Un corrigé : X-ENS INFO C 2025
Couplages maximaux et parfaits

Pour toutes les remarques ou corrections, vous pouvez m’envoyer un mail d
galatee.hemery@gmail.com

Partie I : Algorithme d’Edmonds

Question 1.

let rec del 1stl 1st2 = match 1lstl with
I -> [
[t::q when List.mem t 1st2 -> del q 1st2
[t::q -> t::(del q 1lst2)

Question 2.

let rec keys 1lst = match 1lst with
1 -> [
[(a,b)::q —> a::(keys q)

Question 3. (1) {{1,2},{0,5}} n’est pas un couplage du graphe car 1 et 2 ne sont pas relié pas une aréte
dans le graphe représenté.

(2) {{1,3},{0,5}} est un couplage.
(3) {{0,1},{2,3},{0,5}} n’est pas un couplage car 0 est 'extrémité de deux arétes de ensemble.

Question 4.

let rec couverts c¢ = match c with
1 >0
[(a,b)::q => a::b::(couverts q)

Question 5. On note que la définition de couplage mazximal du sujet correspond a la définition de couplage
mazximum enseigné en MPIL.
On peut proposer {{0,5},{2,1},{3,4}} comme couplage maximal alternatif.

Question 6. On note que la définition de chemin d’augmentation du sujet correspond a la définition de chemin
alternant augmentant enseigné en MPI.
On peut proposer 1,2,4,3 comme chemin d’augmentation.

Question 7. On peut proposer le chemin d’augmentation 1,0,2,4,6,5,7,9, qui donne le couplage augmenté :

S/

7 5

N\

e
N

6

N\

On peut aussi proposé plus simplement 1,9, qui donne le couplage augmenté :

2

)

o

©

NS

/

4 —
5

10

11

12

13

Question 8. Soit P = vy, ..., v, un chemin d’augmentation pour un couplage C.

On sait que vy et v, ne sont pas couverts par C' donc les arétes {vg, v1} et {vp_1, v, } sont ajoutées car elles ne
sont pas dans C.

Le caractére alternant implique que la longueur du chemin est impair n = 2p 4+ 1 : on commence et on finit par
des arétes hors de C' et une aréte sur deux est dans C.

On enléve p arétes et on en ajoute p + 1 donc C(P) a exactement une aréte de plus que C.

D’autre part, vy et v, deviennent couverts par une unique aréte de C'(P) et les v; pour 1 < ¢ < n sont toujours
couverts par une unique aréte car on enleve une aréte incidente a v; et on en ajoute une autre.

Au total, C(P) est un couplage contenant strictement plus d’arétes que C.

Question 9.

let rec separer chm =
[[1 -> failwith "pas un chemin d’augmentation"
|[a]l] -> failwith "pas un chemin d’augmentation"
| [a;b] —> [1, [(a,b)]
la::b::c::q —>
let lin, lout = separer (c::q) in
(min b ¢, max b ¢)::1in, (min a b, max a b)::lout

Question 10.

let augmente cpl chm =
let 1stin, lstout = separer chm in
let cpll = del cpl lstin in
join cpll 1lstout (* ou bien cpll@lstout *)

Question 11.

let contracteG grph 1lst w =
let rec modifie_voisins 1lv nv_vu acc = match 1lv with
| [when nv_vu -> w::acc, true
|0 -> acc, false
[t::q when List.mem t lst -> modifie_voisins q true acc
[t::q -> modifie_voisins q nv_vu (t::acc) in
let rec parcours_listes 1 vois_w = match 1 with
|1 -> [w,vois_w]
| (u,1v)::q when List.mem u 1lst -> parcours_listes q vois_w
| (u,lv)::q -> let nv_1lv, voisin_w = modifie_voisins lv false [] in
if voisin_w then (u,nv_1v)::(parcours_listes q (u::vois_w))
else (u,nv_1v)::(parcours_listes q vois_w) in
parcours_listes grph []

Question 12. Soit C un couplage dans un graphe G et B un bourgeon.
Montrons que C/B est un couplage dans G/B.
Considérons deux arétes de C'/B.

— Soit elles sont toutes les deux dans C' et les extrémités hors du bourgeon B. Or C est un couplage donc
elles ne partagent par d’extrémités.

— Soit on a une aréte {a, b} issu de C avec a ¢ B et b ¢ B et une aréte {a’,w} avec o’ ¢ B et l'existence
d’un sommet b’ € B tel que {a’,b'} € C.

Or C est un couplage donc {a’,b'} et {a,b} ne partagent par d’extrémités. Comme w est un nouveau
sommet, {a’,w} et {a,b} ne partagent par d’extrémités.

— Soit on a deux arétes de la deuxiéme forme donc une aréte {a,w} avec a ¢ B et l'existence d’un sommet
b € B tel que {a,b} € C et une aréte {a’,w} avec o’ ¢ B et 'existence d’'un sommet b’ € B tel que
{d,0'} € C.

Or C est un couplage donc {a’,b'} et {a, b} ne partagent par d’extrémités.

En particulier, b # b’ : il existe deux arétes dans C' ayant une extrémité dans le bourgeon et une extrémité
hors du bourgeon. C’est impossible car dans un bourgeon, on a une unique base et c’est le seul sommet
qui n’est pas couvert par une aréte de C' ayant ses deux extrémités dans le bourgeon.

Ainsi, la troisieme situation est impossible.

Dans tous les cas, deux arétes de C/B ne partagent aucune extrémités donc chaque sommet est I'extrémité d’au
plus une aréte. C’est bien un couplage dans G/B.

Question 13.

let rec contracteC cpl brg w = match cpl with
g -> 0
| (a,b)::q when List.mem a brg &% List.mem b brg -> contracteC q brg w
| (a,b)::q when List.mem a brg || List.mem b brg ->
(min a w, max a w)::(contracteC q brg w)
| (a,b)::q => (a,b)::(contracteC q brg w)

Question 14.

let rec find foret v = match foret with
| [J -> None
| (N (e,f))::q when e = v -> Some [e]
(N (e,f))::q —>
let test = find f v in
if test = None then find q v
else Some (e::(Option.get test))

Question 15.

let rec extend foret u v = match foret with
1 >0
| (N (e,f))::q when e = u -> (N (u,(N (v,[]1))::(extend f u v)))::(extend q u v)
[(N (e,£))::q —> (N (e,extend f u v))::(extend q u v)

Question 16. Initialement, tous les sommets non couverts pas C sont racines d’arbres de F' donc a profondeur
0 paire et aucun n’appartient a 7'

L’algorithme n’ajoute aucun arbre a la forét et ne modifie pas les racines donc on garde comme ensemble de
racines un ensemble de sommets non couvert par T'.

Le (3)(a) est la seule étape ajoutant des arétes a la forét : elles sont ajoutées par 2, une hors du couplage {u, v}
et une dans le couplage de {v, z} de sorte a ce que les chemins de la racine & une feuille dans chaque arbre soit
alternant.

Ainsi, lorsque l'on se trouve dans la situation (3)(b)(7), on a une aréte {u, v}, ainsi que deux chemins alternant :

Ty — Ul wm U —— U) wmm U ——) om Up — - V) mmm V] — Ty

Les sommets r, et r, sont non couverts par C et dans le cas ou laréte {u, v} n’appartient pas au couplage C,
on a bien un chemin d’augmentation.
Dans le cas ot {u,v} € C, on aurait uy = v et v, = u :

Ty — Ul wem U - - - - - - Uk—2 — U] — U e, —) w1, — Up—] e Up—2 -- UV wm V] — Ty

Pour ajouter les arétes {ux—1,v} et {vp—1,u}, les sommets vy_1 et vy,_q ont été traités avant wu.

Supposons sans perte de généralités que up—1 a été traité en dernier. Ainsi, v était voisin et comme v,_; a été
traité, on a ajouté {v,_1,u} et {u,v} donc v apparaissait déja dans un autre arbre a profondeur paire donc on
aurait du s’arréter lors du traitement de ug_q.

Ainsi, on et toujours dans le premier cas et 1'algorithme renvoie bien un chemin d’augmentation.

Question 17. On est dans le cas ou v est dans la forét mais pas a profondeur paire donc on passe au voisin
suivant.

-> aux_voisins u tl

Question 18. On est dans le cas (3)(b)(7), u et v apparaissent a profondeurs paires dans deux arbres distincts,
donc on renvoie un chemin d’augmentation.

-> let fin = List.rev cv in
Some (cu@fin)

Question 19.

let rec extrait cu cv = match (cu,cv) with
[tu::tul::qu, tv::tvl::qv when tu = tv &% tul = tu2 -> extrait qu qv
[tu::tul::qu, tv::tvl::qv when tu = tv && tul <> tu2 -> tul::(qucv)
|_ -> assert false (*situation impossiblex)

On note que extrait est appelé sur deux chemins de longueur paire alternant du méme arbre. A profondeur
impaire, on utilise les arétes du couplage C' donc les sommets n’ont qu’un seul fils donc on opeére les vérifications
aux profondeurs paires uniquement.

Question 20. On recherche un chemin d’augmentation dans ng pour nc, si on n’en trouve pas, on passe a la
suite, sinon, on renvoie le chemin d’augmentation correspondant dans G.

(match (recherche ng nc) with
| None -> aux_voisins u tl
| Some ch -> Some (gonfle graphe bourgeon ch nv))

Question 21.

let edmonds gph =
let couplage_vide = [] in
let rec ameliore cpl = match (recherche gph cpl) with
| None -> cpl
| Some ch -> ameliore (augmente cpl ch) in
ameliore couplage_vide

Partie II : Calculs de déterminants

Question 22.

int read_sgmatrix (int n, int *A, int i, int j){
return A[i*n+j];

}

void write_sqgmatrice (int n, int *A, int i, int j, int val){
A[i*n+j] = val;

}

Question 23. On obtient le graphe suivant.

2 5 1
S
-2
Question 24. On propose la marche fermée de longueur 3 et de téte 1 suivante :

1-3—>2—>1

Question 25.

(1) Dans le graphe donné, les marches fermées de longueur au plus 3 sont :
(C1) 0-1—=2—0detéte0etdepoids2x1x2=4

(C3) 1—=2—1detétel et depoids1x3=3
(C3) 1—-2—=2—>1detételetdepoidslxbx3=15
(Cy) 2 — 2 de téte 2 et de poids 5

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

let rec recherche graphe couplage =
let nc = del (keys graphe) (couverts couplage) in
let foret = ref (List.map (fun x -> N(x, [])) nc) in
let rec aux_voisins u liste_voisins =
let cu = Option.get (find !foret u) in
match liste_voisins with
| [-> None

| v

in

tl

->
match find !foret v with
| None -> let z = apparie couplage v in
foret := extend (extend !foret u v) v z;
aux_voisins u tl
| Some cv when (List.length cv) mod 2 = 0
(* nombre de sommets pair = profondeur impaire *)
-> aux_voisins u tl
| Some cv when (List.hd cu) <> (List.hd cv)
-> let fin = List.rev cv in
Some (cu@fin)
| Some cv
-> let bourgeon = extrait cu cv in
let nv = frais (keys graphe) in
let ng = contracteG graphe bourgeon nv in
let nc = contracteC couplage bourgeon nv in
(match (recherche ng nc) with
| None -> aux_voisins u tl
| Some ch -> Some (gonfle graphe bourgeon ch nv))

let rec aux_sommets traites =
match prochain !foret traites with

| None -> None

| Some u -> let liste_voisins = del (List.assoc u graphe) traites in
match aux_voisins u liste_voisins with

in
aux_sommets []

None -> aux_sommets (u::traites)
Some ch -> Some ch

FIGURE 1 — Fonction recherche complétée.

(2) Les suites de marches fermées n’utilisant que les marches fermées de la question précédentes car le nombre
total d’arcs doit étre égal a 3 le nombre de sommets.
Ici, on a les suites :
— (1 de poids 4;
— (5,C4 de poids 3 x 5 =15;
— ('3 de poids 15.

Question 26. On obtient le graphe complété suivant avec les nouveaux arcs en gras.

(0,0,0,0) 3 (0,0,0,1)
2
1 (0,0,1,1)
-2 tl
1 (0,1,1,0) (0,1,1,1) 1
. /
(1,0,0,1) 2
to
1,0,1,1) —
1
(1,1,1,1)
Question 27. Si C = h,uq,...,Un, h est une marche fermée, on a en particulier Ay, ,, 7# 0, Ay, »n # 0 et pour

tout 1 < j <m, Ay, u, .y #0.

De plus h < u; pour tout 1 < j < m.

Ainsi, d’apres le point (2) de la définition des arcs de Ha, on a l'existence des arétes de (p,h,u;, k) vers
(p,h,ujy1,k+ 1) pour 1 < j < m et de Paréte de (p, h, h, k) vers (p, h,uq,k + 1) pour tout k < n —1 et pour
tout p € {0,1}.

Ainsi, en prenant des valeurs de k partant d’un i < n —m et croissant, on obtient bien le chemin attendu.

(p,hyh,i) = (p,h,ur, i+ 1) = - = (p,h,upm, i + m)

Pour une suite de marches fermées S = C';...Ck, on a pour chaque marche fermée de la suite un morceau de
chemin en notant uc, 'avant dernier sommet de la marche C; :

(C1) (n mod 2,t(C4),t(C1),0) = --- = (n mod 2,t(C}),uc,,|C1| — 1)

(Cy) (1—(n mod 2),t(Cy),t(Cs),[Ch]) = -+ — (1 — (n mod 2),t(Ca),uc,, |C1| + [Ca| — 1)

k—1 k
(Ch) (P H(CR), 1(C), SN = -+ = (pit(C) e, (Z |cz-|> - 1)
i=1

i=1

avec pr =n mod 2 si k est impair et pp =1 — (n mod 2) si k est pair.

Le point (1) de la définition des arcs de H4 nous donne un arc de poids 1 de s vers (n mod 2,¢(C}),t(C4),0)
qui commence le chemin.

Le point (3) de la définition des arcs de H4 nous donne I'existence des arcs de (p;,t(C}), uc;, (g:l |Cz|) -1)
vers (1 —p;, t(Cj41),t(Cj41), 5:1 |C;]) pour 1 < j < k qui permettent de concaténer les chemins bout & bout.
Le point (4) de la définition des arcs de H 4 nous donne l’existence de I’arc entre (pi, t(C), uc,, (Zle |Ci|> —1)
et t1_p, qui permet de terminer le chemin car Ele |C;| = n.

Au total, on a bien un chemin de s & tg ou t; correspondant & toute marche fermée. En particulier, si elle est
positive, on a 1 — p, = 0 car n et k ont méme parité donc le chemin aboutit a tg.

Question 28. Pour étre cohérent avec les poids des marches fermées, on considére que le poids d’un chemin
est le produit des poids des arétes et non la somme comme c’est le cas habituellement.
On a pour tout p € {0,1},1<i<n—1,0<h <wv <n—1 (poursuite d’une marche fermée) :

n—1
FA(<p,h,’U,’i>)Z Z Au,v XFA<<p7h,U,i—1>): ZAU,U XFA(<p,h,U7i—1>)
h<u<n—1,A, ,#0 u=h

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

On a pour tout p € {0,1},1 <i<n—1,0<h=v<n—1 (changement de marche fermée) :

h—1 n—1
FA(<p7h7h’37’>) = Z Au,h'XFA(<1_p7h/7u7i—1>) = Z Z Au,h’XFA(<1—p7h’,7ua7:_1>)
0<h/<h,h'<un—1,A, ;/#0 h'/=0u=h'

Le cas v < h n’est pas a discuter car le sommet n’existe pas dans H4.

Question 29.

Fourtable *initialise (int n) {
Fourtablex t = create(n);
for (int h = 0; h < n; h++) {
write(t,1,n % 2,h,h,0); // Sommet accessible pas une aréte de poids 1
}

return t;

Les autres sommets de la couche 0 sont inaccessibles depuis s dont 0 convient (c’est la valeur par défaut utilisée
par create).

Question 30.

Fourtable *remplit (int n, int *A) {
Fourtable*x t = initialise(n);
for (int 1 = 1; i < n; i++) {
for (int p = 0; p < 2; p++) {
for (int h = 0; h < n; h++) {
for (int v = h+l; v < n; v++) { //premier cas v>h
for (int u = h; u < n; ut+) {
int tmpl = read(t,p,h,v,i);
int tmp2 = read(t,p,h,u,i-1);
int coeff = read_sqgmatrix(n,A,u,v);
write(t,tmpl+coeff*tmp2,p,h,v,i);

}
}
for (int hprime = 0; hprime < h; h++) { // second cas v=h
for (int u = hprime; u < n; u++) {
int tmpl = read(t,p,h,v,i);
int tmp2 = read(t,1-p,hprime,u,i-1);
int coeff = read_sqmatrix(n,A,u,hprime);
write(t,tmpl+coeff*tmp2,p,h,v,1i);

3

return t;

On utilise les relations données a la question 28.

La complexité de initialise est en O(n?) donc inférieure & O(n*).

Dans chaque bloc lignes 8 & 11 ou ligne 16 & 19, on observe une complexité en O(1) car toutes les fonctions de
lecture et écriture sont de complexité en O(1).

Il faut donc compter le nombre de passages dans ces blocs. On a deux n—1 itérations de la boucle sur i, puis 2
itérations de la boucles sur p et enfin n itérations de la boucle sur h.

Pour une itérations de la boucle sur h, on a :

— d’une part deux boucles imbriquées concernant le premier cas, donnant au total (n—1—h) x (n—h) < n?

itérations;
— d’autre part deux boucles imbriquées concernant le second cas, donnant au total hx(n—hprime) < n?
itérations.

10

11

12

13

14

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Ainsi, au total, on a au plus (n—1) x 2 x n x 2n% < 4n* passages dans les blocs de complexité en O(1) et on

atteint bien une complexité en O(n*) pour la fonction.

Question 31. On utilise le théoréme admis de Mahajan et Vinay et les observations de la question 27 concernant

les suites de marches fermées.

int determinant (int n, int *A){

Fourtablex t = remplit(n,A);

int det = 0;

for (int h = 0; h < n; h++){

for (int u = h; u < n; h++) {

int pos read(t,1,h,u,n-1);
int neg = read(t,0,h,u,n-1);
int coeff = read_sgmatrix(n,A,u,h);
det = det + pos*coeff - neg*coeff;

}
}
free(t);
return det;

La fonction remplit a une complexité en O(n?), la double boucle a une complexité en O(n?) et free en O(1)

(admis). Ainsi, au total, la fonction a bien une complexité en O(n?).

Partie III : Méthode algébrique et probabiliste pour les couplages

parfaits

Question 32.

int tirage_tutte(int n, int *A){
int X = malloc(n*n*sizeof(int)); assert(X!=NULL);
for (int k = 0; k < n*n; k++) {
X = rand_range(n*n);
}
int TG = malloc(n*n*sizeof(int)); assert(TG!=NULL);
for (int i = 0; i < n; i++){
for (int j = 0; j < i; j+H{
if (read_sqmatrix(n,A,i,j) == 1) { // {i,j} aréte, j<i
write_sqgmatrix(n,TG,i,j,-read_sqmatrix(n,X,i,j));
}
else { // {i,j} pas une aréte
write_sqmatrix(n,TG,i,j,0);
}
}
write_sqgmatrix(n,TG,1,1i,0); // i=j
for (int j = i+1; j < n; j++H){
if (read_sqgmatrix(n,A,i,j) == 1) { // {i,j} aréte, i<j
write_sqmatrix(n,TG,1i,j,read_sgmatrix(n,X,i,j));
}
else { // {i,j} pas une aréte
write_sqgmatrix(n,TG,i,j,0);

3

}

free(X);

int det = determinant (n, TG);
free(TG);

return det;

Question 33. Le théoreme de Tutte affirme que G posséde un couplage parfait si et seulement si le déterminant
de T'(G) n’est pas le polynéme nul.

Ainsi, des lors que tirage_tutte renvoie une valeur non nulle, on sait que le polynéme n’est pas nul et que le
graphe G admet un couplage parfait.

Néanmoins, lorsque ’on obtient une valeur nulle, on n’a aucune certitude quant a G.

Le polynoéme correspondant au déterminant de T'(G) est de degré total au plus n d’apres la formule du déter-
minant (dans le cas d’un graphe complet par exemple).

Le théoréme de Schwartz-Zippel donne pour les tirage de Tutte de la question précédente :

n

PT‘[det(T(G))(.ro,o, 33071, . ,$7l7n)] S m

car S = {0,1,...,n%}. Si on répete k tirages de Tutte, la probabilité d’obtenir 0 k fois alors que le polynome

k
n

n2+1
On souhaite choisir k£ & partir d’un entier p de sorte a ce que

n k
- < 9P
(5 =

n
klog, (712+1> < -p

p p
k> =0
S R C0)

Ainsi, on obtient la complexité et la probabilité d’erreur attendues.

n’est pas nul est majorée par

Soit :

bool parfait (int n, int *A, int p){
double k = p/(log2(n+1/n));
for (int 1 = 0; i < k+1; i++) {
if (tirage_tutte(n,A) !'= 0) {
return true;
}
X

return false;

