
Épreuve d’informatique MPI
Concours commun INP

2024-04-24

1 Algorithme Single Pass
Cette partie comporte des questions nécessitant un code en langage C.
On cherche à classer n = 5 documents textuels doci, i ∈ �1, n� dans lesquels les termes T1, T2 et T3

apparaissent un certain nombre de fois, ces occurrences étant décrites dans le tableau suivant :

doc1 doc2 doc3 doc4 doc5
T1 1 2 0 1 1
T2 3 1 1 3 0
T3 3 0 0 1 1

Chaque document doci est donc représenté par un ensemble de p = 3 valeurs. On notera di, i ∈ �1, n�
un vecteur de N3, de composantes dij , j ∈ �1, p�, dij indiquant le nombre d’occurrences du terme Tj dans
le document doci.

On cherche à voir si des textes traitent des mêmes thématiques, en faisant l’hypothèse que des textes
sont sémantiquement proches si des termes communs apparaissent.

Question 1. Recopier et remplir le tableau suivant en appliquant l’algorithme des k-moyennes avec
k = 2 et d2 et d5 comme centres de classe initiaux. On utilisera la distance δ(di, dj) =

p�
�=1

|di� − dj�|. On

notera de plus ci les centres de classe et Ai les classes correspondantes.

Itération c1 c2 A1 A2

1 d2 d5
2
3

On souhaite maintenant traiter ce problème par une méthode dite « single pass » décrite dans
l’algorithme 1.

Question 2. Appliquer l’algorithme 1 avec θ = 5.0. Détailler les résultats des étapes de l’algorithme.

On propose d’implémenter cet algorithme en langage C. À cet effet, on définit un type structuré
vecteur permettant d’encoder les centres de classe et les textes.

struct vecteur_s {
double *v; // pointeur vers les coordonnées
int taille; // taille du vecteur
int num_classe; // classe du vecteur

};
typedef struct vecteur_s vecteur;

Puisque le nombre de centres de classe varie au cours de l’algorithme, on utilise une liste chaînée de
vecteurs pour représenter l’ensemble des centres de classe.

1

Algorithme 1 Algorithme Single Pass
Entrées : (d1, . . . , dn) les vecteurs des documents, θ un seuil qui appartient à R.
Sorties : (A1, . . . ,Aj) les classes de centres (c1, . . . , cj).
c1 ← d1 // Initialisation
A1 ← {d1}
j ← 1
pour i de 2 à n faire

pour k de 1 à j faire
Étape (i) Calculer δ(di, ck)

fin pour
si Étape (ii) δ(di, ck) > θ∀ck alors

j ← j + 1 // Création d'une nouvelle classe
Aj ← {di}
cj ← di

sinon
// Indice du centre de classe le plus proche de di au sens de δ

Étape (iii) l ← arg min
1≤k<j

(δ(di, ck))

Al ← Al ∪ {di} // Affectation de di à la classe �
cl ← 1

|Al|
�

di∈Al

di // Recalcul de cl

fin si
fin pour

struct noeud_s {
vecteur *c;
struct noeud_s *suivant;

};
typedef struct noeud_s noeud;

Question 3. Écrire une fonction de prototype void ajoutVecteur(vecteur *vec, noeud **tete)
permettant d’ajouter un vecteur vec en tête de la liste des centres de classe pointée par tete. On
prendra soin de vérifier que l’allocation mémoire s’est bien passée.

On suppose dans la suite disposer :
— de la variable vecteur *documents[nb_documents] qui contient l’ensemble des documents, où

pour tout i ∈ �0, nb_documents− 1�, documents[i] est égal à di+1.
— d’une fonction void recalculCentre(vecteur *documents[], int nb_documents, noeud *tete,

int l) qui effectue le recalcul du centre c� et met à jour le nœud correspondant dans la liste chaî-
née des centres de classe.

Question 4. Écrire une fonction de prototype double delta(vecteur *di, vecteur *c) qui calcule
la distance entre le document di et le centre de classe c (étape (i) de l’algorithme 1). On suppose que
di et c ont la même taille.

Question 5. Écrire une fonction de prototype bool distmax(double dists[], int j, double theta)
qui réalise l’étape (ii) de l’algorithme 1. Le tableau dists contient les distances de di à tous les ck : pour
tout k ∈ �0, j − 1� l’élément dists[k] du tableau dists contient la distance de di à ck+1. La fonction
renvoie true si δ(di, ck) > θ ∀ck et false sinon.

Question 6. Écrire une fonction de prototype int distmin(double dists[], int j) qui réalise
l’étape (iii) de l’algorithme 1. Le tableau dists contient les distances de di à tous les ck comme dans la
question précédente. La fonction renvoie l’entier l décrit dans l’algorithme.

Question 7. À l’aide des questions précédentes et de la fonction recalculCentre, proposer une implé-
mentation de l’algorithme 1 sous la forme d’une fonction de prototype noeud *algorithme1(vecteur
*documents[], int nb_documents, double theta). Évaluer la complexité de l’algorithme 1.

2

