
TP9 : Logique

26 janvier et 02 février

Dans tout le sujet, on se donne V un ensemble infini dénombrable de variables.
On a vu en cours un exemple de système de preuve correct et non complet (qu’il n’est pas compliqué de

rendre complet) pour la logique propositionnelle : la déduction naturelle. Le défaut de ce système de preuve
est qu’il n’est pas très pratique à utiliser car il n’existe pas de stratégie de preuve simple pour chercher un arbre
de preuve. Ainsi, il est difficile de systématiser la construction des preuves des exemples du cours.

1 CALCUL DES SÉQUENTS

Le but de cette première partie est d’étudier un autre système de preuve correct et complet, mais possédant
une stratégie de recherche de preuve simple : le calcul des séquents.

Dans la déduction naturelle, un séquent est de la forme Γ ⊢ φ : on ne peut avoir qu’une seule formule dans
la partie droite du séquent. Dans le cadre du calcul des séquents, on se donne une définition plus large de
séquent : dans ce devoir, un séquent est un un couple de deux ensembles finis Γ et ∆ de formules, noté Γ ⊢ ∆.
Un tel séquent est dit valide (noté Γ ⊨ ∆) si pour toute valuation ν de V, si ν satisfait toutes les formules de Γ,
alors il existe une formule de ∆ qui est satisfaite par ν.

Remarque : si ∆ ne contient qu’une seule formule, cette définition de séquent valide coïncide avec celle du
cours.

L’intérêt d’autoriser plusieurs formules dans la partie droite du séquent est d’obtenir des règles d’inférences
plus “symétriques”.

Dans la déduction naturelle, il y a deux types de règles :
* les règles d’introduction qui permettent de traiter directement la formule à droite du séquent ;
* les règles d’élimination qui permettent en fait de gérer indirectement une formule du contexte Γ.

Le défaut des règles d’élimination (pour pouvoir automatiser la recherche de preuve) est qu’il faut deviner
quelle nouvelle formule faire apparaitre dans les prémisses. Plus généralement, il faut deviner à quel moment
utiliser quelle règle, car appliquer une règle au “mauvais” moment risque de faire apparaitre une prémisse non
prouvable, alors que le séquent initial était prouvable.

Dans le calcul des séquents, les règles (présentées ci-dessous) sont plus simples, et ces deux problèmes
n’existent pas. Il n’y a que des règles d’introduction : celles permettant de gérer une formule de ∆, et celles
permettant de traiter une formule de Γ.

Γ, φ ⊢ φ,∆ (Ax)

Γ,⊥ ⊢ ∆
(⊥)

Γ ⊢ ⊤,∆ (⊤)

Γ, φ, ψ ⊢ ∆

Γ, φ ∧ ψ ⊢ ∆
(∧ ⊢)

Γ ⊢ φ,∆ Γ ⊢ ψ,∆
Γ ⊢ φ ∧ ψ,∆ (⊢ ∧)

Γ, φ ⊢ ∆ Γ, ψ ⊢ ∆

Γ, φ ∨ ψ ⊢ ∆
(∨ ⊢)

Γ ⊢ φ,ψ,∆
Γ ⊢ φ ∨ ψ,∆ (⊢ ∨)

Γ ⊢ φ,∆ Γ, ψ ⊢ ∆

Γ, φ→ ψ ⊢ ∆
(→ ⊢)

Γ, φ ⊢ ψ,∆
Γ ⊢ φ→ ψ,∆

(⊢→)

Γ ⊢ φ,∆
Γ,¬φ ⊢ ∆

(¬ ⊢)
Γ, φ ⊢ ∆

Γ ⊢ ¬φ,∆ (⊢ ¬)

Lycée Faidherbe-MPI-2022/2023 1

1.1 QUELQUES EXEMPLES

On commence par prouver quelques formules à l’aide de ce nouveau système de preuve.

1. Prouver ⊢ p ∨ ¬p avec le calcul des séquents.

2. Prouver ⊢ ((p→ q) → p) → p avec le calcul des séquents.

3. Prouver ¬(p ∨ q) ⊢ ¬p ∧ ¬q avec le calcul des séquents.

4. Prouver ¬p ∧ ¬q ⊢ ¬(p ∨ q) avec le calcul des séquents.

1.2 IMPLÉMENTATION DU SYSTÈME DE PREUVE VIA LE CALCUL DES SÉQUENTS.
La preuve de complétude (que l’on verra en TD) est constructive : elle nous permet d’en déduire un algorithme

décidant si un séquent est valide ou non. On se propose ici de l’implémenter en OCaml.
On se donne le type ’a prop suivant :

type ’a prop =
| Top
| Bot
| V of ’a
| Not of ’a prop
| And of ’a prop * ’a prop
| Or of ’a prop * ’a prop
| Impl of ’a prop * ’a prop

;;

Dans la suite, il sera plus pratique de séparer Γ (resp. ∆) en deux parties : celle ne contenant que des
variables, ⊤ ou ⊥ ; et celle contenant les autres formules de Γ (resp. ∆). On se donne donc le type ’a sequent
suivant :

type ’a sequent = {
gamma : ’a prop list ;
delta : ’a prop list ;
gamma_var : ’a prop list ;
delta_var : ’a prop list

}
;;

1. Écrire une fonction create_sequent : ’a prop list -> ’a prop list -> ’a sequent telle que create_sequent l_gamma l_delta
renvoie un ’a sequent dont les champs gamma_var et delta_var sont des listes vides, et les champs
gamma et delta contiennent les listes passées en arguments.

2. Écrire une fonction member : ’a -> ’a list -> bool qui teste si un élément est dans une liste.

3. Écrire une fonction bot : ’a sequent -> bool qui teste si la règle (⊥) peut être appliquée au séquent
pris en argument.
Attention : il faut chercher dans gamma et dans gamma_var.

4. Écrire une fonction top : ’a sequent -> bool qui teste si la règle (⊤) peut être appliquée au séquent
pris en argument.
Attention : il faut chercher dans delta et dans delta_var.

5. Écrire un fonction axiom : ’a sequent -> bool qui teste si la règle (Ax) est applicable au séquent pris
en argument.
Attention : la formule à trouver peut être dans gamma ou gamma_var, et dans delta ou delta_var.

La stratégie de preuve proposée ici est très simple :
— Si on peut appliquer (Ax) ou (⊥) ou (⊤), on l’applique et on a prouvé le séquent.
— Sinon :

• si gamma n’est pas vide, on regarde la première formule de la liste :
* si c’est une variable, ⊥ ou ⊤, on l’enlève de gamma et on le rajoute dans gamma_var ;
* sinon, c’est une formule ayant un connecteur logique : on applique la règle correspondante, et

on continue la recherche de preuve sur la ou les prémisses ;
• sinon (gamma est vide), on procède de manière similaire avec delta.

* Si gamma et delta sont vides, et que les règles (Ax), (⊥) et (⊤) ne s’appliquent pas, alors aucune
règle ne s’applique, et le séquent n’est pas valide.

Lycée Faidherbe-MPI-2022/2023 2

On commence par implémenter chacune des règles par une fonction OCaml. En accord avec la stratégie
présentée ci-dessus, si la première formule de gamma (resp. delta) n’est pas celle sur laquelle on peut
appliquée la règle considérée, on lèvera l’exception suivante :

exception Wrong_rule of string ;;

6. Écrire une fonction and_gamma : ’a sequent -> ’a sequent qui renvoie la prémisse de la règle (∧ ⊢)
appliquée à la première formule du champ gamma du séquent pris en argument.
On lèvera l’exception Wrong_rule "And Gamma" si cette formule n’est pas une conjonction.

7. Écrire une fonction or_gamma : ’a sequent -> ’a sequent * ’a sequent qui renvoie les prémisses
de la règle (∨ ⊢) appliquée à la première formule du champ gamma du séquent pris en argument.
On lèvera l’exception Wrong_rule "Or Gamma" si cette formule n’est pas une disjonction.

8. Écrire une fonction impl_gamma : ’a sequent -> ’a sequent * ’a sequent qui renvoie les prémisses
de la règle (→ ⊢) appliquée à la première formule du champ gamma du séquent pris en argument.
On lèvera l’exception Wrong_rule "Impl Gamma" si cette formule n’est pas une implication.

9. Écrire une fonction not_gamma : ’a sequent -> ’a sequent qui renvoie la prémisse de la règle (¬ ⊢)
appliquée à la première formule du champ gamma du séquent pris en argument.
On lèvera l’exception Wrong_rule "Not Gamma" si cette formule n’est pas une négation.

10. Écrire une fonction and_delta : ’a sequent -> ’a sequent * ’a sequent qui renvoie les prémisses
de la règle (⊢ ∧) appliquée à la première formule du champ delta du séquent pris en argument.
On lèvera l’exception Wrong_rule "And Delta" si cette formule n’est pas une conjonction.

11. Écrire une fonction or_delta : ’a sequent -> ’a sequent qui renvoie la prémisse de la règle (⊢ ∨)
appliquée à la première formule du champ delta du séquent pris en argument.
On lèvera l’exception Wrong_rule "Or Delta" si cette formule n’est pas une disjonction.

12. Écrire une fonction impl_delta : ’a sequent -> ’a sequent qui renvoie la prémisse de la règle (⊢→)
appliquée à la première formule du champ delta du séquent pris en argument.
On lèvera l’exception Wrong_rule "Impl Delta" si cette formule n’est pas une implication.

13. Écrire une fonction not_delta : ’a sequent -> ’a sequent qui renvoie la prémisse de la règle (⊢ ¬)
appliquée à la première formule du champ delta du séquent pris en argument.
On lèvera l’exception Wrong_rule "Not Delta" si cette formule n’est pas une négation.

14. Écrire une fonction proof_search : ’a sequent -> bool qui renvoie true si le séquent pris en argu-
ment est valide, et false sinon, en implémentant la stratégie présentée précédemment.

Tester votre fonction sur des exemples : ceux du sujet sont fournis dans un fichier sequent_test.ml.

2 RÉFUTATION PAR COUPURE

Dans cette partie, on se limite à manipuler un sous ensemble des formules du calcul propositionnel formé
d’éléments qu’on appelle des clauses. Une clause est simplement une disjonction de littéraux. Les variables
intervenant dans une clause C sans être précédées du connecteur ¬ sont appelées les variables positives de C,
et les autres les variables négatives de C.

1. Rappeler l’énoncé selon lequel toute formule du calcul propositionnel est sémantiquement équivalente à
une conjonction de clauses.

2. Si C est une clause dont les variables positives sont a1, . . . , an et les variables négatives sont b1, . . . , bm,
montrer que C est équivalente à l’implication (b1 ∧ . . . ∧ bm) ⇒ (a1 ∨ . . . ∨ an).

Remarquez que le résultat précédent reste vrai, même s’il n’y a a aucune variable positive ou aucune variable
négative si on considère qu’un ∧ sur un ensemble vide vaut le neutre pour ∧, à savoir ⊤ et que le ∨ sur un
ensemble vide vaut le neutre pour ∨, à savoir ⊥. Une clause ne contenant ni variable positive, ni variable
négative est en particulier sémantiquement équivalente à ⊤ ⇒⊥ c’est à dire à ⊥ et on appelera une telle clause
la clause vide.

On ne considère dans la suite que des clauses simplifiées, c’est-à-dire des clauses sans littéral en doublon.
Dès qu’une clause C fera intervenir un littéral en double, on commencera par supprimer les occurrences inutiles
de ce doublon et on appelle cette opération la simplification de C. Dans la suite, une clause est par défaut une
clause simplifiée.

La déduction par coupure est un système de déduction dont la seule règle est la règle dite de coupure. Pour
toutes clauses simplifiées C1 et C2, on dit que la clause C se déduit par coupure de C1 et C2 s’il existe une va-
riable v intervenant positivement dans C1 et négativement dans C2 (resp. négativement dans C1 et positivement
dans C2) et telle que C est la simplification de la disjonction de tous les littéraux de C1 sauf v (resp. ¬v) et de
tous les littéraux de C2 sauf ¬v (resp. v).

Lycée Faidherbe-MPI-2022/2023 3

On dit qu’on a coupé sur la variable v et on note :

C1 C2

C
cut

Si S est un ensemble de clauses simplifiées initial, l’ensemble des clauses C prouvables par coupure à partir de
S est défini inductivement par :

— Si C ∈ S,C est prouvable à partir de S.
— Si C1 et C2 sont prouvables par coupure à partir de S et que C se déduit par coupure à partir de C1 et C2

alors C est prouvable par coupure à partir de S.

Si C est prouvable par coupure à partir de S, on note S ⊢ C.

Exemple : {¬a ∨ b ∨ ¬c, c ∨ b, a ∨ ¬d} ⊢ b ∨ ¬d. En effet, on a :

¬a ∨ b ∨ ¬c a ∨ ¬d
b ∨ ¬c ∨ ¬d c ∨ b

b ∨ ¬d cut
cut

Vu la question 2, cela ne devrait pas choquer votre intuition sémantique. En effet, ¬a ∨ b ∨ ¬c ≡ a ⇒ (b ∨ ¬c)
et a ∨ ¬d ≡ d ⇒ a. Il n’est donc pas anormal de pouvoir déduire d ⇒ (b ∨ ¬c) ≡ b ∨ ¬d ∨ ¬c lors de la première
application de la règle de coupure dans l’arbre précédent.

Lorsque la clause vide est prouvable par coupure à partir de S, on dit que S admet une réfutation par
coupure. On peut montrer que la réfutation par coupure est correcte et complète (cf DM) : autrement dit, S ⊢⊥
si et seulement S est non satisfiable.

2.1 IMPLÉMENTATION DE LA RÉFUTATION PAR COUPURE

L’objectif de cette partie est d’implémenter un algorithme derive_clause_vide dont la spécification est :

Entrée : Un ensemble de clauses (simplifiées) S.
Sortie : Oui si S admet une réfutation par coupure, non sinon.

D’après ce qui précède, un tel algorithme permet de décider si un ensemble de clauses est non satisfiable.

On propose de représenter une clause en Ocaml comme suit : une clause est une liste d’entiers relatifs non
nuls. Un entier positif représente une variable positive et un entier négatif une variable négative. On demande
de plus à une clause d’être une liste :

• Triée dans l’ordre croissant. Ceci sera nécessaire pour pouvoir tester l’égalité de deux clauses.
• Sans doublons, de sorte à ne considérer que des clauses simplifiées.

Par exemple, la clause v1 ∨ v2 ∨ ¬v4 sera représentée par la liste [-4 ;1 ;2]. La clause vide est représentée par
la liste vide.

type clause = int list

L’idée pour construire cet algorithme est le suivant : si S est un ensemble de clauses, on construit toutes
les clauses prouvables par coupure à partir de S puis on vérifie si la clause vide fait partie de l’ensemble ainsi
construit. Plus précisément :

• On maintient à jour un ensemble Ct de clauses à traiter et Cp de clauses prouvables. Initialement, Ct est
l’ensemble de clauses initial et Cp est vide.

• Tant que Ct n’est pas vide, on en prend une clause, c. Pour tout élément c′ ∈ Cp, on construit toutes les
clauses déductibles par coupure de c et c′. Toutes les clauses ainsi construites qui ne sont ni déjà dans
Cp, ni déjà dans Ct sont rajoutées à Ct. Une fois qu’on a généré toutes les clauses possibles à partir de c
et des clauses de Cp, on ajoute c à Cp.

• Lorsque Ct est vide, on vérifie si la clause vide est dans Cp.

1. Ecrire une fonction coupure de signature clause -> clause ->int -> clause. Elle prend en entrée
deux clauses c1, c2 et un entier n qu’on supposera apparaitre positivement dans c1 et négativement dans
c2. Elle renvoie une liste triée sans doublon correspondant à la clause obtenue par coupure à partir de c1
et c2 sur la variable n.

2. Ecrire une fonction variables_a_couper de signature clause -> clause -> int list
telle que variable_a_couper c1 c2 renvoie la liste des variables v de c1 telles qu’on puisse appliquer la
règle de coupure à c1 et c2 en coupant sur v.

Lycée Faidherbe-MPI-2022/2023 4

3. Déduire des questions précédentes une fonction nouvelles_clauses de signature
clause -> clause -> clause list telle que nouvelles_clauses c1 c2 renvoie la liste des clauses
déductibles par coupure à partir de c1 et c2.

4. Ecrire une fonction exists_clause_vide de signature clause list -> bool indiquant si la clause vide
fait partie de la liste de clauses en entrée.

5. Déduire de tout ce qui précède une fonction derive_clause_vide de signature clause list-> bool
telle que derive_clause_vide lc renvoie true si la clause vide est prouvable par coupure à partir de
l’ensemble de clauses lc et false sinon.

On pourra s’aider de fonctions auxilliaires et des fonctions du module List.

La fonction précédente est excessivement naïve. Une amélioration immédiate serait d’ailleurs de cesser de
construire des clauses prouvables dès que la clause vide a été obtenue. La fin de cette partie est un bonus dans
lequel on explore deux stratégies visant à limiter la complexité en pratique de derive_clause_vide.

7. Jusqu’à présent, les clauses c ∈ Ct avec lesquelles on tente successivement de créer de nouvelles clauses
prouvables sont choisies au hasard. Comment pourrait-on choisir c pour espérer obtenir la clause vide
rapidement ? Proposer une heuristique de choix de c et l’implémenter.

8. Une clause simplifiée est dite tautologique si elle fait intervenir une variable à la fois positivement et
négativement.

(a) Montrer que, si S ⊢ ∅ alors la réfutation par coupure de ∅ à partir de S peut se faire sans utiliser de
clause tautologique. On en déduit qu’ajouter les clauses tautologiques à Ct est inutile à la correction
de la réfutation par coupure.

(b) En déduire que pour chaque c ∈ Ct et chaque c′ ∈ Cp, ne construire qu’une seule des clauses déduc-
tibles à partir de c et c′ (plutôt que toutes) est suffisant pour conserver la correction de
derive_clause_vide.

(c) Modifier derive_clause_vide de façon à ignorer les clauses tautologiques.

2.2 LE RETOUR DU CLUB ÉCOSSAIS

L’objectif de cette partie est de faire prouver un résultat sémantique à votre machine à l’aide de de-
rive_clause_vide (sous réserve que cette fonction soit correcte, résultat que l’on délègue à la partie 3).
Il existe en Ecosse un club très fermé dont les membres obéissent aux règles suivantes :
(1) Tout membre non écossais porte des chausettes rouges.
(2) Tout membre portant des chaussettes rouges porte un kilt.
(3) Les membres mariés ne sortent pas le dimanche.
(4) Un membre sort le dimanche si et seulement si il est écossais.
(5) Tout membre qui porte un kilt est écossais et est marié.
(6) Tout membre écossais porte un kilt.

9. Modéliser les règles du club en logique propositionnelle. En déduire une formule caractérisant le fait de
pouvoir entrer dans le club écossais.

10. En déduire un ensemble de clauses S tel que S est satisfiable si et seulement si il est possible d’entrer
dans le club. En utilisant la partie 1 et sans dresser de table de vérité à 32 lignes (!), monter que personne
ne peut entrer dans le club.

Lycée Faidherbe-MPI-2022/2023 5

