
Apprentissage supervisé (apprendre à partir d’exemples)

janvier 2026

L’apprentissage automatique est un domaine de l’intelligence artificielle qui consiste à concevoir des modèles
capables de s’adapter et de s’améliorer à partir de l’analyse d’une grande quantité de données.

On dit qu’un agent apprend s’il améliore ses performances lors de tâches futures après avoir fait des ob-
servations sur le monde. On remarque qu’un algorithme n’a pour sa part pas de capacité d’apprentissage et
peut donc devenir inefficace face à des changements imprévus. Par exemple, il est trop compliqué de chercher
à écrire un algorithme capable de prédire le prix du marché de demain alors que la conjoncture peut radi-
calement changer. L’apprentissage permet aussi de travailler sur des problèmes pour lesquels les algorithmes
envisageables auraient des complexité inexploitables (comme pour les jeux) voire des problèmes pour lesquelles
aucune solution algorithmique n’est connue (reconnaissance de visage par exemple).

Dans ce chapitre, nous allons uniquement parler d’apprentissage supervisé : il s’agit à partir de couples
(entrée,sortie) d’apprendre une fonction qui permettra d’associer une sortie à une entrée donnée.

Si les valeurs de sortie possibles forment un ensemble fini alors on parle de problème de classification et si
elles forment un ensemble infini alors on parle de problème de régression.

Par exemple, un problème de classification peut consister à reconnaitre un chiffre entre 0 et 9 écrit de
manière manuscrite et un problème de régression peut consister à prévoir la distance de freinage dans une
configuration de conduite donnée.

Le programme nous demande d’étudier quelques algorithmes qui permettent de travailler sur des problèmes
de classification dans le cadre de l’apprentissage supervisé.

Ainsi notre cadre formel d’étude sera le suivant :
On cherche à apprendre une fonction f : Rd → U avec U un ensemble fini.
On fixe un entier N qui correspond au nombre de données d’apprentissage et une famille de N couples

{(xi, yi)}1≤i≤N avec chaque xi ∈ Rd et chaque yi ∈ U .
On cherche alors à déterminer une fonction f en cohérence avec les données d’apprentissage (c’est-à-dire

qui minimise l’erreur entre les f(xi) et les yi dans un sens à déterminer).

Notre propos ne sera pas de discuter les techniques permettant d’estimer la qualité concrète d’un modèle ni
les manières de fixer les paramètres permettant d’obtenir des résultats jugés satisfaisants mais de présenter
quelques grandes méthodes algorithmiques qui permettent d’aborder ce problème.

1 CLASSIFICATION PAR k-PLUS PROCHES VOISINS

Dans cet algorithme, les données d’entraînement constituent directement le modèle, il n’y a pas de phase
d’apprentissage. On se place dans Rd et on dispose donc d’un ensemble Z de données d’entraînement de la
forme (xi, yi) où xi ∈ Rd et yi est une classe.

Pour classifier une donnée nouvelle x, on utilise les k plus proches voisins de x (au sens d’une distance δ
sur Rd), et on choisit la classe majoritairement représentée parmi les k voisins.

Dans cet algorithme, on peut jouer sur deux paramètres : la valeur de k et le choix de la distance δ.

Une implémentation possible est :

let plus_proches_voisins donnees k delta x =
let distances = List.map (fun (xi, yi) -> (delta x xi, yi)) donnees in

let plusProches = plus_petits k distances in
mode (List.map snd plusProches);;

La fonction plus_petits peut être écrite comme un tri partiel (on obtient une complexité en O(N logN)).
Le calcul des distances coûte O(dN) a priori. La fonction mode donne le mode (ou valeur modale) d’une liste,
c’est-à-dire la valeur la plus présente, on peut utiliser un comptage en temps linéaire si les classes sont des
entiers de 0 à C−1 par exemple, ou un comptage par dictionnaire dans le cas général. La complexité totale peut
être estimée à O(dN +N logN + k) dans le meilleur cas pour chaque recherche.
Lycée Faidherbe-MPI-2025/2026 1

Remarque 1. En cas d’ambiguïté dans la décision, ie s’il y a au moins deux classes modales dans les k plus
proches voisins, on peut tirer au hasard entre les différentes classes modales. Pour éviter au maximum les ambi-
guïté, on peut également pondérer le vote en fonction de la distance à x.

Remarque 2. On choisit généralement k impair proche de
√
n.

Exemple 1. On souhaite classifier des données en quatre classes (ici modélisées par chaque quadrant). On
dispose d’un jeu initial de 15 données étiquetées (par des étoiles, cercles, carrés ou triangles) réparties de la
manière suivante :

Apprentissage Informatique — MPI

On suppose de plus que K = 3. On montre ici trois classifications possibles d’un point :

◊

Le point est correctement
classifié comme un triangle.

◊

Le point est correctement
classifié comme un carré.

◊

Le point est incorrectement
classifié comme un triangle.

Remarque 1.2

– Dans l’exemple précédent, on peut voir que l’algorithme peut se tromper dans la classification,
même pour un point déjà étiqueté. Si on avait considéré l’étoile la plus proche du dernier point
mal classé, le résultat aurait également été incorrect.

– Le choix de la valeur de K peut changer les résultats obtenus. Il n’y a pas de méthode générale,
mais on peut remarquer les faits suivants : si K est trop petit, le choix peut être trop sensible au
bruit statistique ; si K = N , alors le résultat dépend uniquement de la répartition des classes des
données étiquetées. Le choix de K peut être fait empiriquement, en utilisant les données étiquetées
elles-mêmes.

Exercice 1

On souhaite classifier des points de R2 par l’algorithme KNN. On suppose disposer d’un jeu de données
étiquetées sous la forme de :

– donnees, de type (float * float) array contenant des couples de coordonnées des xi ;
– etiquettes, de type int array contenant les numéros de classes yi.
1. Écrire une fonction delta : (float * float) -> (float * float) -> float qui prend en

arguments deux points x et z et renvoie ”(x, z). On utilisera la distance euclidienne.
2. Écrire une fonction majoritaire : int -> (float * int) array -> int qui prend en argu-

ment un entier K et un tableau de couples (”, j) et renvoie l’élément j qui apparait le plus parmi
les K premiers éléments.

3. En déduire une fonction :

knn : int -> (float * float) array -> int array -> (float * float) -> int

qui prend en argument un entier K, les tableaux donnees et etiquettes et un couple de flottants

N. Carré Page 2 Louis-le-Grand

Remarque 3. — Dans l’exemple précédent, on peut voir que l’algorithme peut se tromper dans la classifica-
tion, même pour un point déjà étiqueté.

— Le choix de la valeur de K peut changer les résultats obtenus. Il n’y a pas de méthode générale, mais on
peut remarquer les faits suivants : si K est trop petit, le choix peut être trop sensible au bruit statistique ; si
K = N , alors le résultat dépend uniquement de la répartition des classes des données étiquetées. Le choix
de K peut être fait empiriquement, en utilisant les données étiquetées elles-mêmes.

On remarque que le principe de l’algorithme KNN peut également servir pour faire de la régression : on peut
identifier les k plus proches voisins et prédire avec la moyenne des classes associées à chaque valeur.

On peut ainsi :
— identifier z1, z2, . . . , zK des éléments distincts dans {x1, . . . , xN} minimisant δ(x, zi) ;

— renvoyer la moyenne 1
K

K∑
i=1

c(zi) ou la moyenne pondérée

K∑
i=1

c(zi)
δ(x,zi)

K∑
i=1

1
δ(x,zi)

.

Pour la moyenne pondérée, on utilise l’inverse de la distance pour donner plus de poids aux sommets les
plus proches. On suppose alors que x n’est pas l’un des zi.

Algorithme des k plus proches voisins

Une méthode heuristique, simple et intuitive.

Classification
Vote majoritaire

Régression
Moyenne

Lycée Faidherbe-MPI-2025/2026 2

1.1 REPRÉSENTATION DE Z PAR UN ARBRE k-DIMENSIONNEL

La recherche naive des plus proches voisins présentée dans la partie précédente est fort couteuse. Pour
obtenir les plus proches voisins de façon plus efficace, on peut représenter l’ensemble Z par une structure
adaptée.

Attention le k de arbre k dimensionnel n’est pas le k des k plus proches voisins mais la dimension !
On parlera aussi d’arbre k− d où k correspond à la dimension (d pour nos notations) et d est une abréviation

de dimensionnel.
Nous allons commencer par rappeler quelques définitions géométriques :

Définition 1. Un ensemble P de Rd sera appelé pavé s’il existe des scalaires (a1, . . . , ad) et (b1, . . . , bd) tels que
P = {x ∈ Rd : ∀1 ≤ i ≤ d, ai ≤ xi ≤ bi}. Il s’agit par exemple d’un rectangle dans R2 et d’un parallélépipède rectangle
dans R3.

Définition 2. Soit x ∈ Rd, si on fixe une coordonnée 1 ≤ k ≤ d et un réel ℓ alors on peut partitionner un pavé P en
deux sous ensembles P ∩ {x ∈ Rd : xk ≤ ℓ} et P ∩ {x ∈ Rd : xk ≥ ℓ} qui sont eux même des pavés situés de part et
d’autre de l’hyperplan affine {x ∈ Rd : xk = ℓ} normal au vecteur ek (k-ieme vecteur de la base canonique de Rd).

En particulier : si on fixe un vecteur z ∈ Rd et une coordonnée 1 ≤ k ≤ d alors P ∩ {x ∈ Rd : xk ≤ zk} et
P ∩ {x ∈ Rd : xk ≥ zk} correspondent aux points de P situés de part et d’autre de l’hyperplan affine passant par z
et de vecteur normal ek.

Définition 3. Un arbre k−d est un arbre binaire de recherche qui sépare l’espace des données qui est un pavé en
deux sous-espaces qui sont eux même des pavés. Il facilite la recherche des plus proches voisins. Il sera étiqueté
par les données (x1, . . . , xN) d’entrainement.

Un arbre k − d satisfait la propriété suivante :
pour chaque noeud x de l’arbre, les points dans le sous arbre gauche et dans le sous arbre droit sont de part et
d’autre de l’hyperplan passant par x et de vecteur normal ep+1 où p est la profondeur du noeud x modulo k (la
dimension).

Afin d’obtenir un arbre équilibré, on choisira comme valeur de noeud l’élément dont la coordonnée selon laquelle
on fait le découpage est médiane dans l’ensemble des valeurs considérées.

En dimension 2, on remarque que les profondeurs paires correspondent aux abscisses et les profondeurs
impaires aux ordonnées.

Exemple 2. On suppose que d = 2 et on cherche à créer un arbre d-dimensionnel pour le jeu de données suivant :

+x1

+x2

+x3

+
x4

+
x5

+x6

+
x7

+
x8

+x9

x

y

On obtient alors le découpage spatial suivant, en alternant découpage vertical et découpage horizontal :

+x1

+x2

+x3

+
x4

+
x5

+x6

+
x7

+
x8

+x9

x

y

Lycée Faidherbe-MPI-2025/2026 3

Ce qui donne l’arbre d-dimensionnel suivant :

x2

x8 x4

x1 x9 x3 x6

x5 x7

Une implémentation possible est :

type point_t = float array;;
type arbrekd = Vide | Noeud of point_t * arbrekd * arbrekd;;

let arbrekd_creer donnees =
let d = Array.length (List.hd donnees) in
let rec arbrekd_creer_aux k donnees =

if donnees = []
then Vide
else

let pivot, reste = extrait_median donnees k in
let inf, sup = List.partition (fun x -> x.(k) < pivot.(k)) reste in

Noeud(pivot,
arbrekd_creer_aux ((k+1) mod d) inf,
arbrekd_creer_aux ((k+1) mod d) sup)

in arbrekd_creer_aux 0 donnees;;

Coût de construction d’un arbre k − d : avec un calcul de médiane en O(N log(N)) on obtient une construc-
tion moyenne en O(N log2(N))). Cependant cette construction n’est faite qu’une seule fois, il s’agit d’un pré-
traitement, la complexité significative est celle de la recherche de plus proches voisins d’un nouveau vecteur
dont on veut prédire la classe.

Comment trouver les plus proches voisins à l’aide d’un arbre k − d?

Lycée Faidherbe-MPI-2025/2026 4

Entrée : x = (a1, . . . , ad) ∈ Rd

Début algorithme
FP ← file de priorité vide.
ℓ← 0.
Function Traiter(z)

δz ← δ(x, z).
pmax ← Priorité_max(FP).
Si ℓ < K ou δz < pmax Alors

Inserer dans FP l’élément z avec priorité δz.
ℓ← ℓ+ 1.

Si ℓ > K Alors
Extraire l’élément de priorité maximale dans FP .
ℓ← ℓ− 1.

Function Explore(A, p)
Si A non vide Alors

Traiter(racine de A).
j ← (p mod d) + 1.
bj ← valeur de la j-ème composante de racine de A.
Si aj ≤ bj Alors

A1 ← fils gauche de A.
A2 ← fils droit de A.

Sinon
A1 ← fils droit de A.
A2 ← fils gauche de A.

Explore(A1, p+ 1).
pmax ← Priorité_max(FP).
Si ℓ < K ou pmax > |aj − bj | Alors

Explore(A2, p+ 1).

Explore(A, 0).
Renvoyer les éléments de FP .

Expliquée en français, l’idée est la suivante :
• On garde en mémoire une file de priorité contenant les plus proches voisins de x parmi les points étudiés,

dans une limite de K au maximum.
• Chaque fois qu’on découvre un nouveau point a, on l’ajoute à la file de priorité si elle en contient moins

que K, ou si ce nouveau point est plus proche de x que le voisin le plus loin. On extrait ce voisin le plus
loin si nécessaire.
• On explore une partie de l’arbre d-dimensionnel selon l’idée suivante : pour chaque nœud a de l’arbre, on

explore le fils gauche ou droit en premier selon où se trouve x par rapport à l’hyperplan de découpage en
a. Après cette exploration, deux cas sont possibles :
• soit on a déjà trouvé K voisins, et le plus loin d’entre eux est plus proche de x que ne l’est l’hyperplan

de découpage, auquel cas on n’explore pas l’autre fils (car tous les points qui s’y trouvent seront trop
loin) ;
• sinon, on explore l’autre fils.

On peut montrer que la complexité d’une recherche des K plus proches voisins dans un arbre d-dimensionnel
de taille N est en moyenne en O(K(logK + d) + d logN) (même si elle peut atteindre O(N(logN + d)) dans le pire
cas).

Exemple 3. On dispose de N = 10 points dans le plan, de coordonnées :

x1(11, 0.5) ; x2(8.5, 6) ; x3(7, 8.5) ; x4(9, 4) ; x5(15, 1.5)

x6(14.5, 8) ; x7(3.5, 7) ; x8(3, 2.5) ; x9(14, 5.5) ; x10(2, 5)

1. Représenter les points dans le plan et faire le découpage de construction de l’arbre 2-dimensionnel corres-
pondant, puis dessiner cet arbre.

2. Détailler la recherche des 2 plus proches voisins de x = (4, 5) et y = (8, 1).

Lycée Faidherbe-MPI-2025/2026 5

1.2 MATRICE DE CONFUSION

La matrice de confusion est un outil statistique pour mesurer l’efficacité d’un algorithme de classification.
Elle indique pour chaque couple (i, j) de classes le nombre d’exemples appartenant à la classe i et/mais classés
dans la classe j.

Définition 4. Soit f : Rd → {1, . . .m} une fonction correspondant à un algorithme de classification et c : Rd →
{1, . . . ,m} la fonction exacte de classification. Pour un jeu de N données inconnues X et i, j ∈ {1, . . . ,m}2, on note
mij le cardinal de {x ∈ X : f(x) = j et c(x) = i}. La matrice de terme général mij est appelée matrice de confusion.

Exemple 4. On considère un jeu de 1000 points choisis aléatoirement dans l’ensemble du carré de l’exemple
précédent auquel on applique l’algorithme KNN avec K = 3. On obtient la matrice de confusion suivante :

224 13 0 0
1 248 0 0
26 3 191 20
0 40 0 234



en supposant que les numéros corrects de classe sont organisés comme : 1

2

3

4

.
On peut interpréter de cette matrice que les éléments de la classe 2 sont presque toujours correctement bien

identifiés (une seule erreur sur 249), contrairement à ceux des classes 3 et 4. Le taux d’erreurs total est 13+1+26+3+20+40
1000 =

10, 3%.

De cette matrice, on peut notamment déduire le taux de bonne prédiction (somme des valeurs sur la diago-
nale divisée par la somme des valeurs totales).

Dans le cas où il y a deux classes appelées Positifs, et Négatifs, cette matrice indique donc le nombre de
vrais positifs, faux négatifs, faux positifs et vrais négatifs. On peut alors s’intéresser au taux de vrais positifs
(aussi appelé sensibilité), au taux de vrais négatifs (aussi appelé spécificité) et la précision du test (nombre de
vrais positifs sur nombre de positifs).

Pour construire une matrice de confusion, on sépare les données d’entraînement en deux ensembles : un vrai
ensemble d’entraînement et un ensemble de test. On entraîne ensuite l’algorithme sur les données sélectionnées
et on construit la matrice de confusion sur l’ensemble de test.

Lorsqu’on utilise des algorithmes d’apprentissage supervisé itératif (la lecture des données entraîne un ajus-
tement des coefficients caractéristiques de l’algorithme : ici k et δ, on répète cette lecture plusieurs fois), on peut
obtenir une situation de surapprentissage où l’algorithme obtient de très bons résultats de classification sur
l’ensemble d’entraînement mais des résultats qui se dégradent pour l’ensemble test : l’algorithme se comporte
comme s’il avait appris les données d’entraînement sans avoir réussi à généraliser. On peut se reposer sur la
matrice de confusion pour déterminer à quel moment arrêter l’apprentissage sur les données d’entraînement.

2 CLASSIFICATION PAR ARBRE DE DÉCISION

Un arbre de décision est un outil permettant de classifier ou de décider en fonction d’une succession de
questions. Il s’agit d’un arbre dans lequel chaque nœud interne correspond à une question, chaque fils à une
réponse à cette question et chaque feuille à une classe ou une décision finale. C’est un objet très simple et utilisé
notamment dans les techniques de ventes de démarcheurs téléphoniques ou encore dans la représentation
d’algorithmes simples. Pour classer un objet donné à partir d’un tel arbre, on le parcourt en suivant le choix
obtenu à chaque nœud.

Pour construire l’arbre, il s’agit donc de construire itérativement un nœud en choisissant un test et en
construisant ses fils jusqu’à ce que toutes les données d’entraînement relatives au nœud aient la même classe
et qu’on ait donc une feuille.

Ici, on va décrire un algorithme permettant de construire un tel arbre à partir d’un jeu de données. Les ques-
tions (nœuds internes) correspondront à une coordonnées des valeurs d’entrainement (les xi). Dans certains
cas, ces valeurs forment un ensemble fini et on aura autant de sous arbres que de valeurs possibles et dans
d’autres cas une coordonnée pourra avoir une infinité de valeurs et dans ce cas on aura des sous arbres qui
correspondront à des intervalles.

On remarque que considérer les composantes dans un ordre quelconque n’est pas judicieux. En effet :
considérons l’exemple où les x1 = (0, . . . , 0), x2 = (1, 0, . . . , 0), x3 = (1, 1, 0, . . . , 0), . . . , xN = (1, . . . , 1) avec c(xi) =
1,∀i < N et c(xN) = 2.

Lycée Faidherbe-MPI-2025/2026 6

On va donc choisir l’ordre sur les coordonnées par rapport auxquelles construire l’arbre de décision afin de
maximiser l’homogénéité de la classification obtenue par la partition. On veut choisir une coordonnée telle que
les sous arbres obtenus aient des classes les plus homogènes possibles. Pour cela on va utiliser un algorithme
glouton qui fait un choix optimal à chaque étape mais on a besoin d’une mesure de cette notion d’homogénéité.

2.1 ENTROPIE

L’entropie est une mesure de l’incertidude, ainsi diminuer l’entropie revient à acquérir de l’information.

Définition 5. Soit S un ensemble partitionné en k classes C1, . . . , Ck. On définit l’entropie de Shannon de l’en-
semble S par :

H(S) = −
k∑

i=1

|Ci|
|S|

log(
|Ci|
|S|

)

Ici, pour un jeu de données, la partition en classes est celle induite par les valeurs de classe des données.
Ainsi, Cj = {xi|yi = j}.

Intuitivement, cette quantité mesure la "dispersion" dans les classes. On peut facilement observer les cas
extrêmes : s’il n’y a qu’une seule classe alors l’entropie est nulle et si les classes sont toutes de même cardinal
alors l’entropie est maximale. Plus cette quantité est grande, moins on ne dispose d’homogénéité relativement
aux classes de ses éléments.

Ici on va donc choisir la coordonnée selon laquelle faire la partition des données afin d’obtenir le meilleur
gain d’information c’est-à-dire l’entropie moyenne la plus faible des ensembles correspondant aux sous-arbres.

Définition 6. Soit k ∈ {1, . . . d} une coordonnée et {a1, . . . , am} les valeurs possibles de cette coordonnée. On
définit le gain d’entropie d’un ensemble de données S par rapport à la coordonnée k par G(S, a) = H(S) −∑m

i=1

|Sxk=ai
|

|S| H(Sxk=ai
) où Sxk=ai

est l’ensemble des données dont la kieme coordonnée vaut ai et dont on calcule
l’entropie relativement aux classes du jeu de données.

2.2 ALGORITHME ID3
On notera que le programme restreint l’utilisation de cet algorithme à l’obtention d’arbres de décision bi-

naires c’est-à-dire qui correspondent à des problèmes où les vecteurs avec lesquels on travaille sont dans
{0, 1}d.

L’algorithme ID3 est un algorithme glouton qui vise à maximiser localement le gain d’information, il ne
garantit pas d’obtenir le meilleur arbre de décision global.

Il se présente sous la forme suivante :
— si tous les éléments de l’ensemble E ont la même classe alors on crée une feuille de cette classe.
— si E = ∅, on crée une feuille correspondant à la classe majoritaire du nœud parent.
— si aucune variable ne permet de discriminer les éléments restants alors on construit une feuille de la

classe majoritaire.
— sinon, on fixe k la coordonnée qui maximise le gain G(E, k) et on construit un noeud k ayant pour fils les

arbres construits récursivement sur les Exk=a+i pour chaque valeur possible ai.

Exemple 5. Deux joueurs de tennis sont en vacances dans un hôtel de luxe. Après avoir observé leur routine
pendant deux semaines où les joueurs ont parfois joué ou non, le personnel de l’hôtel qui garantit un service
impeccable souhaite faire une prévision pour les jours à venir, pour anticiper quels jours vont jouer les joueurs en
fonction des conditions météorologiques. Les jours de jeu en fonction de la météo sont les suivants :

Ciel Température Humidité Vent Ont-ils joué au tennis?
Soleil Chaud Élevée Faible Non
Soleil Chaud Élevée Fort Non

Nuages Chaud Élevée Faible Oui
Pluie Moyen Élevée Faible Oui
Pluie Frais Normale Faible Oui
Pluie Frais Normale Fort Non

Nuages Frais Normale Fort Oui
Soleil Moyen Élevée Faible Non
Soleil Frais Normale Faible Oui
Pluie Moyen Normale Faible Oui
Soleil Moyen Normale Fort Oui

Nuages Moyen Élevée Fort Oui
Nuages Chaud Normale Faible Oui

Pluie Moyen Élevée Fort Non

Lycée Faidherbe-MPI-2025/2026 7

