DS4-MPI

Ce sujet est composé de quatre exercices indépendants.

1 Non prouvabilité en logique intuitionniste

On considére F I’ensemble des formules propositionnelles construites sur un ensemble de variables propositionnelles
V = {331,...,1‘”},

a I’aide des connecteurs logiques 1, A, V et —. On note —A la formule propositionnelle A — 1.
Pour un séquent I' = A, on note :

'+ A (resp. ', A)

si le séquent est prouvable en logique intuitionniste (resp. classique).

La logique intuitionniste est le systéme dont les régles sont celles rappelées dans ’annexe B en fin de
sujet.

La logique classique est composée du méme systéme de régles auquel on ajoute le Tiers exclu :

FoV o

Dans cet exercice, on souhaite montrer qu’il existe des séquents prouvables en logique classique mais
pas en logique intuitionniste.

On considére la sémantique suivante, dite sémantique de Heyting, définie sur F.

On note O(R) 'ensemble des ouverts de R et on définit une valuation comme une fonction

p:V — OR).
On étend la définition de p & toutes les formules de F par :
o u(l)=2;
o WAAB) = p(A) N u(B) ;

e WAV B) = p(A)Up(B);

/—f_
o (A — B) = (u(A)°Upn(B)),

ot X°¢ désigne le complémentaire de X et X Dintérieur de X.
Pour I' C F, on pose

wT) = () nl4),

AeT

avec la convention p(&) = R.
Un séquent I' - A est dit valide si

w(T) € p(A).
Une régle d’inférence est dite valide si, lorsque ses prémisses sont valides, alors sa conclusion est valide.
Q1 Quelle sémantique obtient-on si ’on considére des valuations a valeurs dans {&, R} au lieu de

OR) ?

Q2 Montrer que
F, ((AV B)A—A) — B.

Q3 Le séquent
F((AvB)A-A)— B

est-il valide pour la sémantique de Heyting 7 Justifier.

Q4 Montrer que
F.(A— B) = (A V B).

Q5 En utilisant la valuation qui pose u(A) = R* = u(B), montrer que le séquent
F(A— B)— (-AV B)
n’est pas valide pour la sémantique de Heyting.

Q6 Montrer que la régle de déduction (— e) est valide (on pourra utiliser sans le démontrer que
I'intérieur de l'intersection de deux ensembles est égale a l'intersection de leurs intérieurs).

Q7 On admet que les autres régles de la logique intuitionniste sont valides. En déduire que la
logique intuitionniste est correcte pour la sémantique de Heyting.

Q8 Montrer que la régle du tiers exclu n’est pas valide. Que peut-on en déduire concernant la
complétude de la logique intuitionniste pour la sémantique booléenne usuelle ?

2 Implémentation d’un tableau associatif par I'utilisation d’un

algorithme probabiliste

Nous nous intéressons dans cette section & une maniére d’implémenter un tableau associatif, en utilisant
une structure de donnée probabiliste : les skip lists.

2.1 Principe des skip lists

Une skip list est une liste chainée optimisée pour accélérer la recherche d’un élément. Pour ce faire,
certains nceuds stockent dans un tableau des pointeurs vers d’autres nceuds situés plus loin dans la liste.
Chaque case du tableau correspond a un « niveau » et un pointeur de niveau i méne vers un noeud qui
posséde lui aussi un pointeur de niveau i. Le niveau 0 contient I’ensemble des éléments, classés par ordre
alphabétique en fonction de leur clef. Les niveaux supérieurs regroupent un sous-ensemble des éléments,
de fagon a espacer progressivement les nceuds. Par exemple, idéalement, le niveau 1 contiendrait un nceud

sur deux, le niveau 2 un noeud sur quatre, et ainsi de suite (voir Figure 2).

niveau 2

d: 1

niveau 1

Tl"l"
craZ

,lll

niveau ()

I — ” f:6
e e I e S S

B =N

sentinelle

FIGURE 2 — Exemple dune skip list idéale.

Le premier noeud de la skip list est une sentinelle, qui ne contient pas de donnée utile mais posséde
des pointeurs pour tous les niveaux de la liste.

Pour chercher un élément, on démarre & partir de la sentinelle au niveau le plus élevé. A ce niveau, on
suit les pointeurs vers les nceuds suivants tant que la clef du nceud actuel est inférieure a celle recherchée.

Dés qu’on rencontre un nceud dont la clef est supérieure, on descend d’un niveau et on répéte la méme

opération. Lorsque la recherche atteint le niveau 0, elle est terminée et, si I’élément recherché y est

présent, il est renvoyé (voir Figure 3).

niveau 2

niveau | | ®

b:3 il
niveau () .'—Pla:7| q‘—. L o

sentinelle

CrCcz

FIGURE 3 — Parcours lors de la recherche de la clef "g".

En pratique, chaque noeud a une probabilité % d’étre présent dans le niveau supérieur.

2.2 Implémentation

On définit les structures suivantes :

struct slNoeud_s {

char* clef;

int valeur;

struct slNoeud_s* suivant_par_niveaul[];
s
typedef struct slNoeud_s slNoeud;

struct sllListe_s {
int niveau_actuel;
slNoeud* sentinelle;
};
typedef struct slListe_s sllListe;

On définit une constante, MAX_NIVEAU, qui correspond au nombre maximal de niveaux qu’un nceud
peut avoir. La sentinelle de la skip list est créée comme un neeud particulier, avec une clef vide, une valeur
nulle, et un tableau de pointeurs de taille MAX_NIVEAU+1 (de 0 & MAX_NIVEAU inclus) tous initialisés a
NULL.

Q9 Ecrire une fonction C s1_rechercher qui recherche une clef dans la skip list passée en paramétre
et renvoie la valeur associée si elle est présente, ou —1 sinon. On rappelle que pour tester ’égalité
entre deux chaines de caractéres, on utilise la fonction strcmp.

La signature de la fonction est : int sl_rechercher(slListe* liste, char* clef)

Q10 On considére la fonction suivante :

int sl_mystere() {
int niveau = O0;
while ((rand() % 2) == 1 && niveau < MAX_NIVEAU) {
niveau++;

}

return niveau;

3

Quelles sont les propriétés de la valeur renvoyée par cette fonction ?
On suppose disponible la fonction :

slNoeud* sl_creer_noeud(int niveau, char* clef, int valeur);

Cette fonction crée un nouveau nceud de niveau niveau avec la clef et la valeur passées en paramétre. Les
pointeurs du nouveau noeud sont tous initialisés & NULL.

La fonction s1_ajoute_valeur, qui ajoute une clef et une valeur dans la skip list passée en paramétre,
a la structure suivante :

void sl_ajoute_valeur(slListe*x liste, char* clef, int valeur) {
int niveau = sl_mystere();
slNoeud* nouveau_noeud = sl_creer_noeud(niveau, clef, valeur);
s1Noeud* noeuds_a_mettre_a_jour [MAX_NIVEAU + 1];
slNoeud* courant = liste->sentinelle;
// PARTIE A
/* parcourt l’ensemble des niveaux de la liste pour trouver
dans chaque niveau le noeud aprés lequel insérer
le nouveau noeud, on le stockera dans le tableau noeuds_a_mettre_a_jour */
// FIN PARTIE A
if (niveau > liste->niveau_actuel) {
// PARTIE B
/* si le niveau du nouveau noeud est plus grand
que le niveau actuel de la liste
préparer la sentinelle */
// FIN PARTIE B

// PARTIE C
/* insérer le nouveau noeud */
// FIN PARTIE C

Q11 Ecrire le code correspondant & la partie A de la fonction s1_ajoute_valeur.
Q12 Ecrire le code correspondant & la partie B de la fonction s1_ajoute_valeur.
Q13 Ecrire le code correspondant & la partie C de la fonction s1_ajoute_valeur.
Q14 L’algorithme des skip lists est-il de type Monte-Carlo ou Las Vegas 7 Justifier.

Q15 En supposant une skip list idéale comme dans la Figure 2, ot chaque niveau posséde exactement
la moitié des éléments du niveau inférieur idéalement répartis, quelle est la complexité en temps
de la recherche d'un élément dans une skip list de taille n 7 On acceptera une explication de
haut niveau.

On considére désormais une skip list non idéale, o les éléments sont répartis de maniére aléatoire

avec une probabilité p = % d’étre présent dans le niveau supérieur.

Q16 Quelle est 'espérance du nombre d’éléments au niveau k 7

Q17 Quelle est 'espérance du niveau le plus haut d’une skip list de taille n ? (question trés difficile).
On acceptera dans la suite le résultat suivant : cette espérance est proportionnelle a log,(n).
Q18 Quel est en moyenne le nombre de noeuds parcourus horizontalement dans un niveau k lors

d’une recherche dans une skip list de taille n ?

Q19 En déduire la complexité moyenne de la recherche dans une skip list de taille n.

3 Analyse syntaxique et tableaux associatifs

On souhaite construire une fonction analyse qui prend en paramétre une chaine de caractéres décrivant
un tableau associatif sous la forme de couples clef:valeur.
Exemple :

analyse("{id:5,valeur:12,0k:0}")
Le format de la chaine est défini par les régles suivantes :
e la chaine commence par { et se termine par } ;
e chaque couple est de la forme clef:valeur ;
e les couples sont séparés par des virgules ;
e une clef est une suite non vide de lettres minuscules ;
e une valeur est un entier non signé sans zéro non significatif.

On considére les régles de production suivantes :

N=0[--]9 M-—1|--]19 Loal--|z

Q20 Ecrire la régle de production C' correspondant & la description d’une clef.
Q21 Ecrire la régle de production V correspondant a la description d’une valeur.

On considére la grammaire suivante :

T—{S}
S—>K|K,S
K—-C:V

Q22 Le mot {id:5,valeur:12,0k:0} appartient-il au langage engendré par cette grammaire 7
Meéme question pour {james:007}.

Q23 Décrire un automate déterministe sans transition vide reconnaissant le langage décrit par la
régle T.

Q24 Vérifier que les séquences {code:102}, {v:0} et {a:1,b:2} sont reconnues par ’automate.
Dans quel état se trouve I’automate pour {james:007} ?

4 Grammaires et décidabilité

Dans cette partie, on considére 3 un alphabet fini. Le but est de prouver 'indécidabilité de plusieurs

problémes de décision sur les grammaires non contextuelles.

4.1 Le Probléme de Correspondance de Post

Définition 1.1 (PCP). On appelle domino un couple de mots (u,v) € (X*)?, noté <u>
v
Le Probléeme de Correspondance de Post (PCP) est le probléme de décision suivant :

PCP

Uy Unp .
ey de dominos ;
U1 Un,

e Entrée : une liste

e Question : existe-t-il kK € N* et (iy,...,ix) € [1,n]* tels que

uil...uik :Uil...vik?

Exemple 1.1. Considérons la liste de dominos :

be a ca abc

ca) \ab) ' \a]\ ¢
Cette instance est positive. Une solution est donnée par la suite (2, 1,2,4).

Q25 L’instance suivante posséde-t-elle une solution ?

a ab bba

baa | "\aa) \ bb
Q26 Meéme question pour l'instance :

abe ca acc

ab |\ a)\ ba

Q27 Montrer que si une instance de PCP posséde une solution, alors elle posséde une infinité de
solutions.

4.2 Problémes de décision sur les grammaires non contextuelles

On considére les probléemes InterVide, Ambig, Univ et Egal définis classiquement sur les grammaires
non contextuelles.

INTERVIDE

Entrée : deux grammaires non contextuelles G et Gs sur le méme alphabet '
Question : Est-ce que £(G1) NL(G2) =27

AMBIG

Entrée : une grammaire non contextuelle G sur un alphabet X’
Question : Est-ce que G est ambigiie ?

Univ

Entrée : une grammaire non contextuelle G sur un alphabet %’
Question : Est-ce que £(G) = X* 7

EcAL

Entrée : deux grammaires non contextuelles G; et G2 sur le méme alphabet &'
Question : Est-ce que £(G1) = L(G2)?

On admet que le probléme PCP est indécidable.

Q28 Soit f1: B — B et fo : F; — B deux problémes de décision. Montrer que si f; < f5 et si fy
est indécidable, alors fy est indécidable.

Soit

une instance de PCP. On se donne A = {dy,..

.,d,} un ensemble de nouvelles lettres (A NYX =)

représentant nos n dominos, et on va travailler avec des grammaires sur I'alphabet ¥’ = ¥ U A. Pour
L C (¥)*,onnote L = (X)*\ L le complémentaire de L dans (X')*. On définit les langages suivants
sur X' ¢ Ly = {ug, . ougaiy - a |k € N* (iq,.. ., d) € {1,...,n}*}
Ly = {vi, ...vipaiy - agy |k € N*, (i1,...,i) € {1,...,n}*}

Q29

Donner une grammaire non contextuelle engendrant le langage L,,.

Q30 Si l'instance de PCP est positive, que dire de L, et L, 7 La réciproque est-elle vraie 7

Q31
Q32

Q33

En déduire que PCP < InterVide.

Quel langage est engendré par la grammaire suivante 7

S—UlV
U—=wlUa]... luyUay
U= uay|...|upan
V—ouVal... |lvp,Va,
V = wviaq|. .. |vpan

Montrer que PCP < Ambig.

On consideére les langages suivants : L), = {wa;, ...a; |k € N* et w € 3% w # uy,
L ={wa;, ...a; |k e N* et w e X*, £ vy, ... v}

Q34
Q35
Q36
Q37
Q38

Calculer L, US*A* U {e}.

Donner une grammaire engendrant L*A*.
Donner une grammaire engendrant L.
En déduire que PCP < Univ.

Montrer que Egal est indécidable.

B. Annexe :

Dans les tableaux suivants, la lettre A désigne un ensemble de formules de logique; les

lettres A, B et C désignent des formules de logique.

regles de la déduction naturelle

Axiome
—— (ax)
AAEA
Introduction Elimination
- AAFB oD AFA AI—A%B(HE}
AFA—=B AFB
AFAAB (ne)
\ AFA _AFB ara
AFAANB AL AAB o
A+ B
AFA vi)
y AFAVE AFAVB AAFC ABFC
AEB ARC
AFAVEB
. AAFB AAF-B AFA AF—A (=)
AF-A o AFB

	Non prouvabilité en logique intuitionniste
	Implémentation d'un tableau associatif par l’utilisation d’un algorithme probabiliste
	Principe des skip lists
	Implémentation

	Analyse syntaxique et tableaux associatifs
	Grammaires et décidabilité
	Le Problème de Correspondance de Post
	Problèmes de décision sur les grammaires non contextuelles

