
TP 2 : Automates

23 novembre

1 AUTOMATES DÉTERMINISTES

Les automates que l’on considère dans cette partie sont déterministes (pour chaque couple (état,lettre), il y
a au plus une transition).

L’enregistrement taille donne le nombre d’états. L’état type automate =
{ taille : int ;
initial : int ;
transitions : (char * int) list array ;
final : bool array } ;;

initial est donné par l’enregistrement initial, et les états
finaux sont donnés par le tableau de booléens final. Le
tableau transitions contient l’ensemble des transitions.

La taille des tableaux transitions et final doit être
taille, mais ceci n’est pas spécifié dans le type.

▷ Question 1. Il existe dans la bibliothèque Caml une fonction assoc définie de la manière suivante:
assoc : ’a -> (’a * ’b) list -> ’b qui gère les listes de couples (appelées aussi listes associatives) :
par exemple assoc 2 [(1,’a’); (2,’b’) ; (2,’c’) ; (3,’d’)] vaut ’b’. La fonction assoc déclenche
l’exception Not found en cas d’échec.

Ecrire une telle fonction. ◁

▷ Question 2. Écrire une fonction calcul_det qui étant donné un mot et un automate supposé détermin-
iste, détermine si l’automate accepte ce mot (on pourra utiliser la fonction assoc ou bien la fonction que vous
venez de coder). Quelle est sa complexité ?

Définir l’automate 1 représenté à la fin du TP, et vérifier sur les exemples aa, aba et bab que la fonction
calcul_det est correcte. ◁

2 AUTOMATES NON-DÉTERMINISTES

Considérons à présent les automates non-déterministes, toujours avec le type automate où on ne suppose
plus que chaque liste du tableau transitions ne contient qu’une seule occurence pour chaque lettre. On
modifiera aussi le type du champs initial en une liste.

▷ Question 3. Ecrire une fonction delta : automate -> int -> char -> int list telle que delta a q x
renvoie la liste correspondant à l’ensemble δ(q, x). ◁

2.1 RECHERCHE EN PROFONDEUR D’ABORD

La recherche en profondeur d’abord consiste à tester les chemins étiquetés par le mot u les uns après les
autres, jusqu’ à en trouver un, s’il en existe, qui soit un chemin réussi (s’il n’en existe pas alors u n’est pas
reconnu).

▷ Question 4. Écrire une fonction récursive rech_prof : automate -> char list -> int list -> bool
telle que rech_prof a m l renvoie true si et seulement s’il existe, dans l’automate associé à a un chemin éti-
queté par m dont l’origine est un état de l et la fin est un état final. ◁

▷ Question 5. Écrire une fonction reconnait_prof : automate -> string -> bool telle que reconnait_prof a m
renvoie true si et seulement si le mot m est reconnu par l’automate associé à a. ◁

Définir l’automate 2 représenté à la fin du TP , et vérifier sur les exemples aa, aba et bab.

1

2.2 RECHERCHE EN LARGEUR

Soit u = a1a2 . . . an un mot et A = {Q, I, F, T} un automate. On construit la suite (Ep) définie par : E0 = I,
pour tout entier p ≤ n, Ep = {q ∈ Q|∃q′ ∈ Ep−1, (q

′, ap, q) ∈ T} où T représente l’ensemble des transitions.

▷ Question 6. Montrer que u ∈ L(A) si et seulement si En ∩ F ̸= ∅. ◁

▷ Question 7. Écrire une fonction etape : automate -> char -> int list -> int list telle que
etape a x le renvoie la liste le_res des états i pour lesquels il existe un état j de le tel que (j, x, i) soit
une transition de a. ◁

▷ Question 8. Écrire une fonction reconnait_larg : automate -> string -> bool telle que reconnait_larg a u
renvoie true si et seulement si u est reconnu par l’automate a : on utilisera pour cela l’algorithme suggéré par
la question 6. ◁

3 MOT RECONNU PAR UNE EXPRESSION RÉGULIÈRE

▷ Question 9. Définissez par induction structurelle une fonction des expressions régulières qui détermine
si un langage est vide. ◁

On définit le type des expressions régulières :

▷ Question 10. Écrire la fonction vide : expr->bool. type expr = Vide
| Epsilon
| Lettre of char
| Union of expr * expr
| Concat of expr * expr
| Etoile of expr ;;

qui calcule la fonction précédente. ◁

▷ Question 11. Écrire une fonction a_eps : expr -> bool
telle que a_eps e s’évalue à vrai si et seulement si le langage
dénoté par l’expression régulière représentée par e contient le
mot vide ϵ. ◁

▷ Question 12. On considère l’expression régulière e1 = ab∗a. Définir cette expression régulière en CAML.
Determiner le langage L(e1) dénoté par cette expression régulière. ◁

Si L ⊂ Σ∗ est un langage, son résiduel à gauche (on dira simplement résiduel) pour un mot u ∈ Σ est le
langage u−1L = {v ∈ Σ, uv ∈ L}. Autrement dit c’est le langage des mots v qui peuvent compléter le mot u pour
obtenir un mot de L.

▷ Question 13. Montrer que u ∈ L si et seulement si ϵ ∈ u−1L. ◁

On va maintenant chercher à écrire une fonction qui détermine si un mot u est dans un langage L. Pour un
mot u ∈ Σ∗ l’objectif est donc de calculer u−1L et de savoir si ϵ est dans ce langage pour savoir si u ∈ L.

▷ Question 14. Pour u = av, avec u, v ∈ Σ∗ et a ∈ Σ, montrer que u−1L = v−1(a−1L). ◁

Il suffit donc de lire les lettres de u une par une et de déterminer successivement les langages résiduels pour
aboutir à u−1L.

Par exemple, déterminons si aba appartient à ab∗a = L(e1).

▷ Question 15.
Déterminer a−1L(e1) ainsi qu’une expression régulière e2 qui dénote ce langage. ◁

▷ Question 16. Déterminer (ab)−1L = b−1L(e2) ainsi qu’une expression regulière e3 qui dénote ce langage. ◁

▷ Question 17. Écrire une fonction residuel : char -> expr -> expr qui étant donné un caractère a et
une expression régulière e s’évalue en une expression régulière ê qui dénote le langage résiduel L(ê) = a−1L(e).
◁

▷ Question 18. Écrire une fonction appartient : char list -> expr -> bool qui vérifie si un mot
représenté par une liste de caractères appartient au langage dénoté par une expression régulière. ◁

2

▷ Question 19. Écrire de même une fonction appartient_bis : string -> expr -> bool qui a le même
comportement que la fonction précédente mais avec une représentation des mots par le type string de CAML. ◁

TP 6— AUTOMATES
http://www.liafa.jussieu.fr/∼nath/tp6/tp6.pdf

Les questions sont les bienvenues et peuvent être envoyées à nathanael.fijalkow@gmail.com.

Pour ce premier TP de l’année, nous allons implémenter des automates. L’objectif de ce TP est d’écrire les
fonctions utiles que nous utiliserons plus tard pour manipuler nos automates.

1 MOTS ET LANGAGES

L’alphabet latin (ISO/IEC 8859-1) contient 256 caractères, et est le plus largement utilisé pour des raisons
historiques, malgré l’émergence d’un nouvel alphabet plus complet (UTF-8, qui contient 95 000 caractères). En
Caml light, l’alphabet en 256 caractères (le plus souvent ISO/IEC 8859-1) est manipulé par le type char (un
caractère) et le type string (un mot).

Étant donné un mot u (donc un élément de type string), on accède à sa i-ème lettre par u.[i], et comme pour
les vecteurs les positions sont indexées à partir de 0. La longueur du mot u est donnée par string_length u.

2 AUTOMATES DÉTERMINISTES

Les automates que l’on considère dans cette partie sont déterministes (pour chaque couple (état,lettre), il y
a au plus une transition).

L’enregistrement taille donne le nombre d’états. L’état
type automate =
{ taille : int ;
initial : int ;
transitions : (char * int) list vect ;
final : bool vect } ;;

initial est donné par l’enregistrement initial, et les états
finaux sont donnés par le vecteur de booléens final. Le
tableau transitions contient l’ensemble des transitions.

La taille des tableaux transitions et final doit être
taille, mais ceci n’est pas spécifié dans le type.

! Question 1. Écrire une fonction calcul_det qui étant donné un mot et un automate supposé détermin-
iste, détermine si l’automate accepte ce mot. Quelle est sa complexité ? "

0

1

2

3

4

a

b

a

a

b
ba

! Question 2. Définir l’automate ci-dessus, et vérifier sur les exemples aa, aba et bab que la fonction
calcul_det est correcte. "

! Question 3. Écrire une fonction accessible qui supprime les états inaccessibles d’un automate. Pour
cela, on doit renuméroter les états, on pourra maintenir deux tableaux tab_conv et tab_inv qui gère la corre-
spondance entre nouveaux et anciens états. "

3 AUTOMATES NON-DÉTERMINISTES

Considérons à présent les automates non-déterministes, toujours avec le type automate.

! Question 4. Écrire une fonction calcul_nondet qui étant donné un mot et un automate, détermine si
l’automate accepte le mot. Quelle est sa complexité ? "

1

0

1

2

3

4

a

a, b

a

a

b
ba

! Question 5. Définir l’automate représenté ci-dessus, et vérifier sur les exemples aa, aba et bab que la
fonction calcul_nondet est correcte. "

4 DÉTERMINISATION

Pour déterminiser un automate, on construit l’automate des parties : étant donné un automate non-
déterministe A = (Q = {0, . . . , n − 1}, 0, δ, F), son déterminisé est Â = (2Q, {0}, δ′, F ′), où

δ′(S, a) = {q′ ∈ Q | ∃q ∈ S, (q, a, q′) ∈ δ}

et
F ′ = {S ⊆ Q | S ∩ F &= ∅} .

Pour représenter les états de Â, on code les sous-ensembles S ⊆ {0, . . . , n − 1} par des entiers. Par exem-
ple, {0, 2, 3} est représenté par le tableau de booléens [| true ; false ; true ; true |], et de manière
équivalente par l’entier 20 + 22 + 23 = 13.

! Question 6. Écrire les fonctions de conversion tab2int et int2tab. La fonction int2tab prend en
argument l’entier k à convertir et la taille n du tableau attendu. "

! Question 7. Écrire une fonction determinise qui calcule l’automate déterminisé. "

Le nombre d’états de Â est exponentiel en le nombre d’états de A; ceci rend impraticable la déterminisation
dès que A est gros. En pratique, on préfère calculer seulement la partie accessible de Â. En effet, souvent, le
déterminisé a (beaucoup) moins que 2n états. Cependant, dans certains cas cette borne est atteinte :

! Question 8. Construire un automate non-déterministe reconnaisant Ln = A∗ · a · An−1. Montrer que tout
automate déterministe reconnaissant Ln possède au moins 2n états. "

5 MINIMISATION

Pour minimiser un automate (déterministe et complet), on calcule l’équivalence de Nérode. Étant donné
A = (Q = {0, . . . , n − 1}, 0, δ, F), c’est la relation d’équivalence sur Q définie par

p ∼ q ⇐⇒ ∀w ∈ A∗, (p · w ∈ L(A) ⇔ q · w ∈ L(A)) .

On la calcule par approximations successives : on définit les relations ∼k pour k ∈ N par

p ∼k q ⇐⇒ ∀w ∈ A≤k, (p · w ∈ L(A) ⇔ q · w ∈ L(A)) .

A≤k est l’ensemble des mots de longueur au plus k.

! Question 9. Montrer que ∼ = ∼n−2. "

Pour maintenir ces relations successives, on utilise un tableau tab_partition d’entiers de taille n. La valeur
tab_partition.(i) est un état j ≤ i qui est en relation avec i. La fonction classe calcule le représentant
minimal de la classe de i, et met à jour les valeurs des états considérés. Pour tester si deux états sont en
relation, il suffit de calculer les représentants minimaux de leurs deux classes, et de les comparer.

2

Automate 1 Automate 2

3

