TP 2 : Automates

23 novembre

1 AUTOMATES DETERMINISTES

Les automates que 'on considére dans cette partie sont déterministes (pour chaque couple (état,lettre), il y
a au plus une transition).

L'enregistrement taille donne le nombre d’états. L’'état fype automate —

initial est donné par I'enregistrement initi‘al, et les états { taille : int ;

finaux sont donnés par le tableau de booléens final. Le initial : 4int ;

tableau transitions contient 'ensemble des transitions. transitions : (char * int) list array ;
La taille des tableaux transitions et final doit étre final : bool array } ;;

taille, mais ceci n’est pas spécifié dans le type.
> Question 1. Il existe dans la bibliothéque Caml une fonction assoc définie de la maniere suivante:

assoc : "a —> ('a * 'b) list —-> ’'b qui gere les listes de couples (appelées aussi listes associatives) :
par exemple assoc 2 [(1,’a’); (2,’b’) ; (2,’c’) ; (3,7d’)] vaut 'b’. La fonction assoc déclenche
I'exception Not found en cas d’échec.

Ecrire une telle fonction. «

> Question 2. Ecrire une fonction calcul_det qui étant donné un mot et un automate supposé détermin-
iste, détermine si 'automate accepte ce mot (on pourra utiliser la fonction assoc ou bien la fonction que vous
venez de coder). Quelle est sa complexité ?

Définir I'automate 1 représenté a la fin du TP, et vérifier sur les exemples aa, aba et bab que la fonction
calcul_det est correcte. «

2 AUTOMATES NON-DETERMINISTES

Considérons a présent les automates non-déterministes, toujours avec le type automate oul on ne suppose
plus que chaque liste du tableau transitions ne contient quune seule occurence pour chaque lettre. On
modifiera aussi le type du champs initial en une liste.

> Question 3. Ecrire une fonction delta : automate -> int -> char —-> int listtellequedelta a g x
renvoie la liste correspondant a 'ensemble (¢, z). <

2.1 RECHERCHE EN PROFONDEUR D’ABORD

La recherche en profondeur d’abord consiste a tester les chemins étiquetés par le mot u les uns aprés les
autres, jusqu’ a en trouver un, s’il en existe, qui soit un chemin réussi (s’il n’en existe pas alors u n’est pas
reconnuyj.

> Question 4. Ecrire une fonction récursive rech_prof : automate -> char list -> int list -> bool
telle que rech_prof a m 1 renvoie true siet seulement s’il existe, dans 'automate associé a a un chemin éti-
queté par m dont l'origine est un état de [et la fin est un état final. «

> Question 5. Ecrire une fonction reconnait_prof : automate -> string —> bool telle que reconnait_prof
renvoie true si et seulement si le mot m est reconnu par 'automate associé a a. <

Définir 'automate 2 représenté a la fin du TP , et vérifier sur les exemples aa, aba et bab.

2.2 RECHERCHE EN LARGEUR

Soit u = ajaz...a, un mot et A = {Q, I, F,T} un automate. On construit la suite (E,) définie par : Ey = I,
pour tout entier p < n, E, ={¢ € Q|3¢' € E,_1,(¢,ap,q) € T} ou T représente 'ensemble des transitions.

> Question 6. Montrer que u € L(A) si et seulement si F,, N F # . <
> Question 7. Ecrire une fonction etape : automate -> char -> int list -> int list telle que

etape a x le renvoie la liste 1e_res des états i pour lesquels il existe un état j de 1e tel que (j, x, i) soit
une transition de a. «

> Question 8. Ecrire une fonction reconnait_larg : automate -> string —-> bool telle que reconnait_larg
renvoie true si et seulement si u est reconnu par 'automate a : on utilisera pour cela I'algorithme suggéré par
la question 6. «

3 MOT RECONNU PAR UNE EXPRESSION REGULIERE

> Question 9. Définissez par induction structurelle une fonction des expressions réguliéres qui détermine
si un langage est vide. «

On définit le type des expressions régulieres :

> Question 10. Ecrire la fonction vide : expr->bool. ——
. A L type expr = Vide
qui calcule la fonction précédente. <« |

Epsilon
Lettre of char

|
> @Question 11. Ecrire une fonction a_eps : expr -> bool | | Union of expr « expr
telle que a_eps e s’évalue a vrai si et seulement si le langage | Concat of expr » expr
dénoté par I'expression réguliére représentée par e contient le | Btoile of expr j;

mot vide e. <

> Question 12. On considére I'expression réguliére e; = ab*a. Définir cette expression réguliere en CAML.
Determiner le langage L(e;) dénoté par cette expression réguliére. <

Si L C ¥* est un langage, son résiduel a gauche (on dira simplement résiduel) pour un mot u € X est le
langage v 'L = {v € X, uv € L}. Autrement dit c’est le langage des mots v qui peuvent compléter le mot u pour
obtenir un mot de L.

> Question 13. Montrer que u € L si et seulement si e € u=1L. «

On va maintenant chercher a écrire une fonction qui détermine si un mot u est dans un langage L. Pour un
mot u € ¥* T'objectif est donc de calculer u 'L et de savoir si e est dans ce langage pour savoir si u € L.

> Question 14. Pour u = av, avec u,v € ¥* et a € 3, montrer que u 'L =v"(a"1L). «

I1 suffit donc de lire les lettres de u une par une et de déterminer successivement les langages résiduels pour
aboutir a u=1L.
Par exemple, déterminons si aba appartient a ab*a = L(eq).

> Question 15.
Déterminer a~!L(e;) ainsi qu'une expression réguliére e, qui dénote ce langage. <

> Question 16. Déterminer (ab)~!L = b~ !L(ey) ainsi qu'une expression reguliére e3 qui dénote ce langage. <

> @Question 17. Ecrire une fonction residuel : char -> expr —-> expr quiétant donné un caractére a et
une expression réguliére e s'évalue en une expression réguliere & qui dénote le langage résiduel L(€) = a1 L(e).
<

> Question 18. Ecrire une fonction appartient : char list -> expr -> bool qui vérifie si un mot
représenté par une liste de caractéres appartient au langage dénoté par une expression réguliére. <

> Question 19. Ecrire de méme une fonction appartient_bis : string —-> expr —> bool quia le méme
comportement que la fonction précédente mais avec une représentation des mots par le type string de CAML. «

Automate 1 Automate 2

