
DS4-MPI
Ce sujet est composé de cinq exercices indépendants. Vous devez en choisir 4 à traiter. Nous vous demandons

de bien préciser en début de copie, quels sont les exercices choisis.

1 Coupe maximale

Q6 On rappelle que pour une coupe δ(S), chaque arête de la coupe possède exactement deux extrémités
appartenant à V .

Ainsi, en sommant degcut(x) sur tous les sommets, chaque arête de δ(S) est comptée exactement
deux fois, une fois pour chacune de ses extrémités. On obtient donc :∑

x∈V

degcut(x) = 2|δ(S)|.

Q7 Lorsqu’on déplace un sommet x d’un côté à l’autre de la partition, les arêtes incidentes à x changent
de statut :

• les degcut(x) arêtes qui appartenaient à la coupe n’y appartiennent plus ;

• les degout(x) arêtes qui n’appartenaient pas à la coupe y appartiennent désormais.

La variation de la taille de la coupe est donc :

∆ = degout(x)− degcut(x).

Le déplacement augmente strictement la coupe si et seulement si

degout(x) > degcut(x).

Q8 À chaque itération de l’algorithme, la taille de la coupe augmente strictement. Or |δ(S)| est un entier
compris entre 0 et |E|.

Il ne peut donc y avoir qu’un nombre fini d’itérations : l’algorithme termine.

Q9 À la fin de l’algorithme, il n’existe plus de sommet x dont le déplacement augmente strictement la
coupe. Par la question précédente, cela signifie que pour tout x ∈ V :

degout(x)− degcut(x) ≤ 0,

c’est-à-dire :
degcut(x) ≥ degout(x).

Q10 On a pour tout sommet x :

deg(x) = degcut(x) + degout(x) ≤ 2 degcut(x).

En sommant sur tous les sommets :∑
x∈V

deg(x) ≤ 2
∑
x∈V

degcut(x).

Par le lemme de la poignée de main,∑
x∈V

deg(x) = 2|E|,
∑
x∈V

degcut(x) = 2|δ(S)|.

On obtient donc :
2|E| ≤ 4|δ(S)|, soit |δ(S)| ≥ |E|

2
.

Comme la taille d’une coupe optimale est toujours inférieure ou égale à |E|, l’algorithme fournit
une approximation à facteur 1

2 pour Max-Cut.

Q11 Dans un triangle K3, on a |E| = 3. Une coupe optimale contient 2 arêtes, ce qui est strictement
supérieur à |E|/2 = 1,5.

Plus généralement, dans un graphe complet Kn, une coupe équilibrée contient environ n2/4 arêtes,
strictement plus que |E|/2 pour n ≥ 3.

Corrigé — Exercice 2 (programmation OCaml)

Q12 (Q12) On calcule la taille de la coupe en comptant chaque arête une seule fois. Comme le graphe est
non orienté et que la liste d’adjacence contient en général les deux sens, on ne compte l’arête {u, v}
que lorsque u < v.

(* g : int list array, sommets 1..n, g.(u-1) = voisins de u *)
let cut_size (g : int list array) (side : bool array) : int =

let n = Array.length g in
let acc = ref 0 in
for u = 0 to n-1 do

List.iter (fun v ->
if u < v then

if side.(u) <> side.(v) then incr acc
) g.(u)

done;
!acc

Q13 (Q13) Le degré dans la coupe degcut(x) est le nombre de voisins placés de l’autre côté.

let deg_cut (g : int list array) (side : bool array) (x : int) : int =
let sx = side.(x) in
let acc = ref 0 in
List.iter (fun v ->

if side.(v) <> sx then incr acc) g.(x)
!acc

Q14 (Q14) On a degout(x) = deg(x)− degcut(x) et deg(x) = longueur de g.(x− 1).

let deg_out (g : int list array) (side : bool array) (x : int) : int =
(List.length g.(x)) - (deg_cut g side x)

Q15 (Q15) Variation de la coupe lorsqu’on déplace x :

∆ = degout(x)− degcut(x).

let delta (g : int list array) (side : bool array) (x : int) : int =
(deg_out g side x) - (deg_cut g side x)

Q16 (Q16) On cherche un sommet améliorant : un x tel que ∆ > 0.

let find_improving_vertex (g : int list array) (side : bool array) : int option =
let n = Array.length g in
let rec aux x =

if x = n then None
else if delta g side x > 0 then Some x
else aux (x+1)

in
aux 0

Q17 (Q17) Algorithme d’amélioration locale : on initialise tout dans le même côté, puis on applique des
déplacements tant qu’il existe une amélioration.

let maxcut_local (g : int list array) : bool array =
let n = Array.length g in
let side = Array.make n true in
let rec loop () =

match find_improving_vertex g side with
| None -> side
| Some x ->

side.(x) <- not side.(x);
loop ()

in
loop ()

(Remarque : cet algorithme termine car la taille de la coupe augmente strictement à chaque
déplacement et est majorée par |E|.)

2 Grammaires

Q18 (Q18) On cherche une dérivation à gauche du mot u = abc.
On part du symbole initial S :

S ⇒ SaS ⇒ AaS ⇒ BaS ⇒ aS ⇒ aA ⇒ aAbA ⇒ aBbA ⇒ abA ⇒ abB ⇒ abBcB ⇒ abcB ⇒ abc

Le mot abc admet au moins une dérivation dans la grammaire G, ce qui montre que u ∈ L(G).

Q19 (Q19) On peut construire deux dérivations distinctes pour le mot u′ = aa.

Premier arbre :

S ⇒ SaS ⇒ AaS ⇒ BaS ⇒ aS ⇒ aSaS ⇒ aAaS ⇒ aBaS ⇒ aaS ⇒ aaA ⇒ aaB ⇒ aa

Second arbre :

S ⇒ SaS ⇒ SaSaS ⇒ AaSaS ⇒ BaSaS ⇒ aSaS ⇒ aAaS ⇒ aBaS ⇒ aaS ⇒ aaA ⇒ aaB ⇒ aa

Ces deux arbres sont distincts et conduisent au même mot terminal aa. La grammaire G est donc
ambiguë.

Q20 (Q20) Une variable est récursive gauche directe si elle possède une règle de la forme A → Aα.
Dans la grammaire G :

• S → SaS montre que S est récursive gauche ;

• A → AbA montre que A est récursive gauche ;

• B → BcB montre que B est récursive gauche.

Les trois variables S, A et B sont donc récursives gauches directes.

Q21 (Q21) On élimine la récursivité gauche variable par variable en appliquant l’algorithme donné.

Élimination pour B :
B → BcB | ε

devient : {
B → B′

B′ → cBB′ | ε

Élimination pour A :
A → AbA | B

devient : {
A → BA′

A′ → bAA′ | ε

Élimination pour S :
S → SaS | A

devient : {
S → AS′

S′ → aSS′ | ε

On obtient ainsi une grammaire G′ équivalente à G et ne contenant plus de récursivité gauche
directe.

Q22 (Q22) On montre que le langage engendré par G (et donc G′) est {a, b, c}⋆.

Inclusion ⊆ : Toutes les règles de production ne produisent que des lettres de {a, b, c}, donc L(G) ⊆
{a, b, c}⋆.

Inclusion ⊇ :
Par récurrence forte sur la longueur du mot, on montre que tout mot de {a, b, c}⋆ peut être engendré

par G, que tout mot de {b, c}∗ peut être engendré à partir du symbole A et que tout mot de {c}∗
peut être engendré à partir du symbole B.

En effet le mot vide est bien engendré par les dérivations suivantes :

S ⇒ A ⇒ B ⇒ ϵ

A ⇒ B ⇒ ϵ

B ⇒ ϵ

• Soit u un mot de longueur n+ 1 avec n ≥ 0 quelconque dans {a, b, c}∗.
Supposons dans un premier temps que u contient au moins un a et donc u s’écrit sous la forme
u = u1au2 avec u1 et u2 deux mots de {a, b, c}∗ de longueur au plus n qui sont générés par la
grammaire par hypothèse de récurrence. Ainsi :

S ⇒ SaS ⇒∗ u1au2 = u

Supposons maintenant que le mot ne contient aucun a mais contient au moins un b. Il est donc
de la forme u = u1bu2 avec u1 et u2 deux mots de {b, c}∗ de longueur au plus n qui sont générés
à partir de A d’après l’hypothèse de récurrence et donc la dérivation S ⇒ A ⇒ AbA ⇒∗ u1bu2

convient.

Enfin si le mot appartient à {c}∗ alors il est de la forme u = cu′ avec u′ de longueur n qui est
engendré à partir de B par HR et donc S ⇒ A ⇒ B → BcB ⇒ cB ⇒ cu′ convient.

• Si le mot est dans {b, c}∗ on a vu dans la résolution précédente (deuxième cas) qu’il était engendré
à partir de A car notre dérivation commencait par S ⇒ A d’où l’on dérivait u.

• Si le mot n’est composé que de c on a vu qu’on pouvait le dériver depuis B en prenant la
dérivation à partir de la troisième étape.

Ainsi :
L(G) = L(G′) = {a, b, c}⋆.

3 Recherche d’une clique de célébrités

3.1 Définitions et propriétés

	Déduction naturelle
	Coupe maximale
	Grammaires
	Recherche d'une clique de célébrités
	Définitions et propriétés

