TP9 : Logique

26 janvier et 02 février

Dans tout le sujet, on se donne V un ensemble infini dénombrable de variables.

On a vu en cours un exemple de systéme de preuve correct et non complet (qu’il n’est pas compliqué de
rendre complet) pour la logique propositionnelle : la déduction naturelle. Le défaut de ce systéme de preuve
est qu’il n’est pas trés pratique a utiliser car il n’existe pas de stratégie de preuve simple pour chercher un arbre
de preuve. Ainsi, il est difficile de systématiser la construction des preuves des exemples du cours.

1 CALCUL DES SEQUENTS

Le but de cette premiere partie est d’étudier un autre systéme de preuve correct et complet, mais possédant
une stratégie de recherche de preuve simple : le calcul des séquents.

Dans la déduction naturelle, un séquent est de la forme I" F ¢ : on ne peut avoir qu'une seule formule dans
la partie droite du séquent. Dans le cadre du calcul des séquents, on se donne une définition plus large de
séquent : dans ce devoir, un séquent est un un couple de deux ensembles finis I" et A de formules, noté I' - A.
Un tel séquent est dit valide (noté I E A) si pour toute valuation v de V, si v satisfait toutes les formules de T,
alors il existe une formule de A qui est satisfaite par v.

Remarque : si A ne contient qu'une seule formule, cette définition de séquent valide coincide avec celle du
cours.
L’intérét d’autoriser plusieurs formules dans la partie droite du séquent est d’obtenir des régles d’inférences
plus “symétriques”.
Dans la déduction naturelle, il y a deux types de régles :
* les régles d’'introduction qui permettent de traiter directement la formule a droite du séquent;
* les regles d’élimination qui permettent en fait de gérer indirectement une formule du contexte I'.
Le défaut des régles d’élimination (pour pouvoir automatiser la recherche de preuve) est qu’il faut deviner
quelle nouvelle formule faire apparaitre dans les prémisses. Plus généralement, il faut deviner a quel moment
utiliser quelle régle, car appliquer une régle au “mauvais” moment risque de faire apparaitre une prémisse non
prouvable, alors que le séquent initial était prouvable.
Dans le calcul des séquents, les regles (présentées ci-dessous) sont plus simples, et ces deux problémes
n'existent pas. Il n'y a que des régles d'introduction : celles permettant de gérer une formule de A, et celles
permettant de traiter une formule de I'.

Lok o, A (42)
T IrA (1) TrT.A (T)
‘rﬁfkﬁ?i (nF) : FrwﬁAso A =
S vera s P e
SIS T B0

Lycée Faidherbe-MPI-2022 /2023 1



1.1 QUELQUES EXEMPLES

On commence par prouver quelques formules a 'aide de ce nouveau systéme de preuve.
Prouver F p vV —p avec le calcul des séquents.
Prouver F ((p — ¢) — p) — p avec le calcul des séquents.

Prouver —(p V ¢) F =p A =g avec le calcul des séquents.

=W N =

Prouver —p A =g - —~(p V ¢) avec le calcul des séquents.

1.2 IMPLEMENTATION DU SYSTEME DE PREUVE VIA LE CALCUL DES SEQUENTS.

La preuve de complétude (que I'on verra en TD) est constructive : elle nous permet d’en déduire un algorithme
décidant si un séquent est valide ou non. On se propose ici de I'implémenter en OCaml.
On se donne le type ' a prop suivant :

type 'a prop =
| Top

| Bot

| VvV of "a

| Not of "a prop

| And of "a prop * "a prop

| Or of "a prop * 'a prop

| Impl of "a prop * "a prop

rs

Dans la suite, il sera plus pratique de séparer I' (resp. A) en deux parties : celle ne contenant que des
variables, T ou L ; et celle contenant les autres formules de I" (resp. A). On se donne donc le type 'a sequent
suivant :

type ’'a sequent = {
gamma : 'a prop list ;
delta : ’"a prop list ;
gamma_var : ’'a prop list ;
delta_var : ’"a prop list

1. Ecrire une fonction create_sequent : ’a prop list -> ’a prop list -> ’a sequent telle que create_s:
renvoie un ’a sequent dont les champs gamma_var et delta_var sont des listes vides, et les champs
gamma et delta contiennent les listes passées en arguments.

2. Ecrire une fonction member : ‘a -> ’a list —-> bool qui teste si un élément est dans une liste.

3. Ecrire une fonction bot : ’a sequent -> bool qui teste si la régle (1) peut étre appliquée au séquent
pris en argument.
Attention : il faut chercher dans gamma et dans gamma_var.

4. Ecrire une fonction top : ’a sequent -> bool qui teste si la régle (T) peut étre appliquée au séquent
pris en argument.
Attention : il faut chercher dans delta et dans delta_var.

5. Ecrire un fonction axiom : ’a sequent -> bool qui teste si la régle (Ax) est applicable au séquent pris
en argument.
Attention : la formule a trouver peut étre dans gamma ou gamma_var, et dans delta ou delta_var.

La stratégie de preuve proposée ici est trés simple :
— Si on peut appliquer (Az) ou (L) ou (T), on 'applique et on a prouvé le séquent.
— Sinon :
e si gamma n’est pas vide, on regarde la premiére formule de la liste :
* si c’est une variable, L ou T, on l'enléve de gamma et on le rajoute dans gamma_var;
* sinon, c’est une formule ayant un connecteur logique : on applique la régle correspondante, et
on continue la recherche de preuve sur la ou les prémisses;
e sinon (gamma est vide), on procéde de maniére similaire avec delta.
* Si gamma et delta sont vides, et que les régles (Az), (1) et (T) ne s’appliquent pas, alors aucune
regle ne s’applique, et le séquent n’est pas valide.

Lycée Faidherbe-MPI-2022 /2023 2



On commence par implémenter chacune des reégles par une fonction OCaml. En accord avec la stratégie
présentée ci-dessus, si la premiére formule de gamma (resp. delta) n'est pas celle sur laquelle on peut
appliquée la régle considérée, on lévera 'exception suivante :

exception Wrong_rule of string ;;

6. Ecrire une fonction and_gamma : ’a sequent -> ’a sequent qui renvoie la prémisse de la régle (A F)
appliquée a la premiére formule du champ gamma du séquent pris en argument.
On lévera I'exception Wrong_rule "And Gamma" si cette formule n’est pas une conjonction.

7. Ecrire une fonction or_gamma : ’'a sequent -> ’'a sequent * ’a sequent qui renvoie les prémisses
de la régle (V ) appliquée a la premiére formule du champ gamma du séquent pris en argument.
On lévera l'exception Wrong_rule "Or Gamma" si cette formule n’est pas une disjonction.

8. Ecrire une fonction impl_gamma : ’'a sequent -> ’‘a sequent * ’a sequent quirenvoie les prémisses
de la régle (— ) appliquée a la premiére formule du champ gamma du séquent pris en argument.
On lévera I'exception Wrong_rule "Impl Gamma" si cette formule n’est pas une implication.

9. Ecrire une fonction not_gamma : ’a sequent -> ’a sequent qui renvoie la prémisse de la régle (- F)
appliquée a la premiére formule du champ gamma du séquent pris en argument.
On lévera l'exception Wrong_rule "Not Gamma" si cette formule n’est pas une négation.

10. Ecrire une fonction and_delta : ’a sequent -> ’a sequent * ’a sequent qui renvoie les prémisses
de la régle (- A) appliquée a la premiére formule du champ delta du séquent pris en argument.
On lévera l'exception Wrong_rule "And Delta" si cette formule n’est pas une conjonction.

11. Ecrire une fonction or_delta : ’a sequent —-> ’a sequent qui renvoie la prémisse de la régle (- V)
appliquée a la premiére formule du champ delta du séquent pris en argument.
On lévera l'exception Wrong_rule "Or Delta" si cette formule n’est pas une disjonction.

12. Ecrire une fonction impl_delta : ’a sequent -> ’a sequent qui renvoie la prémisse de la régle (-—)
appliquée a la premiere formule du champ delta du séquent pris en argument.
On lévera l'exception Wrong_rule "Impl Delta" si cette formule n'est pas une implication.

13. Ecrire une fonction not_delta : ’a sequent -> ’a sequent qui renvoie la prémisse de la régle (- —)
appliquée a la premiére formule du champ delta du séquent pris en argument.
On lévera l'exception Wrong_rule "Not Delta" sicette formule n’est pas une négation.

14. Ecrire une fonction proof_search : ’a sequent -> bool qui renvoie true si le séquent pris en argu-
ment est valide, et false sinon, en implémentant la stratégie présentée précédemment.

Tester votre fonction sur des exemples : ceux du sujet sont fournis dans un fichier sequent_test.ml.

2 REFUTATION PAR COUPURE

Dans cette partie, on se limite a manipuler un sous ensemble des formules du calcul propositionnel formé
d’éléments qu'on appelle des clauses. Une clause est simplement une disjonction de littéraux. Les variables
intervenant dans une clause C sans étre précédées du connecteur — sont appelées les variables positives de C,
et les autres les variables négatives de C.

1. Rappeler I'’énoncé selon lequel toute formule du calcul propositionnel est sémantiquement équivalente a
une conjonction de clauses.

2. Si C est une clause dont les variables positives sont a4,...,a, et les variables négatives sont b,..., by,
montrer que C est équivalente a I'implication (by A ... Aby,) = (a1 V...V ay).

Remarquez que le résultat précédent reste vrai, méme s’il n'y a a aucune variable positive ou aucune variable
négative si on considére qu'un A sur un ensemble vide vaut le neutre pour A, a savoir T et que le V sur un
ensemble vide vaut le neutre pour Vv, a savoir L. Une clause ne contenant ni variable positive, ni variable
négative est en particulier sémantiquement équivalente a T =_ c’est a dire a L et on appelera une telle clause
la clause vide.

On ne considére dans la suite que des clauses simplifiées, c’est-a-dire des clauses sans littéral en doublon.
Dés qu'une clause C fera intervenir un littéral en double, on commencera par supprimer les occurrences inutiles
de ce doublon et on appelle cette opération la simplification de C. Dans la suite, une clause est par défaut une
clause simplifiée.

La déduction par coupure est un systéme de déduction dont la seule régle est la régle dite de coupure. Pour
toutes clauses simplifiées C; et Cs, on dit que la clause C se déduit par coupure de C; et C; s’il existe une va-
riable v intervenant positivement dans C et négativement dans C; (resp. négativement dans C; et positivement
dans C, ) et telle que C est la simplification de la disjonction de tous les littéraux de C; sauf v (resp. —w) et de
tous les littéraux de C; sauf —w (resp. v ).

Lycée Faidherbe-MPI-2022 /2023 3



On dit qu’on a coupé sur la variable v et on note :

Cy CQC
c

Si S est un ensemble de clauses simplifiées initial, I'ensemble des clauses C prouvables par coupure a partir de
S est défini inductivement par :
— Si C € §,C est prouvable a partir de S.
— Si (] et C; sont prouvables par coupure a partir de S et que C' se déduit par coupure a partir de C; et Cy
alors C est prouvable par coupure a partir de S.

Si C est prouvable par coupure a partir de S, on note S - C.

Exemple : {-aV bV —¢,cVb,aV—d}FbV-d En effet, on a :

-aVbV-c aV-d
bV -cV-d c\/bc
bV —d

cut

ut

Vu la question 2, cela ne devrait pas choquer votre intuition sémantique. En effet, -a VbV -c=a = (bV —¢)
et aV—-d = d = a. Il n’est donc pas anormal de pouvoir déduire d = (bV —¢) = bV —d V —c¢ lors de la premiére
application de la régle de coupure dans l'arbre précédent.

Lorsque la clause vide est prouvable par coupure a partir de S, on dit que S admet une réfutation par
coupure. On peut montrer que la réfutation par coupure est correcte et compléte (cf DM) : autrement dit, S HL
si et seulement S est non satisfiable.

2.1 IMPLEMENTATION DE LA REFUTATION PAR COUPURE

L’objectif de cette partie est d'implémenter un algorithme derive_clause_vide dont la spécification est :

Entrée : Un ensemble de clauses (simplifiées) S.
Sortie : Oui si S admet une réfutation par coupure, non sinon.

D’aprés ce qui précede, un tel algorithme permet de décider si un ensemble de clauses est non satisfiable.

On propose de représenter une clause en Ocaml comme suit : une clause est une liste d’entiers relatifs non
nuls. Un entier positif représente une variable positive et un entier négatif une variable négative. On demande
de plus a une clause d’étre une liste :

e Triée dans l'ordre croissant. Ceci sera nécessaire pour pouvoir tester 1'égalité de deux clauses.
e Sans doublons, de sorte a ne considérer que des clauses simplifiées.

Par exemple, la clause v; V vy V —vy sera représentée par la liste [-4;1;2]. La clause vide est représentée par
la liste vide.

type clause = int list

L’idée pour construire cet algorithme est le suivant : si S est un ensemble de clauses, on construit toutes
les clauses prouvables par coupure a partir de S puis on vérifie si la clause vide fait partie de I'ensemble ainsi
construit. Plus précisément :

¢ On maintient a jour un ensemble C; de clauses a traiter et C, de clauses prouvables. Initialement, C; est
I'ensemble de clauses initial et C, est vide.

e Tant que C; n’est pas vide, on en prend une clause, c. Pour tout élément ¢’ € C,, on construit toutes les
clauses déductibles par coupure de ¢ et ¢’. Toutes les clauses ainsi construites qui ne sont ni déja dans
C,, ni déja dans C; sont rajoutées a C;. Une fois qu'on a généré toutes les clauses possibles a partir de ¢
et des clauses de (), on ajoute c a C),.

e Lorsque C; est vide, on vérifie si la clause vide est dans C),.

1. Ecrire une fonction coupure de signature clause -> clause ->int -> clause. Elle prend en entrée
deux clauses ¢, c2 et un entier n qu’'on supposera apparaitre positivement dans c¢; et négativement dans
co. Elle renvoie une liste triée sans doublon correspondant a la clause obtenue par coupure a partir de ¢;
et ¢y sur la variable n.

2. Ecrire une fonction variables_a_couper de signature clause -> clause -> int list
telle que variable_a_couper cl c2 renvoie la liste des variables v de ¢; telles qu'on puisse appliquer la
regle de coupure a c; et ¢, en coupant sur v.

Lycée Faidherbe-MPI-2022 /2023 4




3.

Déduire des questions précédentes une fonction nouvelles_clauses de signature
clause —> clause -> clause list telle que nouvelles_clauses cl c2 renvoie la liste des clauses
déductibles par coupure a partir de ¢; et cs.

Ecrire une fonction exists_clause_vide de signature clause list -> bool indiquant sila clause vide
fait partie de la liste de clauses en entrée.

. Déduire de tout ce qui précéde une fonction derive_clause_vide de signature clause list-> bool

telle que derive_clause_vide lc renvoie true si la clause vide est prouvable par coupure a partir de
I'ensemble de clauses 1c et false sinon.

On pourra s’aider de fonctions auxilliaires et des fonctions du module List.

La fonction précédente est excessivement naive. Une amélioration immeédiate serait d’ailleurs de cesser de
construire des clauses prouvables dés que la clause vide a été obtenue. La fin de cette partie est un bonus dans
lequel on explore deux stratégies visant a limiter la complexité en pratique de derive_clause_vide.

7. Jusqu’a présent, les clauses ¢ € C; avec lesquelles on tente successivement de créer de nouvelles clauses

10.

prouvables sont choisies au hasard. Comment pourrait-on choisir ¢ pour espérer obtenir la clause vide
rapidement ? Proposer une heuristique de choix de c et I'implémenter.

Une clause simplifiée est dite tautologique si elle fait intervenir une variable a la fois positivement et
négativement.

(a) Montrer que, si S I (§ alors la réfutation par coupure de () a partir de S peut se faire sans utiliser de
clause tautologique. On en déduit qu’ajouter les clauses tautologiques a C; est inutile a la correction
de la réfutation par coupure.

(b) En déduire que pour chaque ¢ € C, et chaque ¢ € C,, ne construire qu'une seule des clauses déduc-
tibles a partir de ¢ et ¢’ (plutét que toutes) est suffisant pour conserver la correction de
derive_clause_vide.

(c) Modifier derive_clause_vide de facon a ignorer les clauses tautologiques.

2.2 LE RETOUR DU CLUB ECOSSAIS

L'objectif de cette partie est de faire prouver un résultat sémantique a votre machine a l'aide de de-
rive_clause_vide (sous réserve que cette fonction soit correcte, résultat que 'on délégue a la partie 3).

11 existe en Ecosse un club trés fermé dont les membres obéissent aux regles suivantes :
(1) Tout membre non écossais porte des chausettes rouges.

(2) Tout membre portant des chaussettes rouges porte un kilt.

(3) Les membres mariés ne sortent pas le dimanche.

(4) Un membre sort le dimanche si et seulement si il est écossais.

(5) Tout membre qui porte un kilt est écossais et est marié.

(6) Tout membre écossais porte un Kilt.

Modéliser les régles du club en logique propositionnelle. En déduire une formule caractérisant le fait de
pouvoir entrer dans le club écossais.

En déduire un ensemble de clauses S tel que S est satisfiable si et seulement si il est possible d’entrer
dans le club. En utilisant la partie 1 et sans dresser de table de vérité a 32 lignes (!), monter que personne
ne peut entrer dans le club.

Lycée Faidherbe-MPI-2022 /2023 5



