

Yy
+Tg
7
+
. +Z2
8
+
+Z6
ij; g
|
+71
+73

X

On obtient alors le découpage spatial suivant, en alternant découpage vertical et découpage horizontal :

Y

Lycée Faidherbe-MPI-2025/2026 3

Ce qui donne Uarbre d-dimensionnel suivant :

Une implémentation possible est :

type point_t = float arrayj;;
type arbrekd Vide | Noeud of point_t «* arbrekd * arbrekd;;

let arbrekd_creer donnees =
let d = Array.length (List.hd donnees) in
let rec arbrekd_creer_aux k donnees =
if donnees = []

then Vide
else
let pivot, reste = extrait_median donnees k in
let inf, sup = List.partition (fun x -> x. (k) < pivot.(k)) reste in

Noeud (pivot,
arbrekd_creer_aux ((k+1) mod d) inf,
arbrekd_creer_aux ((k+1) mod d) sup)
in arbrekd_creer_aux 0 donnees;;

Cotuit de construction d’'un arbre k£ — d : avec un calcul de médiane en O(N log(N)) on obtient une construc-
tion moyenne en O(N log?(N))). Cependant cette construction n’est faite quune seule fois, il s’agit d'un pré-
traitement, la complexité significative est celle de la recherche de plus proches voisins d'un nouveau vecteur
dont on veut prédire la classe.

Comment trouver les plus proches voisins a 'aide d'un arbre & — d?

Lycée Faidherbe-MPI-2025/2026 4

Entrée : © = (ay,...,aq) € R?

Début algorithme

FP « file de priorité vide.

0.

Function Traiter (2)

0, « 0(x, 2).

Pmax < Priorité_max(F P).

Si/ < K oud, < ppax Alors

Inserer dans F'P I'élément z avec priorité d,.

L+ 0+ 1.

Si ¢ > K Alors
Extraire I'’élément de priorité maximale dans FP.
l+—0—1.

Function Explore (A, p)
Si A non vide Alors
Traiter (racine de A) .
j+ (p mod d) + 1.
b; < valeur de la j-éme composante de racine de A.
Si a; <b; Alors
A, + fils gauche de A.
A, + fils droit de A.
Sinon
A; « fils droit de A.
L As <+ fils gauche de A.
Explore (A1, p+1).
Pmax < Priorité_max(FP).
Si ¢ < K ou pyax > |a; — b;| Alors
| Explore (As,p+1).

E;plore (A, 0).
| Renvoyer les éléments de F'P.

Expliquée en francais, I'idée est la suivante :

e On garde en mémoire une file de priorité contenant les plus proches voisins de z parmi les points étudiés,
dans une limite de K au maximum.

e Chaque fois qu’'on découvre un nouveau point a, on 'ajoute a la file de priorité si elle en contient moins
que K, ou si ce nouveau point est plus proche de x que le voisin le plus loin. On extrait ce voisin le plus
loin si nécessaire.

e On explore une partie de I'arbre d-dimensionnel selon I'idée suivante : pour chaque nceud a de I'arbre, on
explore le fils gauche ou droit en premier selon ou1 se trouve = par rapport a I'hyperplan de découpage en
a. Apres cette exploration, deux cas sont possibles :

e soit on a déja trouvé K voisins, et le plus loin d’entre eux est plus proche de x que ne 'est I'hyperplan
de découpage, auquel cas on n’explore pas l'autre fils (car tous les points qui s’y trouvent seront trop
loin) ;

e sinon, on explore I'autre fils.

On peut montrer que la complexité d'une recherche des K plus proches voisins dans un arbre d-dimensionnel
de taille N est en moyenne en O(K (log K + d) + dlog N) (méme si elle peut atteindre O(N (log N + d)) dans le pire
cas).

Exemple 3. On dispose de N = 10 points dans le plan, de coordonnées :
21(11,0.5) ; x2(8.5,6) ; x3(7,8.5) ; 24(9,4); x5(15,1.5)

$6(1457 8) ; 377(3.57 7) ; x8(37 25) ; .139(14, 55) ; .1310(2, 5)

1. Représenter les points dans le plan et faire le découpage de construction de Uarbre 2-dimensionnel corres-
pondant, puis dessiner cet arbre.

2. Détailler la recherche des 2 plus proches voisins de x = (4,5) ety = (8,1).

Lycée Faidherbe-MPI-2025/2026 5

1.2 MATRICE DE CONFUSION

La matrice de confusion est un outil statistique pour mesurer l'efficacité d’'un algorithme de classification.
Elle indique pour chaque couple (7, j) de classes le nombre d’exemples appartenant a la classe i et/mais classés
dans la classe j.

Définition 4. Soit f : R? — {1,...m} une fonction correspondant a un algorithme de classification et ¢ : R —
{1,...,m} la fonction exacte de classification. Pour un jeu de N données inconnues X eti,j € {1,...,m}?, on note
my; le cardinal de {z € X : f(z) = j et c(z) = i}. La matrice de terme général m;; est appelée matrice de confusion.

Exemple 4. On considére un jeu de 1000 points choisis aléatoirement dans U'ensemble du carré de Uexemple
précédent auquel on applique Ualgorithme KNN avec K = 3. On obtient la matrice de confusion suivante :

224 13 O 0
1 248 0 0
26 3 191 20

0 40 0 234

24

en supposant que les numéros corrects de classe sont organisés comme : 1]3

On peut interpréter de cette matrice que les éléments de la classe 2 sont presque toujours correctement bien
identifiés (une seule erreur sur 249), contrairement & ceux des classes 3 et 4. Le taux d'erreurs total est 13+142013420440
10, 3%.

De cette matrice, on peut notamment déduire le taux de bonne prédiction (somme des valeurs sur la diago-
nale divisée par la somme des valeurs totales).

Dans le cas ou il y a deux classes appelées Positifs, et Négatifs, cette matrice indique donc le nombre de
vrais positifs, faux négatifs, faux positifs et vrais négatifs. On peut alors s’intéresser au taux de vrais positifs
(aussi appelé sensibilité), au taux de vrais négatifs (aussi appelé spécificité) et la précision du test (nombre de
vrais positifs sur nombre de positifs).

Pour construire une matrice de confusion, on sépare les données d’entrainement en deux ensembles : un vrai
ensemble d’entrainement et un ensemble de test. On entraine ensuite I'algorithme sur les données sélectionnées
et on construit la matrice de confusion sur 'ensemble de test.

Lorsqu’on utilise des algorithmes d’apprentissage supervisé itératif (la lecture des données entraine un ajus-
tement des coefficients caractéristiques de I'algorithme : ici k et §, on répéte cette lecture plusieurs fois), on peut
obtenir une situation de surapprentissage ou l'algorithme obtient de trés bons résultats de classification sur
I'ensemble d’entrainement mais des résultats qui se dégradent pour 'ensemble test : I'algorithme se comporte
comme s’il avait appris les données d’entrainement sans avoir réussi a généraliser. On peut se reposer sur la
matrice de confusion pour déterminer & quel moment arréter 'apprentissage sur les données d’entrainement.

2 CLASSIFICATION PAR ARBRE DE DECISION

Un arbre de décision est un outil permettant de classifier ou de décider en fonction d'une succession de
questions. Il s’agit d'un arbre dans lequel chaque nceud interne correspond a une question, chaque fils & une
réponse a cette question et chaque feuille & une classe ou une décision finale. C’est un objet trés simple et utilisé
notamment dans les techniques de ventes de démarcheurs téléphoniques ou encore dans la représentation
d’algorithmes simples. Pour classer un objet donné a partir d'un tel arbre, on le parcourt en suivant le choix
obtenu a chaque nceud.

Pour construire l'arbre, il s’agit donc de construire itérativement un nceud en choisissant un test et en
construisant ses fils jusqu’a ce que toutes les données d’entrainement relatives au nceud aient la méme classe
et qu'on ait donc une feuille.

Ici, on va décrire un algorithme permettant de construire un tel arbre a partir d'un jeu de données. Les ques-
tions (noeuds internes) correspondront a une coordonnées des valeurs d’entrainement (les z;). Dans certains
cas, ces valeurs forment un ensemble fini et on aura autant de sous arbres que de valeurs possibles et dans
d’autres cas une coordonnée pourra avoir une infinité de valeurs et dans ce cas on aura des sous arbres qui
correspondront a des intervalles.

On remarque que considérer les composantes dans un ordre quelconque n’est pas judicieux. En effet :
considérons I'exemple ou les z; = (0,...,0), 2o = (1,0,...,0),z3 = (1,1,0,...,0),...,2nx = (1,...,1) avec ¢(z;) =
1,Vi < N et c(zy) = 2.

Lycée Faidherbe-MPI-2025/2026 6

On va donc choisir 'ordre sur les coordonnées par rapport auxquelles construire I'arbre de décision afin de
maximiser 'homogénéité de la classification obtenue par la partition. On veut choisir une coordonnée telle que
les sous arbres obtenus aient des classes les plus homogénes possibles. Pour cela on va utiliser un algorithme
glouton qui fait un choix optimal a chaque étape mais on a besoin d'une mesure de cette notion d’homogénéité.

2.1 ENTROPIE
L’entropie est une mesure de l'incertidude, ainsi diminuer I'entropie revient a acquérir de I'information.

Définition 5. Soit S un ensemble partitionné en k classes C4,...,Cy. On définit U'entropie de Shannon de lUen-
semble S par :

|Cs]
57

= |Ci
H(S)=— Z |Sz| log(
=1
Ici, pour un jeu de données, la partition en classes est celle induite par les valeurs de classe des données.
Ainsi, Cj = {l‘1|yl = j}

Intuitivement, cette quantité mesure la "dispersion” dans les classes. On peut facilement observer les cas
extrémes : s’'il n’'y a qu'une seule classe alors I'entropie est nulle et si les classes sont toutes de méme cardinal
alors l'entropie est maximale. Plus cette quantité est grande, moins on ne dispose d’homogénéité relativement
aux classes de ses éléments.

Ici on va donc choisir la coordonnée selon laquelle faire la partition des données afin d’obtenir le meilleur
gain d’information c’est-a-dire 'entropie moyenne la plus faible des ensembles correspondant aux sous-arbres.

Définition 6. Soit k € {1,...d} une coordonnée et {ai,...,a,} les valeurs possibles de cette coordonnée. On
définit le gain d’entropie d’'un ensemble de données S par rapport a la coordonnée k par G(S,a) = H(S) —

POy ‘S”"“;l‘” " (Szp=a;) OU Sy, —q; est Uensemble des données dont la kieme coordonnée vaut a; et dont on calcule
Uentropie relativement aux classes du jeu de données.

2.2 ALGORITHME ID3

On notera que le programme restreint 'utilisation de cet algorithme a I'obtention d’arbres de décision bi-
naires c’est-a-dire qui correspondent a des problémes ou les vecteurs avec lesquels on travaille sont dans
{0,1}4.

L’algorithme ID3 est un algorithme glouton qui vise a maximiser localement le gain d’information, il ne
garantit pas d’obtenir le meilleur arbre de décision global.

Il se présente sous la forme suivante :

— si tous les éléments de I'ensemble E ont la méme classe alors on crée une feuille de cette classe.

— si F = (), on crée une feuille correspondant a la classe majoritaire du noeud parent.

— si aucune variable ne permet de discriminer les éléments restants alors on construit une feuille de la

classe majoritaire.

— sinon, on fixe k la coordonnée qui maximise le gain G(E, k) et on construit un noeud & ayant pour fils les

arbres construits récursivement sur les E;, —,, pour chaque valeur possible a;.

Exemple 5. Deux joueurs de tennis sont en vacances dans un hétel de luxe. Aprés avoir observé leur routine
pendant deux semaines ol les joueurs ont parfois joué ou non, le personnel de Uhétel qui garantit un service
impeccable souhaite faire une prévision pour les jours a venir, pour anticiper quels jours vont jouer les joueurs en
fonction des conditions météorologiques. Les jours de jeu en fonction de la météo sont les suivants :

Ciel Température | Humidité | Vent Ont-ils joué au tennis ?
Soleil Chaud Elevée | Faible Non
Soleil Chaud Elevée Fort Non

Nuages Chaud Elevée | Faible Oui
Pluie Moyen Elevée | Faible Oui
Pluie Frais Normale | Faible Oui
Pluie Frais Normale Fort Non

Nuages Frais Normale Fort Oui
Soleil Moyen Elevée | Faible Non
Soleil Frais Normale | Faible Oui
Pluie Moyen Normale | Faible Oui
Soleil Moyen Normale Fort Oui

Nuages Moyen Elevée Fort Oui

Nuages Chaud Normale | Faible Oui
Pluie Moyen Elevee Fort Non

Lycée Faidherbe-MPI-2025/2026 7

