DS4-MPI

Ce sujet est composé de cing exercices indépendants. Vous devez en choisir 4 & traiter. Nous vous demandons
de bien préciser en début de copie, quels sont les exercices choisis.

1 Coupe maximale

Q6 On rappelle que pour une coupe §(S), chaque aréte de la coupe posséde exactement deux extrémités
appartenant a V.
Ainsi, en sommant deg,,(z) sur tous les sommets, chaque aréte de 6(5) est comptée exactement
deux fois, une fois pour chacune de ses extrémités. On obtient donc :

> degey(a) = 2(6(5)|-

eV

Q7 Lorsqu’on déplace un sommet x d’un coté a I’autre de la partition, les arétes incidentes & x changent
de statut :

e les deg () arétes qui appartenaient & la coupe n’y appartiennent plus ;
e les deg, . (x) arétes qui n’appartenaient pas a la coupe y appartiennent désormais.

La variation de la taille de la coupe est donc :

A= degout (I) - degcut (I)

Le déplacement augmente strictement la coupe si et seulement si

degout ((E) > degcut ({17) .

Q8 A chaque itération de I’algorithme, la taille de la coupe augmente strictement. Or |§(S)| est un entier
compris entre 0 et |E|.
Il ne peut donc y avoir qu’un nombre fini d’itérations : I’algorithme termine.

Q9 A la fin de l'algorithme, il n’existe plus de sommet x dont le déplacement augmente strictement la
coupe. Par la question précédente, cela signifie que pour tout = € V :

degout (a:) - degcut (.73) < 07

c’est-a-dire :
degcut (l‘) Z degout (l‘) .

Q10 On a pour tout sommet x :
deg(x) = degcut (33) + degout (33) <2 degcut (33)

En sommant sur tous les sommets :

Z deg(m) é 2 Z degcut(x)'

zeV zeV
Par le lemme de la poignée de main,
> deg(z) =2|E|, > dege(x) =2/6(5),
zeV zeV
On obtient donc :

2B < 4I3(S)], soit [3(5)] > 2.

Comme la taille d’une coupe optimale est toujours inférieure ou égale & |E|, Ualgorithme fournit
une approximation & facteur % pour Max-Cut.

Q11 Dans un triangle K3, on a |E| = 3. Une coupe optimale contient 2 arétes, ce qui est strictement
supérieur a |E|/2 = 1,5.
Plus généralement, dans un graphe complet K,,, une coupe équilibrée contient environ n?/4 arétes,
strictement plus que |E|/2 pour n > 3.

Corrigé — Exercice 2 (programmation OCaml)

Q12 (Q12) On calcule la taille de la coupe en comptant chaque aréte une seule fois. Comme le graphe est
non orienté et que la liste d’adjacence contient en général les deux sens, on ne compte l'aréte {u, v}
que lorsque u < v.

(* g : int list array, sommets 1..n, g.(u-1) = voisins de u *)
let cut_size (g : int list array) (side : bool array) : int =
let n = Array.length g in
let acc = ref 0 in
for u = 0 to n-1 do
List.iter (fun v ->
if u < v then
if side.(u) <> side.(v) then incr acc
) g.(w
done;
lacc

Q13 (Q13) Le degré dans la coupe deg,. . (x) est le nombre de voisins placés de autre coté.

let deg_cut (g : int list array) (side : bool array) (x : int) : int =
let sx = side.(x) in
let acc = ref 0 in
List.iter (fun v ->
if side.(v) <> sx then incr acc) g.(x)
lacc

Q14 (Q14) On a deg,(x) = deg(x) — deg.(x) et deg(z) = longueur de g.(z — 1).

let deg_out (g : int list array) (side : bool array) (x : int) : int =
(List.length g.(x)) - (deg_cut g side x)

Q15 (Q15) Variation de la coupe lorsqu’on déplace x :

A= degout ({E) - degcut (l’)

let delta (g : int list array) (side : bool array) (x : int) : int =
(deg_out g side x) - (deg_cut g side x)

Q16 (Q16) On cherche un sommet améliorant : un x tel que A > 0.

let find_improving_vertex (g : int list array) (side : bool array) : int option =
let n = Array.length g in
let rec aux x =
if x = n then None
else if delta g side x > O then Some x
else aux (x+1)
in
aux 0

Q17 (Q17) Algorithme d’amélioration locale : on initialise tout dans le méme coté, puis on applique des
déplacements tant qu’il existe une amélioration.

let maxcut_local (g : int list array) : bool array =
let n = Array.length g in
let side = Array.make n true in
let rec loop () =
match find_improving_vertex g side with
| None -> side
| Some x ->
side.(x) <- not side.(x);
loop ()
in
loop O

(Remarque : cet algorithme termine car la taille de la coupe augmente strictement & chaque
déplacement et est majorée par |E|.)

2 Grammaires

Q18 (Q18) On cherche une dérivation a gauche du mot u = abc.
On part du symbole initial S :

S = SalS = AaS = BaS = aS = aA = aAbA = aBbA = abA = abB = abBc¢B = abcB = abe

Le mot abc admet au moins une dérivation dans la grammaire G, ce qui montre que u € L(G).

Q19 (Q19) On peut construire deux dérivations distinctes pour le mot v’ = aa.

Premier arbre :

S = SaS = AaS = BaS = aS = aSaS = aAaS = aBaS = aaS = aaA = aaB = aa

Second arbre :
S = SaS = SaSaS = AaSaS = BaSaS = aSaS = alaS = aBaS = aaS = aaA = aaB = aa

Ces deux arbres sont distincts et conduisent au méme mot terminal aa. La grammaire G est donc
ambigué.

Q20 (Q20) Une variable est récursive gauche directe si elle posséde une régle de la forme A — Aa.
Dans la grammaire G :

e S — SaS montre que S est récursive gauche ;
o A — AbA montre que A est récursive gauche ;
e B — BcB montre que B est récursive gauche.

Les trois variables S, A et B sont donc récursives gauches directes.

Q21

Q21) On élimine la récursivité gauche variable par variable en appliquant 1’algorithme donné.

(
Elimination pour B :
B — BcB | e

B — B’
B' — ¢BB' | ¢

A— AbA| B

devient :

Elimination pour A :

devient :

A — BA'

A" — bAA | e
Elimination pour S :

S—SaS| A
devient :

S — AS’

S —aSS | e

On obtient ainsi une grammaire G’ équivalente & G et ne contenant plus de récursivité gauche
directe.

Q22 (Q22) On montre que le langage engendré par G (et donc G') est {a, b, c}*.

Inclusion C : Toutes les régles de production ne produisent que des lettres de {a, b, ¢}, donc L(G) C
{a,b,c}*.

Inclusion D :

Par récurrence forte sur la longueur du mot, on montre que tout mot de {a, b, c}* peut étre engendré
par G, que tout mot de {b,c}* peut étre engendré a partir du symbole A et que tout mot de {c}*
peut étre engendré a partir du symbole B.

En effet le mot vide est bien engendré par les dérivations suivantes :

S=A=B=c¢

A= B=c¢

B=¢€

e Soit w un mot de longueur n + 1 avec n > 0 quelconque dans {a, b, c}*.

Supposons dans un premier temps que u contient au moins un a et donc w s’écrit sous la forme
u = ujaug avec uy et uz deux mots de {a,b,c}* de longueur au plus n qui sont générés par la
grammaire par hypothése de récurrence. Ainsi :

S = SalS =" ujaus = u

Supposons maintenant que le mot ne contient aucun a mais contient au moins un b. Il est donc
de la forme u = u1bug avec u; et ug deux mots de {b, ¢}* de longueur au plus n qui sont générés
a partir de A d’aprés 'hypothése de récurrence et donc la dérivation S = A = AbA =* uibug
convient.

Enfin si le mot appartient a {c}* alors il est de la forme u = cu’ avec v’ de longueur n qui est
engendré & partir de B par HR et donc S = A = B — Bc¢B = ¢B = cu’ convient.

e Sile mot est dans {b, ¢}* on a vu dans la résolution précédente (deuxiéme cas) qu'il était engendré
a partir de A car notre dérivation commencait par S = A d’ou l'on dérivait u.

e Si le mot n’est composé que de ¢ on a vu qu’on pouvait le dériver depuis B en prenant la
dérivation & partir de la troisiéme étape.

Ainsi :

L(G) = L(G") = {a, b, c}*.

3 Recherche d’une clique de célébrités

3.1 Définitions et propriétés

	Déduction naturelle
	Coupe maximale
	Grammaires
	Recherche d'une clique de célébrités
	Définitions et propriétés

