
Apprentissage non supervisé

19 janvier

Dans l’apprentissage non supervisé, on dispose d’un jeu de données non étiquetées et on cherche à dégager
les similitudes pouvant exister entre certaines de ces données en les regroupant en différentes catégories : on
cherche à les partitionner. On appelle cela le clustering, parfois (mal ?) traduit en classification (mais à ne pas
confondre avec la classification dont on a parlé dans le chapitre précédent).

L’objectif d’un clustering est de créer des classes d’équivalence où on maximise l’homogénéité au sein d’une
classe, et on maximise l’hétérogénéité entre différentes classes. Pour quantifier cette idée, on utilisera une
fonction de distance qui pourra varier selon les données utilisées.

1 CLUSTERING HIÉRARCHIQUE ASCENDANT

Le clustering hiérarchique ascendant (ou CHA) consiste à regrouper les données petit à petit en fonction de
leur proximité avec d’autres données. L’approche est relativement simple et peut se résumer en :

Entrée : ensemble de données x1, . . ., xN .
Début algorithme

Créer N classes {x1}, . . ., {xn}.
Tant que nécessaire Faire

Fusionner les deux classes les plus proches.

Dans l’algorithme précédent, certaines choses sont implicites :

— La condition « nécessaire » de la boucle Tant que peut avoir différentes interprétations, on peut choisir
d’arrêter les regroupements lorsque :
• un nombre de classes déterminé à l’avance a été atteint ;
• les deux classes les plus proches sont suffisamment éloignées l’une de l’autre ;
• le diamètre d’une des classes devient trop important.

— Par ailleurs, la notion de « plus proches » est volontairement vague. On peut obtenir des résultats diffé-
rents selon la distance ∆(A,B) choisie entre deux classes A et B :
• liaison simple : min{δ(x, y) | x ∈ A, y ∈ B} ;
• liaison complète : max{δ(x, y) | x ∈ A, y ∈ B} ;

• liaison moyenne :
1

|A||B|
∑

x∈A,y∈B

δ(x, y) ;

• liaison barycentrique : δ(bA, bB) où bA et bB sont les barycentres de A et B ;

• liaison de Ward :

√
|A||B|

|A|+ |B|
δ(bA, bB), correspondant à une liaison barycentrique en donnant moins de

poids aux classes composées de données isolées ;
• . . .

Exemple 1. On considère l’ensemble de points suivant :

x1(10, 6), x2(4, 7), x3(3, 5), x4(5, 1), x5(9, 4), x6(9, 1), x7(4, 2), x8(2, 2), x9(5, 8)

On souhaite appliquer l’algorithme CHA par liaison simple, avec une distance maximale avant fusion de deux
clusters de 3. On obtient les fusions successives suivantes (les cas d’égalité sont simultanés) :
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On peut représenter l’ordre des fusions, ainsi que les distances au moment de la fusion par un dendrogramme
(qu’on a continué ici jusqu’à la fusion de l’ensemble des classes) :

distance de fusion
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Remarque 1. Bien que simple à appréhender, le CHA possède deux inconvénients :
• il n’y a pas de « remise en question » : deux classes fusionnées ne seront jamais séparées ;
• la complexité peut être élevée : la recherche des deux classes les plus proches peut prendre un temps

O(N2), ce qui donne une complexité totale en O(N3) (et encore, seulement si les structures de données sont
optimisées).

Exemple 2. Reprendre l’exemple précédent et déterminer le dendrogramme correspondant à un CHA avec liaison
complète.
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2 k-MOYENNES

L’algorithme des k-moyennes est un algorithme qui cherche à construire un nombre de clusters défini à
l’avance appelé k dans la littérature. L’objectif est de résoudre le problème d’optimisation CLUSTERING :

* Instance : un ensemble de données E = {x1, . . ., xN} et un entier k.
* Solution : une partition de E en k classes C1, . . . , Ck.

* Optimisation : minimiser
k∑

j=1

∑
x∈Cj

δ(x, bj)
2, où bj est le barycentre de la classe Cj.

Cependant, ce problème d’optimisation est NP-difficile donc l’algorithme présenté ici est une heuristique consi-
dérée comme satisfaisante mais qui peut renvoyer un résultat non optimal. L’idée de l’algorithme des k-
moyennes est la suivante :

— créer k points b1, . . ., bk, soit au hasard dans l’espace considéré, soit choisis au hasard parmi les xi ;
— tant que les bj changent :

— affecter à chaque point xi la classe j correspondant au barycentre bj qui lui est le plus proche ;
— modifier chaque bj en le barycentre de la nouvelle classe j.

Proposition 1. Chaque itération de la boucle Tant que de l’algorithme précédent a une complexité en O(k ×N).

Proposition 2. L’algorithme des k-moyennes termine.

Remarque 2. L’algorithme des k-moyennes, bien que généralement plus rapide que l’algorithme de clustering
hiérarchique ascendant présente certains défauts :

— Le choix initial des bj est un point critique de l’algorithme. Un mauvais choix peut entraîner un grand dés-
équilibre par rapport à une solution optimale (si les points choisis sont éloignés des données réelles, ou si
deux points sont initialement choisis très proches).

— Il peut converger vers un minimum local qui n’est pas un minimum global.
— En pratique, on fixe un nombre limite d’itérations plutôt que d’attendre la convergence.
— il n’est valable que pour des classes convexes ce qui n’est pas le cas de CHA.

3 EXERCICE

On considère l’ensemble de points :

x1(2, 10), x2(2, 5), x3(8, 4), x4(5, 8), x5(7, 5), x6(6, 4), x7(1, 2), x8(4, 9)

1. Faire une figure précise.

2. En supposant qu’on souhaite obtenir 3 classes, appliquer l’algorithme des k-moyennes avec des bary-
centres initialisés à {x1, x4, x7}.

3. En supposant qu’on arrête les fusions lorsque la distance entre deux clusters dépasse 4, appliquer l’algo-
rithme CHA par liaison simple.

On mesurera une approximation des distances à la règle.
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