
TP08-Branch and bound

12 et 19 janvier

1 Maxsat
On va décrire une formule sous forme CNF comme une liste de listes d’entiers où chaque liste corres-
pond à une clause. Les entiers contenus dans une clause correspondent aux littéraux : xi est représentée
par i et ¬xi par −i.

type formule = int list list;;

1. Donner la représentation de φ = (x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨ x4) ∧ (¬x4 ∨ x2).
On va implémenter la méthode de Branch and bound décrite en classe.
Une valuation sera représentée par un tableau de booléens : la case i contiendra la valeur de
vérité attribuée à la variable xi.

type valuation = bool array;;

2. Ecrire une fonction sat : formule -> valuation ->int telle que sat phi v renvoie le nombre
de clauses de phi satisfaites par la valuation v.

3. Ecrire une fonction insat : formule -> valuation ->int->int telle que insat f valuation k
renvoie le nombre de clauses totales moins celles que l’on ne pourra pas satisfaire avec un pro-
longement de la valuation partielle définie par les k premières cases de val (les cases entre 0 et
k − 1 de valuation sont les seules considérées c’est-à-dire les variables entre 1 et k).

4. En déduire une implémentation de la résolution exacte du problème MAXSAT avec la méthode
branch and bound utilisant l’heuristique insat. On écrira une fonction maxsat : formule -> int ->int
qui renvoie le nombre optimal de clauses satisfaites par la formule. La fonction prendra en entrée
le nombre de variables utilisées par la formule.

2 PVC
On va considèrer ici le problème de recherche d’un chemin hamiltonien de poids minimal dans un
graphe pondéré dont les poids sont positifs ou nuls.

On va représenter un graphe par sa matrice d’adjacence et un chemin par une liste ordonnée de
sommets :

type graphe = int array array;;
type chemin =int list;;

Quand une arête ne sera pas présente dans le graphe, on lui donnera un poids valant max_int.

1. Donner la matrice d’adjacence du graphe de gauche de la figure suivante (le graphe de droite
est un cycle hamiltonien de poids minimal et permettra de tester votre fonction) :

2. Supposons qu’on dispose d’un chemin partiel c̃ dont la longueur est strictement inférieure au
nombre total de sommets. Donner un minorant simple du poids d’un chemin hamiltonien c qui
prolonge c̃.

1



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 289

Figure 9.2 (a) A graph and its optimal traveling salesman tour. (b) The branch-and-bound
search tree, explored left to right. Boxed numbers indicate lower bounds on cost.

(a)

A B

C

D

EF

G

H
1

2
1

11

2
1

2

5

1 1
1

A B

C

D

EF

G

H
1 1

11

1

1 1
1

(b)

A

E

HF

G

B

F

G

D
15

14

8

B D

C

D H

G

H8

E C G

inf

8

10

13

12

8

814

8

8

8

8

10

C10

GE

F

G

H

D

11

11

11

11

inf

H

G
14

1410 10

Cost: 11 Cost: 8

3. Ecrire une fonction supprimer : int->int list->int list qui supprime un élément dont la
valeur est passée en entrée de la liste.

4. Ecrire une fonction poids_chemin : graphe->chemin->int qui calcule le poids d’un chemin
donné dans un graphe pondéré (attention à la gestion des arêtes de poids max_int et à ne pas
dépasser la capacité mémoire).

5. En utilisant cette heuristique et la méthode de branch and bound, écrire une fonction
pvc : graphe->chemin qui renvoie un chemin hamiltonien de poids minimal.

3 Sac à dos

La version du problème du sac à dos où chaque objet est limité est souvent appelée SAC À DOS 0-1 :
* Instance : une liste de poids p1, . . ., pn, une liste de valeurs v1, . . ., vn et un poids maximal P ,

ces valeurs étant des entiers naturels non nuls.

* Solution : une liste d’entiers naturels (a1, . . ., an) ∈ {0, 1}n telle que
n∑

i=1
aipi ⩽ P

* Optimisation : Maximiser
n∑

i=1
aivi.

On admet que la version décisionnelle de ce problème est NP-complète. On considère une variante où
les coefficients ai ne sont pas limités aux entiers 0 et 1, mais à toute valeur entre 0 et 1 : SAC À DOS
FRACTIONNAIRE :

* Instance : une liste de poids p1, . . ., pn, une liste de valeurs v1, . . ., vn et un poids maximal P ,
ces valeurs étant des entiers naturels non nuls.

* Solution : une liste de rationnels (a1, . . ., an) ∈ [0, 1]n telle que
n∑

i=1
aipi ⩽ P

* Optimisation : Maximiser
n∑

i=1
aivi.

1. Montrer que SAC À DOS FRACTIONNAIRE ∈ P en proposant un algorithme glouton qui le résout
en complexité O(n log n).

On cherche à résoudre le problème SAC À DOS 0-1 par un algorithme de type Branch and Bound.
Pour i ∈ [[0, n]], une solution partielle du problème sera un i-uplet (a1, a2, . . ., ai) ∈ {0, 1}i (vide si
i = 0).

2. Dans quel ordre semble-t-il pertinent de ranger les objets avant de lancer l’algorithme BnB
résolvant ce problème ? Avec cet ordre, quelle est l’heuristique de branchement à considérer ?

On cherche à déterminer une heuristique d’évaluation pour une solution partielle. On propose d’utiliser
le problème de SAC À DOS FRACTIONNAIRE pour cela. Pour ỹ = (a1, . . ., ai) une solution partielle, on
pose h(ỹ) comme la valeur maximale d’une solution à ce problème pour l’instance ((pj)j>i, (vj)j>i, Pỹ)

où Pỹ = P −
i∑

j=1
ajpj .



3. Montrer que h est admissible, c’est-à-dire que h(ỹ) est toujours supérieur ou égal à la valeur
totale d’une solution complétée à partir de ỹ.

On suppose disposer de tableaux en C int* p et int* v de même taille int n contenant les poids et
les valeurs des objets, déjà triés dans l’ordre de la question 2.

4. Écrire une fonction double h(int* p, int* v, int* a, int n, int i, int P) qui prend
en argument les tableaux de poids (pj)j , de valeurs (vj)j et des coefficients (aj)j , ainsi que la
taille n identique pour ces trois tableaux, un entier i et un poids maximal P et calcule la valeur
h(ỹ) où ỹ = (a1, . . ., ai). On ne modifiera aucun des trois tableaux.
Attention : les indices dans un tableau commencent à 0 contrairement à ceux des n-uplets consi-
dérés dans l’exercice.

5. En déduire une fonction int* sac_a_dos_01(int* p, int* v, int n, int P) qui applique
l’algorithme BnB permettant de résoudre ce problème. La fonction renverra le tableau des ai.
On pourra commencer par écrire une fonction récursive
void sac_aux(int* p, int* v, int* a, int* amax, int n, int i, int P, int* Vmax).

4 BinPacking
Le problème dit BinPacking est défini ainsi :
Instance : un entier naturel C et une famille X = x0, . . . , xn−1 d’entiers naturels
Solution admissible : une partition de X en B0 ⊔ · · · ⊔ Bk−1 telle que

∑
x∈Bi

x ⩽ C pour tout i

Optimisation : minimiser k

Pour rappelle le principe de la stratégie gloutonne first-fit-decreasing :
– La stratégie first-fit considère aussi les objets dans l’ordre d’arrivée, mais maintient une liste

(initialement vide) de boîtes B0, . . . , Bk−1. À chaque fois que l’on considère un objet, on cherche
le premier i tel que l’objet rentre dans la boîte Bi :

* s’il en existe un, on ajoute l’objet dans cette boîte ;
* sinon, on crée une nouvelle boîte Bk dans laquelle on place l’objet.

– La stratégie first-fit-decreasing procède comme first-fit mais commence par trier les objets
par ordre décroissant de volume.

On représente une instance de BinPacking par un entier capacity (la capacité C des boîtes) et une
liste d’entiers correspondant aux poids des objets ; on supposera que tous les poids sont inférieurs ou
égaux à la capacité.

type instance = int * int list

On représente une boîte par le stype suivant :

type box = {capacity : int ;content = int list};;

1. Écrire une fonction first_fit_decreasing.
2. Écrire une fonction solve calculant une solution optimale pour une instance de BinPacking.

On utilisera (de manière assez basique) la technique dite Branch and Bound pour obtenir une
fonction raisonnablement efficace.
On initialisera notre recherche avec le résultat de la fonction first_fit_decreasing afin d’op-
timiser l’élagage.
On doit par exemple trouver une solution utilisant 6 boîtes pour l’instance suivante, de manière
presque instantanée.
let test_exact =

(101, [27; 11; 41; 43; 42; 54; 34; 11; 2; 1; 17; 56;
42; 24; 31; 17; 18; 19; 24; 35; 13; 17; 25])

val solve : instance -> box list


	Maxsat
	PVC
	Sac à dos
	BinPacking

