
Parallélisation, concurrence et synchronisation

22 janvier

1 RAPPELS SUR LES PROCESSUS

Le système d’exploitation nous fournit une vision virtuelle des ressources matérielles offertes par la machine
par l’intermédiaire (entre autres) des processus, des flux d’entrée-sortie et de la mémoire virtuelle.

Un processus est un programme en cours d’exécution. C’est la ressource virtuelle que le système d’exploita-
tion nous fournit pour se substituer au processeur (l’unité matérielle de calcul). Un processus dispose de son
propre espace mémoire séparé qui lui donne l’illusion d’être le seul à utiliser cette dernière.

On rappelle que l’utilisateur écrit du code dans un langage haut niveau qui est enregistré dans un fichier
et donc stocké sur le disque, ce code source est une donnée statique. Ce code est ensuite traduit en fichier
exécutable qui, une fois qu’il est lancé, donne lieu à ce qu’on appelle un processus c’est-à-dire un programme
en cours d’exécution. Un processus est une donnée dynamique.

L’ordonnanceur est l’outil du système d’exploitation qui permet d’organiser les accès des différents processus
au processeur. Il donne accès à l’espace de calcul à un processus puis le met en attente afin de donner accès à
un autre processus etc...

Un nouveau processus est automatiquement créé dès que l’on lance un exécutable. Une autre manière
de créer un processus est d’utiliser l’appel système fork qui permet à un processus de se dupliquer afin de
donner lieu à un nouveau processus qui en est une copie identique. Ce nouveau processus dispose de son
propre espace mémoire indépendant. Le nouveau processus se retrouve exactement dans le même état que le
processus père qui l’a créé, les instructions qui précèdent la commande fork sont donc déjà exécutées et il
devra exécuter celles qui suivent l’instruction fork.

processus père avec PID 49335

exécution
d'autres instructions

fork() fork()

les autres instructions
sont déjà exécutées

processus fils avec PID 49336

i = 10
i = 10 ce sont deux copies

de la variable i

print('je suis',
getpid())

print('je suis',
getpid())

les deux processus
continuent en parallèle
leur exécution,
des instructions
qui suivent l'appel à fork()

je suis 49335 je suis 49336

2 FILS D’EXÉCUTIONS

Les processus dont nous venons de parler sont parfois appelés processus lourds car ils utilisent un espace
mémoire dédié et sont gérés par le système d’exploitation via une structure de donnée qui contient toutes les
informations le concernant. Ce type de processus nécessite donc beaucoup de ressources et ses opérations
courantes (création, ordonnancement, changement d’état, terminaison) sont lentes ce qui ralentit le fonction-
nement global du système.

De plus, les processus sont isolés, il est envisageable mais compliqué et couteux de les faire "communiquer".

Lycée Faidherbe-MPI-2025/2026 1

Mémoire vive

Un processus représente l'exécution d'un programme

Un processus est la somme de
• Un espace mémoire dédié = le processus est chargé en mémoire
• Une structure de gestion maintenue par le système

où il y a toutes les informations le concernant

noyau

vision UTILISATEUR

vision SYSTEME

mon
processus

La figure suivante rappelle l’organisation mémoire d’un processus vue en première année :

mon processus

ZONE TEXTE
Le code =
les instructions exécuter

ZONE DONNEE
Les données statiques
(connues en avance)

TAS

PILE

Les données dynamiques
(apparaissent en cours d'exécution)

L'historique d'exécution
(dans quelle fonction je suis,
d'où je viens)

PC

PC = Program Counter Register
pointe vers la prochaine instruction

Nous allons maintenant parler de processus légers aussi appelés fils d’exécution ou threads en anglais. Les
avantages des threads sont leur efficacité et le fait qu’ils pourront se coordonner. Leur gros inconvénient est le
fait qu’ils vont partager leur mémoire ce qui induit un risque majeur. En effet, si un thread modifie l’état de la
mémoire au moment où un autre thread est en train de la lire alors les résultats pourront être faussés. Nous
aurons donc besoin d’outils qui permettront de résoudre ces problèmes.

Lorsque l’on dispose de deux processus d’un même programme, on ne peut pas factoriser le contenu du code
ni partager les données et on doit donc travailler avec deux mémoires dupliquées. Les processus sont isolés.
La parallélisation de l’exécution des processus implique donc d’utiliser une grande quantité de mémoire. Les
threads vont être contenus à l’intérieur d’un même processus et vont permettre d’être exécutés indépendam-
ment comme le seraient des processus distincts tout en partageant de l’information qui sera alors sauvegardée
dans le processus qui les contient. Au sein d’un même processus, les différents threads partagent le même code
et la même mémoire dynamique (le tas).

Mono-thread

ZONE TEXTE

ZONE DONNEE

TAS

PILE

ZONE TEXTE

ZONE DONNEE

TAS

Multi-thread

ZONE TEXTE

ZONE DONNEE

TAS

PILE

PILE

PILE

ZONE TEXTE

ZONE DONNEE

TAS

PC

Lycée Faidherbe-MPI-2025/2026 2

On retiendra que :

1. Les threads sont des entités d’exécution plus légères que les processus.

2. Ils évoluent au sein des processus

3. Ils partagent les ressources fournies par les processus

4. La programmation concurrente avec threads est difficile !

3 NON DÉTERMINISME

Nous allons ici introduire la syntaxe relative aux thread et regarder de premiers exemples.
En C, on utilisera la librairie pthread.h.
En OCAML, on utilisera le type Thread.t de la librairie Thread.

3.1 UN PREMIER EXEMPLE DE CRÉATION DE THREAD EN OCAML

let f n =
print_string(n);
print_string("\n");;

print_string("debut");;
let t1 = Thread.create f "thread 1";;
let t2 = Thread.create f "thread 2";;
Thread.join t1;;
Thread.join t2;;
print_string("fin");;

3.2 NON DÉTERMINISME DE L’EXÉCUTION.
Exécutons le programme précédent à plusieurs reprises. Nous observons que l’ordre des appels n’est pas

toujours le même. En effet, une fois les thread créés, l’ordonnancement de leurs exécutions respectives est non
déterministe.

3.3 LE MÊME EXEMPLE EN C :

#include <stdio.h>
#include <assert.h>
#include <pthread.h>

void* mythread (void* arg){
printf("%s\n", (char*)arg);
return NULL;

}

int main(void* arg){
pthread_t p1, p2;
printf("main begins\n");

pthread_create(&p1, NULL, mythread, "thread 1");
pthread_create(&p2, NULL, mythread, "thread 2");

pthread_join(p1,NULL);
pthread_join(p2,NULL);

printf("main ends \n");
return 0;

}

Lycée Faidherbe-MPI-2025/2026 3

3.4 SYNTAXE :
Dans chacun des deux langages, on définit la fonction sur laquelle on lancera les threads puis on crée

le thread et enfin on utilise une fonction join qui suspend l’exécution du thread appelant (votre programme
principal) jusqu’à ce que le thread en argument soit terminé.

En OCAML, on utilise le type Thread.t et en C le type pthread_t.

En OCAML, la fonction Thread.create prend en entrée la fonction accompagnée de son entrée et la fonction
Thread.join prend en entrée le thread.

En C, le passage d’une fonction en argument étant quelque chose de subtil les fonctions pthread_create
et pthread_join ont des prototypes un peu compliqués :

pthread_create(pthread_t* thread, pthread_attr_t* attr, void* (*f)(void*),void* arg)

et

pthread_join(pthread_t thread, void** ret)

Pour l’utilisation de create : le premier argument est l’adresse d’un thread préalablement déclaré, le
deuxième argument correspond à des options auxquelles nous ne nous intéresserons pas et donc cet argu-
ment vaudra systématiquement NULL pour nous, le troisième argument est la fonction qui doit être exécutée
par le thread et le dernier argument est l’argument avec lequel appeler cette fonction.

Avant de créer un thread, on écrira donc une fonction souvent appelée mythread de prototype :

(void*) mythread (void* in)

On remarquera que l’entrée et la sortie étant de type void* on fera des cast avec les entrées et sorties réelles.
On remarquera de plus que la fonction ne peut prendre qu’un seul argument en entrée, si on veut simuler des
fonctions avec plusieurs arguments il faudra créer une structure contenant tous les arguments souhaités et la
fonction mythread prendra en entrée un pointeur sur une telle structure.

La fonction join prend en entrée le thread et une adresse à laquelle récupérer la valeur calculée par la
fonction. Le programme stipule qu’on ne doit pas se servir de cela et limiter l’utilisation à un second paramètre
qui vaut NULL. Ceci implique de travailler avec des variables globales à modifier si on veut récupérer les résultats
des threads.

Un dernier point important : pour utiliser les thread on doit utiliser des options de compilation : en OCAML
on pourra compiler avec la commande suivante :

ocamlopt -I +threads unix.cmxa threads.cmxa fichier.ml -o executable

En C, on ajoutera le flag -pthread dans les options.

3.5 ENTRELACEMENT

Une fois les threads créés, l’ordonnancement de leurs actions est non déterministe : l’un des thread prend
la main puis se met en pause pour que le second travaille et ainsi de suite avec des changements qui obéissent
aux règles édictées par l’ordonnanceur qui sont non déterministes.

On retiendra donc la définition suivante :
Définition : Un algorithme ou programme est dit séquentiel si les instructions qui le composent sont exécu-

tées l’une après l’autre, toujours dans le même ordre. Il est dit concurrent s’il contient plusieurs unités, qu’on
appelle fil d’exécution ou thread, chaque fil s’exécutant séquentiellement.

Dans un programme concurrent, il n’y a donc pas la garantie que les instructions seront exécutées toujours
dans le même ordre.

Lycée Faidherbe-MPI-2025/2026 4

Reprenons le premier exemple et étoffons le un tout petit peu pour mettre cela en évidence :

let limite = 9;;
let f n =

for i=0 to limite do
print_string(n);
print_int(i);
print_string("\n");

done;;

print_string("debut");;
let t1 = Thread.create f "thread A";;
let t2 = Thread.create f "thread B";;
Thread.join t1;;
Thread.join t2;;
print_string("fin");;

3.6 EXEMPLE 1 : SOMME DES ÉLÉMENTS D’UN TABLEAU

Ecrire une fonction qui calcule la somme des éléments d’un tableau passé en entrée.
Ecrire une fonction qui calcule ce résultat en utilisant 2 thread (le faire en C et en OCAML).
Ecrire une fonction qui le fait avec n thread (en Tp, en C et en OCAML).

3.7 EXEMPLE 2 : PRODUIT MATRICIEL

Ecrire, en OCAML, un programme qui fait le produit de deux matrices en utilisant un thread pour le calcul
de chaque case.

4 LES PROBLÈMES DE CONCURRENCE

Nous allons maintenant mettre en évidence les problèmes de concurrence qu’induisent l’utilisation des
threads.

4.1 DES RÉSULTATS ÉTONNANTS

Exécutons maintenant le code suivant :

#include <stdio.h>
#include <assert.h>

Lycée Faidherbe-MPI-2025/2026 5

#include <pthread.h>

static int counter =0;

void* mythread (void* arg){
printf("%s : begin\n", (char*)arg);
for (int i=0;i<9999;i++){

counter++;
}
printf("%s : done\n", (char*)arg);
return NULL;

}

int main(void* arg){
pthread_t p1, p2;
printf("main begins, counter = %d\n",counter);

pthread_create(&p1, NULL, mythread,"thread 1");
pthread_create(&p2,NULL,mythread,"thread 2");

pthread_join(p1,NULL);
pthread_join(p2,NULL);

printf("main ends, counter = %d \n", counter);
return 0;

}

Comment expliquer le phénomène?

Voici le code assembleur de counter++ :

mov counter, %eax
addl $1, %eax
movl %eax, counter

Ainsi, suivant l’entrelacement obtenu lors de l’exécution, les résultats attendus ne sont pas forcément cor-
rects.

Exercice 1 : Déterminer les valeurs minimales et maximales que peut prendre n à la fin de l’exécution des
deux threads.

4.2 ATOMICITÉ

Une opération atomique est une opération qui ne peut pas être interrompue. Un thread en train d’effectuer
cette opération ne peut pas passer la main tant qu’elle n’est pas terminée. Seules les instructions machines sont
atomiques par défaut. Nous allons tout de même voir par la suite comment rendre des instructions atomiques.

4.3 SECTIONS CRITIQUES

Une section critique est une portion de code qui, pour garantir la sûreté du résultat, ne peut être exécutée
simultanément que par un nombre maximal de threads différents (en pratique nous nous restreindrons à un
seul thread).

Par exemple, l’instruction counter++ du code précédent est une section critique.
Plus la section critique est large, plus la sureté est garantie, mais une grande section critique empêche

les autres threads de s’exécuter et donc ralentit l’exécution globale, il est donc nécessaire d’avoir les sections
critiques les plus petites possibles (contenant le moins d’instructions possibles) mais garantissant l’absence de
concurrence.

Lycée Faidherbe-MPI-2025/2026 6

Exercice 2 : On considère une variable n initialisée à 0 et trois fils d’exécutions qui effectuent les opérations
suivantes :

— T1 : a ← n, n ← 1, b ← n ;
— T2 : c ← n, n ← 2, d ← n ;
— T3 : e ← n, f ← n.

On suppose que l’instruction x ← y consiste à écrire le contenu de y dans x et est une instruction atomique.
Après l’exécution des trois fils :

1. que peut valoir c?

2. que peut valoir b?

3. que peut valoir e?

4. si c vaut 1, que peut valoir d?

5. si f vaut 0, que peut valoir e?

6. si a vaut 2 et d vaut 1, que peut valoir b?

Exercice 3 : On considère le code suivant :

int k = 0, i = 0;

void* foo(void* arg){
while (i < 10){

i++;
k++;

}
return NULL;

}

int main(void){
pthread_t t1, t2;
pthread_create(&t1, NULL, foo, NULL);
pthread_create(&t2, NULL, foo, NULL);
pthread_join(t1, NULL);
pthread_join(t2, NULL);
return 0;

}

Quelles sont les valeurs minimale et maximale que peut prendre théoriquement k à la fin de l’exécution?

Lycée Faidherbe-MPI-2025/2026 7

5 SYNCHRONISATION

5.1 VERROUS, MUTEX

Pour réaliser une section critique on utilise une primitive appelée verrou ou mutex. Un verrou est une
variable qui dispose de deux opérations : lock et unlock. Un seul thread peut disposer du verrou. Pour délimiter
une section critique, on utilise donc le principe suivant :

lock(m)
<section critique>
unlock(m)

Ainsi, lorsqu’un thread entre dans la section critique, le verrou est bloqué et aucun autre thread ne peut
rentrer dans la même section de code avant qu’il ne l’est déverrouillé.

Il existe plusieurs manières d’implémenter en pratique les verrous mais chacune d’entre elle doit garantir
les points suivants :

1. un seul thread peut être dans la section critique (exclusion mutuelle)

2. un thread ne peut pas attendre indéfiniment pour entrer en section critique (absence de famine).

3. un thread en dehors de la section critique ne peut pas bloquer les autres threads (pas d’interblocage).

Voici la syntaxe que l’on pourra utiliser :

1. en OCAML : on utilise le type Mutex.t

(a) Mutex.create : unit -> Mutex.t crée un nouveau mutex.

(b) Mutex.lock : Mutex.t->unit vérouille le mutex passé en argument.

(c) Mutex.unlock : Mutex.t->unit déverrouille le mutex passé en argument.

2. en C : on utilise le type pthread_mutex_t

(a) pour initialiser un mutex lors de sa déclaration, on utilisera :
pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER

(b) pthread_mutex_lock prend en argument l’adresse d’un mutex et le verrouille.

(c) pthread_mutex_unlock prend en argument l’adresse d’un mutex et le déverrouille.

L’idée fondamentale est qu’un seul thread à la fois peut verrouiller le mutex, ainsi si un thread essaie
de verrouiller un verrou déjà verrouillé alors il est mis en attente. La fonction unlock réveille les threads
éventuellement mis en attente qui seront alors en compétition pour acquérir le verrou.

5.2 EXEMPLE SOLUTIONNÉ

5.3 ALGORITHME DE PETERSON POUR IMPLÉMENTER UN MUTEX AVEC DEUX THREADS

La réalisation pratique d’un mutex est compliquée. Il existe néanmoins plusieurs solutions qui pour la
plupart se basent sur des ressources matérielles.

Nous allons ici voir une solution algorithmique et donc purement logicielle qui nous permettra de com-
prendre les enjeux et les difficultés liés à la conception d’une telle primitive. Cet algorithme, inventé par Peter-
son en 1981, ne fonctionne que pour deux threads et recourt à l’attente active : lorsqu’un thread est bloqué
avant d’accéder à la section critique, il doit continuer de travailler au sein d’une boucle plutôt que d’être mis en
veille. Cette attente active est peu efficace.

Attention, on étudie ici des solutions d’un point de vue théorique, mais il est généralement fortement dé-
conseillé de réimplémenter ces solutions soi-même : les mutex existent déjà en OCaml et en C, donc autant les
utiliser.
Lycée Faidherbe-MPI-2025/2026 8

1. Solution 1 : L’idée principale est d’utiliser un tableau de deux booléens indiquant pour chaque thread s’il
est ou non en section critique :

bool flag[2]={false,false};
void lock(int i){

int other = 1-i;
while (flag[other]) ; //attente active
flag[i]=true;

}

void unlock(int i){
flag[i]=false;

}

Quelle est le problème rencontré avec cette solution?

2. Solution 2 : On modifie donc la sémantique du tableau qui contiendra maintenant true si les threads
veulent ou non entrer en section critique :

bool want[2]={false,false};
void lock(int i){

int other = 1-i;
want[i]=true;
while (want[other]) ; //attente active

}

void unlock(int i){
want[i]=false;

}

Le problème mis en évidence précédemment est-il solutionné? Quel nouveau problème apparait ?

3. Solution 3 : On va du coup proposer l’utilisation d’une variable turn qui permet de déterminer lequel des
deux threads peut acquérir le verrou :

int turn = 0;
void lock(int i){

int other = 1-i;
while (turn ==other) ; //attente active

}

void unlock(int i){
turn = 1-i;

}

Il y a encore un problème ici, l’identifier.
Lycée Faidherbe-MPI-2025/2026 9

4. Solution correcte : La solution de Peterson combine l’utilisation du tableau want et de la variable turn :

int turn = 0;
bool want[2]={false,false};
void lock(int i){

int other = 1-i;
want[i]=true;
turn = other;
while (want[other] && turn == other) ; //attente active

}

void unlock(int i){
want[i]=false;

}

Il reste à se convaincre que ceci satisfait bien les trois propriétés du mutex :

Un système de mutex doit nécessairement satisfaire l’exclusion mutuelle, très certainement l’absence
d’interblocage et idéalement l’absence de famine.

Lycée Faidherbe-MPI-2025/2026 10

5.4 INTERBLOCAGES

Il faudra être très vigilant avec les mutex notamment lorsqu’on en utilise plusieurs car ils peuvent induire
des situations d’interblocage où les deux threads se bloquent l’un l’autre comme l’illustre l’exemple suivant :

let m1 = Mutex.create();;
let m2 = Mutex.create();;

let f1()=
Mutex.lock m1;
Mutex.lock m2;
Mutex.unlock m2;
Mutex.unlock m1;;

let f2()=
Mutex.lock m2;
Mutex.lock m1;
Mutex.unlock m1;
Mutex.unlock m2;;

let t1 = Thread.create f1 ();;
let t2 = Thread.create f2 ();;
Thread.join t1;;
Thread.join t2;;

5.5 ALGO DE LA BOULANGERIE DE LAMPORT : SYNCHRONISATION D’UN NOMBRE QUELCONQUE
DE FILS D’EXÉCUTION

Nous allons maintenant voir un algorithme qui permet d’obtenir l’exclusion mutuelle d’un nombre quel-
conque de threads fixé. Cet algorithme, tout comme le précédent utilise l’attente active et n’a qu’un intérêt
théorique et non pas pratique.

L’idée s’inspire de la gestion de l’attente dans un commerce ou une administration : chaque client (thread)
recoit à son arrivée un ticket avec un numéro de passage et attend son tour (pour entrer en section critique).
Lorsqu’il arrive un thread devra obtenir un numéro supérieur à tous les numéros déjà attribués auparavant
afin de prévenir l’algorithme de la famine.

Tel quel, l’algorithme ne pourra pas garantir l’exclusion mutuelle car deux threads peuvent acquérir de
manière concurentielle un même numéro et alors décider de rentrer ensemble dans la section critique.

L’algorithme va utiliser deux tableaux de taille n où n est le nombre total de threads. Chaque thread aura
un identifiant i et le thread i ne pourra qu’écrire dans les cases i des tableaux. L’un des tableaux, noté want
contiendra un booléen dans sa case i ssi le thread i souhaite entrer en section critique. L’autre tableau, noté
label, contient en case i le numéro de passage obtenu par le thread i.

On peut donc considérer une première version insatisfaisante :

bool want[n];
int label[n];

void lock(int i){
want[i]=true;
//phase de récupération du numéro de passage
int number = 0;
for (int k=0;k<n;k++){

if (number<label[k]){
number=label[k];

}
}
label[i]=number+1;
//phase d’attente de son tour
for (int k =0;k<n;k++){

if (k !=i){
while(want[k]&&label[k]<label[i]){
}

}
}

}

Lycée Faidherbe-MPI-2025/2026 11

void unlock(int i){
want[i]=false;

}

Le problème de cette version, comme mentionné précédemment, est que l’exclusion mutuelle n’est pas ga-
rantie car deux exécutions concurrentes de la première phase peuvent aboutir à l’obtention d’un même ticket,
on se prémunie de ce problème en utilisant l’identifiant des threads pour choisir parmi deux threads ayant le
même numéro lequel est autorisé à entrer en section critique avant l’autre.

bool want[n];
int label[n];

void lock(int i){
want[i]=true;
//phase de récupération du numéro de passage
int number = 0;
for (int k=0;k<n;k++){

if (number<label[k]){
number=label[k];

}
}
label[i]=number+1;
//phase d’attente de son tour
for (int k =0;k<n;k++){

if (k !=i){
while(want[k]&&(label[k]<label[i]||(label[k]==label[i]&&k<i))){
}

}
}

}

void unlock(int i){
want[i]=false;

}

Montrons que ce procédé respecte bien les propriétés attendues :

Lycée Faidherbe-MPI-2025/2026 12

6 SÉMAPHORES

L’exclusion mutuelle vue dans tout ce qui précède garantit qu’un thread seulement peut entrer en section
critique.

Le sémaphore est une généralisation du mutex où on garantit qu’un nombre limité de thread peut entrer en
section critique.

Le sémaphore est associé à deux fonctions : une fonction d’acquisition qui permet d’accéder à la section
critique et une fonction qui permet à un thread de sortir de la section critique.

Fondamentalement, un sémaphore est un compteur (dont la valeur initiale est donnée lors de l’initialisation).
Lorsqu’un thread utilise la fonction d’acquisition, si la valeur du compteur est strictement positive alors il se
contente de le décrémenter et d’entrer en section critique sinon, si ce dernier est nul, alors il est mis en attente.
Quand le thread sort de la section critique, le compteur est incrémenté et s’il y a des threads en attente alors
l’un d’eux est réveillé.

6.1 PRINCIPE ET SYNTAXE

1. En OCAML :

(a) La fonction Semaphore.Counting.make : int->Semaphore.Counting.t crée un sémaphore dont la
capacité est passée en entrée.

(b) La fonction Semaphore.Counting.acquire : Semaphore.Counting.t->unit attend que le comp-
teur devienne strictement positif puis le décrémente.

(c) La fonction Semaphore.Counting.release : Semaphore.Couting.t->unit incrémente le comp-
teur et réveille un thread en attente si besoin.

2. En C, on a les fonctions analogues :

(a) La fonction int sem_init(sem_t *sem, int pshared, unsigned int value) initialise le séma-
phore avec une capacité v. L’entier pshared spécifie si le sémaphore est ou non partagée : s’il vaut 0,
il l’est et ce sera toujours le cas pour nous.

(b) La fonction sem_wait(sem_t* s) met en attente le thread appelant tant que le compteur est nul puis
décrémente celui-ci.

(c) La fonction sem_post(sem_t* s) incrémente le compteur et réveille un thread en attente.

6.2 EXEMPLE 0 : SIMULATION DE MUTEX

Un sémaphore peut jouer le rôle d’un mutex, pour cela il suffit de choisir la capacité correctement.

sem_t m;
sem_init(&m,0,?);
sem_wait(&m);
section critique
sem_post(&m);

6.3 EXEMPLE 1 : RENDEZ-VOUS

Le sémaphore permet aussi à un programme d’attendre qu’un autre programme se termine :

sem_t s;

void* child(void* arg){
printf("childs\n);
sem_post(&s);
return NULL;

}

int main(int argc, char** argv){
sem_init(&s,0,?);
printf("parent begins\n");
pthread_t c;
pthread_create(&c,NULL,child,NULL);
sem_wait(&s);
printf("parent ends");
return 0;

}

Lycée Faidherbe-MPI-2025/2026 13

