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Quelques Remarques
• Ceci est un ensemble d’exercices destiné à s’exercer sur l’écriture d’arbres de preuve dans le système

de déduction naturelle. Les autres types d’exercices ne sont pas abordés.

• Ce document concerne uniquement la logique propositionnelle.

• Lorsque la démonstration prenait trop de place en largeur, j’ai utilisé une abréviation. Si celle-ci n’est
pas indispensable pour ce motif, j’ai préféré laissé les séquents au prix d’une présentation un peu lourde.

• De même, pour des calculs trop longs, certaines déductions sont découpées en étapes

• Il y a enfin quelques longues déductions dans le cas d’une élimination de ∨, pour lesquelles la preuve
de la seconde branche n’a pas été écrite.

• Beaucoup de résultats sont écrits sous la forme φ ⊢ ψ, ils sont facilement transformables en théorèmes
⊢ φ → ψ en utilisant l’introduction de l’implication.

• Il y a des erreurs dans ce document, n’hésitez pas à me les signaler, je corrigerai celles-ci.
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1 Règles de la déduction naturelle
Les règles gèrent des séquent Γ ⊢ φ où Γ est un ensemble de formules propositionnelles, le contexte, et φ est
une formule propositionnelle ; on dit que Γ démontre φ ou que φ se déduit de Γ.
Un régle permet d’inférer un sequent deuis un nombre fini de séquents (les prémisses) sous la forme

Γ1 ⊢ φ1 Γ2 ⊢ φ2 · · · Γp ⊢ φp R
Γ ⊢ φ

Un séquent est prouvable si on peut l’inférer par une suite de règles en commençant par des règle sans
prémisse : (⊤i), (hyp), (ref), (te) ici.

1.1 Règles utilisées
• Le vrai se déduit de tout contexte.

⊤iΓ ⊢ ⊤

• La règle de monotonie (ou affaiblissement) permet d’ajouter des formules au contexte.

Γ ⊢ φ
mon

Γ,∆ ⊢ φ

• La règle de l’hypothèsepermet conclure une de ses formules depuis un contexte.

hyp
Γ, φ ⊢ φ

On peut remplacer cette règle par la règle de la réflexivité en complétant par la monotonie.

ref
φ ⊢ φ

• Plusieurs règles gèrent les connecteurs logiques dans la formule prouvée.

Introduction Élimination

Négation ¸
Γ, φ ⊢ ⊥

¬iΓ ⊢ ¬φ
Γ ⊢ φ Γ ⊢ ¬φ

¬eΓ ⊢ ⊥

Conjonction
Γ ⊢ φ1 Γ ⊢ φ2 ∧iΓ ⊢ φ1 ∧ φ2

Γ ⊢ φ1 ∧ φ2 ∧eΓ ⊢ φ1
ou

Γ ⊢ φ1 ∧ φ2 ∧eΓ ⊢ φ2

Disjonction
Γ ⊢ φ1 ∨iΓ ⊢ φ1 ∨ φ2

ou
Γ ⊢ φ2 ∨iΓ ⊢ φ1 ∨ φ2

Γ ⊢ φ1 ∨ φ2 Γ, φ1 ⊢ ψ Γ, φ2 ⊢ ψ
∨eΓ ⊢ ψ

Implication
Γ, φ ⊢ ψ

→iΓ ⊢ φ → ψ

Γ ⊢ φ → ψ Γ ⊢ φ
→eΓ ⊢ ψ

• La règle du raisonnement par l’absurde ressemble à l’introduction de la négation.

Γ,¬φ ⊢ ⊥
raa

Γ ⊢ φ

L’ensemble de ces règle forme un système complet : toute tautologie φ, sous la forme ⊢ φ, est prouvable.
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1.2 Sous-systèmes de preuves
L’introduction de la négation permet d’inférer Γ ⊢ ¬¬φ depuis Γ,¬φ ⊢ ⊥ ; raa gère en fait une élimination
de la double négation. Si on s’interdit la règle (raa) : on est dans le cadre de la logique minimale. Les
résultats prouvables dans ce cadre seront indiqués avec ⊢m.
C’est le cas de la majorité des preuves de ce document

Les mathématiciens qui refusent les démonstrations par l’absurde, qu’on appelle mathématiciens intuition-
nistes, ont souhaité garder la possibilité classique de conclure toute proposition du faux. Cela se traduit par
l’introduction d’une règle (raisonnement par l’absurde intuitionniste) d’élimination du faux :

Γ ⊢ ⊥ ⊥eΓ ⊢ ψ

Si on n’utilise que les règle de la logique minimale et l’absurde intuitionniste , on est dans le cadre de la
logique intuitionniste. Les résultats prouvables en se restreignant à ce cadre seront indiqués avec ⊢i.
Voici les démonstrations qui utilisent l’absurde intuitionniste.

Démonstrations intuitionnistes
9 p ∨ q,¬q ⊢i p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
12 p ∨ q, p ∨ ¬q ⊢i p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
18 ¬¬p, p ∨ ¬p ⊢i p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
29 ¬p ⊢i p → q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
52 ¬(p → q) ⊢i q → p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
90 (p ∨ r) → (q ∨ r),¬r ⊢i p → q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Les résultats nécessitant (raa) ont aussi été écrits avec la règle du tiers exclu
te

Γ ⊢ p ∨ ¬p

Dans ce cas, on doit souvent ajouter la règle de l’absurde intuitionniste.
En ajoutant le tiers-exclu au cadre intuitionniste on obtient un système complet.
Voici les démonstrations qui utilisent un système complet

Démonstrations avec (raa) ou (te)
7 ⊢ p ∨ ¬p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
14 ¬¬p ⊢ p avec (raa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
15 ¬¬p ⊢ p avec (te) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
25 ¬(p ∧ q) ⊢ ¬p ∨ ¬q avec (raa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
26 ¬(p ∧ q) ⊢ ¬p ∨ ¬q avec (te) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
34 ¬p → p ⊢ p avec (raa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
35 ¬p → p ⊢ p avec (te) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
39 p → q ⊢ ¬p ∨ q avec (raa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
40 p → q ⊢ ¬p ∨ q avec (te) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
41 ¬(p ∧ ¬q) ⊢ p → q avec (raa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
42 ¬(p ∧ ¬q) ⊢ p → q avec (te) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
45 ¬q → ¬p ⊢ p → q avec (raa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
46 ¬q → ¬p ⊢ p → q avec (te) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
47 ¬(p → q) ⊢ p avec (raa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
48 ¬(p → q) ⊢ p avec (te) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
50 ¬(p → q) ⊢ p ∧ ¬q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
53 p → (q ∨ r) ⊢ (p → q) ∨ (p → r) avec (raa) . . . . . . . . . . . . . . . . . . . . . . . . 22
54 p → (q ∨ r) ⊢ (p → q) ∨ (p → r) avec (te) . . . . . . . . . . . . . . . . . . . . . . . . 22
60 (p ∧ q) → r ⊢ (p → r) ∨ (q → r) avec (raa) . . . . . . . . . . . . . . . . . . . . . . . . 24
61 (p ∧ q) → r ⊢ (p → r) ∨ (q → r) avec (te) . . . . . . . . . . . . . . . . . . . . . . . . 25
66 p → (q → r) ⊢ (p → q) ∨ (p → r) avec (raa) . . . . . . . . . . . . . . . . . . . . . . . 26
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67 p → (q → r) ⊢ (p → q) ∨ (p → r) avec (te) . . . . . . . . . . . . . . . . . . . . . . . . 26
73 p → q,¬p → r ⊢ ¬r → q avec (raa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
74 p → q,¬p → r ⊢ ¬r → q avec (te) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
78 (p → q) → p ⊢ p avec (raa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
79 (p → q) → p ⊢ p avec (te) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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2 Règles classiques
Certaines déductions correspondent à des raisonnement classiques et avaient un nom, parfois en latin.

• Le modus ponens était le nom de la règle d’élimination de l’implication, sous forme simplifiée,

hyp
⊢ p → q

hyp
⊢ p

→e⊢ q

• Le nom de la règle du raisonnement par l’absurde, raa, provient du latin reduction ad absurdum.

• La règle du raisonnement par l’absurde intuitionniste était nommée ex falso quod libet sequitur,

Elle se prouve dans le cadre classique :
Γ ⊢ ⊥ mon

Γ,¬ψ ⊢ ⊥
raa

Γ ⊢ ψ

Ainsi tout résultat prouvable dans la logique intuitionniste est prouvable dans la logique classique.

• La règle p → q,¬q ⊢m ¬p était appelée modus tollens Elle est démontrée à l’exercice 43.

• Le syllogisme classique p → q, q → r ⊢m p → r est appelé Barbara. La preuve est à l’exercice 68.

• Le théorème ⊢ p ∨ ¬p, démontré à l’exercice 7, se généralise en la loi du tiers exclu : te
Γ ⊢ p ∨ ¬p .

• Le théorème ¬¬p ⊢ p, démontré à l’exercice 14, se généralise en la loi d’élimination de la double

négation :
Γ ⊢ ¬¬p

¬¬eΓ ⊢ p

• La règle p ∨ q,¬p ∨ r ⊢i q ∨ r est la règle de résolution. Elle est démontrée à l’exercice 8.

• La règle (p → q) → p ⊢ p est la loi de Pierce. Elle est démontrée à l’exercice 78.
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3 Conjonctions et disjonctions
3.1 Premiers résultats
1 p, q ⊢m p ∧ q

hyp
p, q ⊢ p

hyp
p, q ⊢ q

∧i
p, q ⊢ p ∧ q

2 p ∧ q ⊢m q ∧ p

hyp
p ∧ q ⊢ p ∧ q

∧e
p ∧ q ⊢ q

hyp
p ∧ q ⊢ p ∧ q

∧e
p ∧ q ⊢ p

∧i
p ∧ q ⊢ q ∧ p

3 p ∨ q ⊢m q ∨ p

hyp
p ∨ q ⊢ p ∨ q

hyp
p ∨ q, p ⊢ p

∨i
p ∨ q, p ⊢ q ∨ p

hyp
p ∨ q, q ⊢ q

∨i
p ∨ q, q ⊢ q ∨ p

∨e
p ∨ q ⊢ q ∨ p

4 p ∨ (p ∧ q) ⊢m p

hyp
p ∨ (p ∧ q) ⊢ p ∨ (p ∧ q)

hyp
p ∨ (p ∧ q), p ⊢ p

hyp
p ∨ (p ∧ q), p ∧ q ⊢ p ∧ q

∧e
p ∨ (p ∧ q), p ∧ q ⊢ p

∨e
p ∨ (p ∧ q) ⊢ p

5 p ∧ q, r ∧ s ⊢m p ∧ s

hyp
p ∧ q, r ∧ s ⊢ p ∧ q

∧e
p ∧ q, r ∧ s ⊢ p

hyp
p ∧ q, r ∧ s ⊢ r ∧ s

∧e
p ∧ q, r ∧ s ⊢ s

∧i
p ∧ q, r ∧ s ⊢ p ∧ s

6 p, q ∧ r ⊢m p ∧ q

hyp
p, q ∧ r ⊢ p

hyp
p, q ∧ r ⊢ q ∧ r

∧e
p, q ∧ r ⊢ q

∧i
p, q ∧ r ⊢ p ∧ q
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3.2 Négation
7 ⊢ p ∨ ¬p

hyp
¬(p ∨ ¬p), p ⊢ p

∨i
¬(p ∨ ¬p), p ⊢ p ∨ ¬p

hyp
¬(p ∨ ¬p), p ⊢ ¬(p ∨ ¬p)

¬e
¬(p ∨ ¬p), p ⊢ ⊥

¬i
¬(p ∨ ¬p) ⊢ ¬p

∨i
¬(p ∨ ¬p) ⊢ p ∨ ¬p

hyp
¬(p ∨ ¬p) ⊢ ¬(p ∨ ¬p)

¬e
¬(p ∨ ¬p) ⊢ ⊥

raa
⊢ p ∨ ¬p

8 p ∨ q,¬p ∨ r ⊢i q ∨ r

On note Γ = p ∨ q,¬p ∨ r.

hyp
Γ ⊢ p ∨ q

hyp
Γ, p ⊢ ¬p ∨ r

hyp
Γ, p,¬p ⊢ p

hyp
Γ, p,¬p ⊢ ¬p

¬eΓ, p,¬p ⊢ ⊥
⊥eΓ, p,¬p ⊢ q ∨ r

hyp
Γ, p, r ⊢ r

∨iΓ, p, r ⊢ q ∨ r
∨eΓ, p ⊢ q ∨ r

hyp
Γ, q ⊢ q

∨iΓ, q ⊢ q ∨ r
∨e

p ∨ q,¬p ∨ r ⊢ q ∨ r

9 p ∨ q,¬q ⊢i p

hyp
p ∨ q,¬q ⊢ p ∨ q

hyp
p ∨ q,¬q, p ⊢ p

hyp
p ∨ q,¬q, q ⊢ q

hyp
p ∨ q,¬q, q ⊢ ¬q

¬e
p ∨ q,¬q, q ⊢ ⊥

⊥e
p ∨ q,¬q, q ⊢ p

∨e
p ∨ q,¬q ⊢ p

10 p ∧ ¬p ⊢m ⊥
hyp

p ∧ ¬p ⊢ p ∧ ¬p
∧e

p ∧ ¬p ⊢ p

hyp
p ∧ ¬p ⊢ p ∧ ¬p

∧e
p,¬p ⊢ ¬p

¬e
p,¬p ⊢ ⊥

11 ⊢m ¬(p ∧ ¬p)
hyp

p ∧ ¬p ⊢ p ∧ ¬p
∧e

p ∧ ¬p ⊢ p

hyp
p ∧ ¬p ⊢ p ∧ ¬p

∧e
p ∧ ¬p ⊢ ¬p

¬e
p ∧ ¬p ⊢ ⊥

¬i
⊢ ¬(p ∧ ¬p)
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12 p ∨ q, p ∨ ¬q ⊢i p

On note Γ = p ∨ q, p ∨ ¬q

hyp
Γ ⊢ p ∨ q

hyp
Γ, p ⊢ p

hyp
Γ, q ⊢ p ∨ ¬q

hyp
Γ, q, p ⊢ p

hyp
Γ, q,¬q ⊢ q

hyp
Γ, q,¬q ⊢ ¬q

¬eΓ, q,¬q ⊢ ⊥
⊥eΓ, q,¬q ⊢ p
∨eΓ, q ⊢ p

∨e
p ∨ q, p ∨ ¬q ⊢ p

11



3.3 Double négation
13 p ⊢m ¬¬p

hyp
p,¬p ⊢ p

hyp
p,¬p ⊢ ¬p

¬e
p,¬p ⊢ ⊥

¬i
p ⊢ ¬¬p

14 ¬¬p ⊢ p avec (raa)
hyp

¬¬p,¬p ⊢ ¬p
hyp

¬¬p,¬p ⊢ ¬¬p
¬e¬¬p,¬p ⊢ ⊥

raa
¬¬p ⊢ p

15 ¬¬p ⊢ p avec (te)

te
Γ ⊢ p ∨ ¬p

hyp
Γ, p ⊢ p

hyp
Γ,¬p ⊢ ¬p

Γ ⊢ ¬¬p
mon

Γ,¬p ⊢ ¬(¬p)
¬eΓ,¬p ⊢ ⊥

⊥eΓ,¬p ⊢ p
∨eΓ ⊢ p

16 ¬¬¬p ⊢m ¬p
hyp

¬¬¬p, p,¬p ⊢ p
hyp

¬¬¬p, p,¬p ⊢ ¬p
¬e¬¬¬p, p,¬p ⊢ ⊥

¬i¬¬¬p, p ⊢ ¬¬p
hyp

¬¬¬p, p ⊢ ¬¬¬p
¬e¬¬¬p, p ⊢ ⊥

¬i¬¬¬p ⊢ ¬p

17 ⊢m ¬¬(p ∨ ¬p)
hyp

¬(p ∨ ¬p), p ⊢ p
∨i

¬(p ∨ ¬p), p ⊢ p ∨ ¬p
hyp

¬(p ∨ ¬p), p ⊢ ¬(p ∨ ¬p)
¬e

¬(p ∨ ¬p), p ⊢ ⊥
¬i

¬(p ∨ ¬p) ⊢ ¬p
∨i

¬(p ∨ ¬p) ⊢ p ∨ ¬p
hyp

¬(p ∨ ¬p) ⊢ ¬(p ∨ ¬p)
¬e

¬(p ∨ ¬p) ⊢ ⊥
¬i

⊢ ¬
(
¬(p ∨ ¬p)

)
18 ¬¬p, p ∨ ¬p ⊢i p

hyp
¬¬p, p ∨ ¬p ⊢ p ∨ ¬p

hyp
¬¬p, p ∨ ¬p, p ⊢ p

hyp
¬¬p, p ∨ ¬p,¬p ⊢ ¬p

hyp
¬¬p, p ∨ ¬p,¬p ⊢ ¬(¬p)

¬e¬¬p, p ∨ ¬p,¬p ⊢ ⊥
⊥e¬¬p, p ∨ ¬p,¬p ⊢ p
∨e¬¬p, p ∨ ¬p ⊢ p
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3.4 Distributivités
On prouve l’équivalence de deux écritures en déduisant chacune de l’autre.

19 p ∧ (q ∨ r) ⊢m (p ∧ q) ∨ (p ∧ r)

On note φ = p ∧ (q ∨ r).

hyp
φ ⊢ p ∧ (q ∨ r)

∧e
φ ⊢ q ∨ r

hyp
φ, q ⊢ p ∧ (q ∨ r)

∧e
φ, q ⊢ p

hyp
φ, q ⊢ q

∧i
φ, q ⊢ p ∧ q

∨i
φ, q ⊢ (p ∧ q) ∨ (p ∧ r)

hyp
φ, r ⊢ p ∧ (q ∨ r)

∧e
φ, r ⊢ p

hyp
φ, r ⊢ r

∧i
φ, r ⊢ p ∧ r

∨i
φ, r ⊢ (p ∧ q) ∨ (p ∧ r)

∨e
p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ (p ∧ r)

20 (p ∧ q) ∨ (p ∧ r) ⊢m p ∧ (q ∨ r)

On note ψ = (p ∧ q) ∨ (p ∧ r).
Étape 1 On commence par prouver (p ∧ q) ∨ (p ∧ r) ⊢ p.

hyp
ψ ⊢ (p ∧ q) ∨ (p ∧ r)

hyp
ψ, p ∧ q ⊢ p ∧ q

∧e
ψ, p ∧ q ⊢ p

hyp
ψ, p ∧ r ⊢ p ∧ r

∧e
ψ, p ∧ r ⊢ p

∨e(p ∧ q) ∨ (p ∧ r) ⊢ p

Étape 2 On prouve ensuite (p ∧ q) ∨ (p ∧ r) ⊢ q ∨ r.

hyp
ψ ⊢ (p ∧ q) ∨ (p ∧ r)

hyp
ψ, p ∧ q ⊢ p ∧ q

∧e
ψ, p ∧ q ⊢ q

∨i
ψ, p ∧ q ⊢ q ∨ r

hyp
ψ, p ∧ r ⊢ p ∧ r

∧e
ψ, p ∧ r ⊢ r

∨i
ψ, p ∧ q ⊢ q ∨ r

∨e(p ∧ q) ∨ (p ∧ r) ⊢ q ∨ r

Étape 3 On assemble les deux déductions

Étape 1
(p ∧ q) ∨ (p ∧ r) ⊢ p

Étape 2
(p ∧ q) ∨ (p ∧ r) ⊢ q ∨ r

∧i(p ∧ q) ∨ (p ∧ r) ⊢ p ∧ (q ∨ r)

21 p ∨ (q ∧ r) ⊢m (p ∨ q) ∧ (p ∨ r)

hyp
p ∨ (q ∧ r) ⊢ p ∨ (q ∧ r)

hyp
p ∨ (q ∧ r), p ⊢ p

∨i
p ∨ (q ∧ r), p ⊢ p ∨ q

hyp
p ∨ (q ∧ r), q ∧ r ⊢ q ∧ r

∧e
p ∨ (q ∧ r), q ∧ r ⊢ q

∨i
p ∨ (q ∧ r), q ∧ r ⊢ p ∨ q

∨e
p ∨ (q ∧ r) ⊢ p ∨ q

On montre, de la même façon, p ∨ (q ∧ r) ⊢ p ∨ r et on conclut en utilisant la règle ∧i.

22 (p ∨ q) ∧ (p ∨ r) ⊢m p ∨ (q ∧ r)

On note φ = (p ∨ q) ∧ (p ∨ r) et ψ = p ∨ (q ∧ r).

hyp
φ ⊢ φ

∧e
φ ⊢ p ∨ q

hyp
φ, p ⊢ p

∨i
φ, p ⊢ ψ

hyp
φ, q ⊢ φ

∧e
φ, q ⊢ p ∨ r

hyp
φ, q, p ⊢ p

∨i
φ, q, p ⊢ ψ

hyp
φ, q, r ⊢ q

hyp
φ, q, r ⊢ r

∧i
φ, q, r ⊢ q ∧ r

∨i
φ, q, r ⊢ ψ

∨e
φ, q ⊢ ψ

∨e(p ∨ q) ∧ (p ∨ r) ⊢ p ∨ (q ∧ r)
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3.5 Lois de de Morgan
23 ¬(p ∨ q) ⊢m ¬p ∧ ¬q

hyp
¬(p ∨ q), p ⊢ ¬(p ∨ q)

hyp
¬(p ∨ q), p ⊢ p

∨i
¬(p ∨ q), p ⊢ p ∨ q

¬e
¬(p ∨ q), p ⊢ ⊥

¬i
¬(p ∨ q) ⊢ ¬p

hyp
¬(p ∨ q), q ⊢ ¬(p ∨ q)

hyp
¬(p ∨ q), q ⊢ q

∨i
¬(p ∨ q), q ⊢ p ∨ q

¬e
¬(p ∨ q), q ⊢ ⊥

¬i
¬(p ∨ q) ⊢ ¬q

∧i
¬(p ∨ q) ⊢ ¬p ∧ ¬q

24 ¬p ∧ ¬q ⊢m ¬(p ∨ q)

On note φ = ¬p ∧ ¬q et ψ = p ∨ q.

hyp
φ,ψ ⊢ p ∨ q

hyp
φ,ψ, p ⊢ p

hyp
φ,ψ, p ⊢ ¬p ∧ ¬q

∧e
φ,ψ, p ⊢ ¬p

¬e
φ,ψ, p ⊢ ⊥

hyp
φ,ψ, q ⊢ q

hyp
φ,ψ, q ⊢ ¬p ∧ ¬q

∧e
φ,ψ, q ⊢ ¬q

¬e
φ,ψ, q ⊢ ⊥

∨e¬p ∧ ¬q, p ∨ q ⊢ ⊥
¬i

¬p ∧ ¬q ⊢ ¬(p ∨ q)

25 ¬(p ∧ q) ⊢ ¬p ∨ ¬q avec (raa)

Étape 1 On commence par une preuve de p pour un contexte ; on peut prouver aussi q.

hyp
¬(p ∧ q),¬(¬p ∨ ¬q),¬p ⊢ ¬p

∨i
¬(p ∧ q),¬(¬p ∨ ¬q),¬p ⊢ ¬p ∨ ¬q

hyp
¬(p ∧ q),¬(¬p ∨ ¬q),¬p ⊢ ¬(¬p ∨ ¬q)

¬e
¬(p ∧ q),¬(¬p ∨ ¬q),¬p ⊢ ⊥

raa
¬(p ∧ q),¬(¬p ∨ ¬q) ⊢ p

Étape 2 On commence par une preuve de p pour un contexte ; on peut prouver aussi q.

Étape 1 pour p
¬(p ∧ q),¬(¬p ∨ ¬q) ⊢ p

Étape 1 pour q
¬(p ∧ q),¬(¬p ∨ ¬q) ⊢ q

∧i
¬(p ∧ q),¬(¬p ∨ ¬q) ⊢ p ∧ q

hyp
¬(p ∧ q),¬(¬p ∨ ¬q) ⊢ ¬(p ∧ q)

¬e
¬(p ∧ q),¬(¬p ∨ ¬q) ⊢ ⊥

raa
¬(p ∧ q) ⊢ ¬p ∨ ¬q

26 ¬(p ∧ q) ⊢ ¬p ∨ ¬q avec (te)

te
φ ⊢ p ∨ ¬p

hyp
φ, p, q ⊢ ¬(p ∧ q)

hyp
φ, p, q ⊢ p

hyp
φ, p, q ⊢ q

∧i
φ, p, q ⊢ p ∧ q

¬e
φ, p, q ⊢ ⊥

¬i
φ, p ⊢ ¬q

∨i
φ, p ⊢ ¬p ∨ ¬q

hyp
φ,¬p ⊢ ¬p

∨i
φ,¬p ⊢ ¬p ∨ ¬q

∨e
¬(p ∧ q) ⊢ ¬p ∨ ¬q

27 ¬p ∨ ¬q ⊢m ¬(p ∧ q)

On note φ = ¬p ∨ ¬q et ψ = p ∧ q.
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hyp
φ,ψ ⊢ ¬p ∨ ¬q

hyp
φ,ψ,¬p ⊢ p ∧ q

∧e
φ,ψ,¬p ⊢ p

hyp
φ,ψ,¬p ⊢ ¬p

¬e
φ,ψ,¬p ⊢ ⊥

hyp
φ,ψ,¬q ⊢ p ∧ q

∧e
φ,ψ,¬q ⊢ q

hyp
φ,ψ,¬q ⊢ ¬q

¬e
φ,ψ,¬q ⊢ ⊥

∨e¬p ∨ ¬q, p ∧ q ⊢ ⊥
¬i

¬p ∨ ¬q ⊢ ¬(p ∧ q)
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4 Implications
4.1 Création d’une implication
28 q ⊢m p → q

hyp
q, p ⊢ q

→i
q ⊢ p → q

29 ¬p ⊢i p → q

hyp
¬p, p ⊢ p

hyp
¬p, p ⊢ ¬p

¬e¬p, p ⊢ ⊥
⊥e¬p, p ⊢ q
→i¬p ⊢ p → q

30 p ⊢m q → (p ∧ q)
hyp

p, q ⊢ p
hyp

p, q ⊢ q
∧i

p, q ⊢ p ∧ q
→i

p ⊢ q → (p ∧ q)

31 p ∧ q ⊢m p → q

hyp
p ∧ q, p ⊢ p ∧ q

∧e
p ∧ q, p ⊢ q

→i
p ∧ q ⊢ p → q

32 (p ∧ q) → r,¬r ⊢m p → ¬q

On note Γ = (p ∧ q) → r,¬r, p, q.

hyp
(p ∧ q) → r,¬r, p, q ⊢ (p ∧ q) → r

hyp
Γ ⊢ p

hyp
Γ ⊢ q

∧i(p ∧ q) → r,¬r, p, q ⊢ p ∧ q
→e(p ∧ q) → r,¬r, p, q ⊢ r

hyp
(p ∧ q) → r,¬r, p, q ⊢ ¬r

¬e(p ∧ q) → r,¬r, p, q ⊢ ⊥
¬i(p ∧ q) → r,¬r, p ⊢ ¬q
→i(p ∧ q) → r,¬r ⊢ p → ¬q
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4.2 Conséquences d’implication
33 p → ¬p ⊢m ¬p

hyp
p → ¬p, p ⊢ p

hyp
p → ¬p, p ⊢ p → ¬p

hyp
p → ¬p, p ⊢ p

→e
p → ¬p, p ⊢ ¬p

¬e
p → ¬p, p ⊢ ⊥

¬i
p → ¬p ⊢ ¬p

34 ¬p → p ⊢ p avec (raa)
hyp

¬p → p,¬p ⊢ ¬p → p
hyp

¬p → p,¬p ⊢ ¬p
→e¬p → p,¬p ⊢ p

hyp
¬p → p,¬p ⊢ ¬p

¬e
p → ¬p,¬p ⊢ ⊥

raa
p → ¬p,⊢ p

35 ¬p → p ⊢ p avec (te)

te
¬p → p ⊢ p ∨ ¬p

hyp
¬p → p, p ⊢ p

hyp
¬p → p,¬p ⊢ ¬p → p

hyp
¬p → p,¬p ⊢ ¬p

→e¬p → p,¬p ⊢ p
∨e¬p → p ⊢ p

36 p → q, p ∨ q ⊢m q

hyp
p → q, p ∨ q ⊢ p ∨ q

hyp
p → q, p ∨ q, p ⊢ p → q

hyp
p → q, p ∨ q, p ⊢ p

→e
p → q, p ∨ q, p ⊢ q

hyp
p → q, p ∨ q, q ⊢ q

∨e
p → q, p ∨ q ⊢ q

37 p → (q ∨ r),¬q,¬r ⊢m ¬p

On note Γ = p → (q ∨ r),¬q,¬r, p.
hyp

Γ ⊢ p → (q ∨ r)
hyp

Γ ⊢ p
→eΓ ⊢ q ∨ r

hyp
Γ, q ⊢ q

hyp
Γ, q ⊢ ¬q

→eΓ, q ⊢ ⊥

hyp
Γ, r ⊢ r

hyp
Γ, r ⊢ ¬r

→eΓ, r ⊢ ⊥
∨e

p → (q ∨ r),¬q,¬r, p ⊢ ⊥
¬i

p → (q ∨ r),¬q,¬r ⊢ ¬p
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4.3 Équivalences avec l’implication
Disjonction
On peut combiner les résultats de 28 et 29

38 ¬p ∨ q ⊢i p → q

hyp
¬p ∨ q ⊢ ¬p ∨ q

hyp
¬p ∨ q,¬p, p ⊢ p

hyp
¬p ∨ q,¬p, p ⊢ ¬p

¬e¬p ∨ q,¬p, p ⊢ ⊥
⊥e¬p ∨ q,¬p, p ⊢ q
→i¬p ∨ q,¬p ⊢ p → q

hyp
¬p ∨ q, q, p ⊢ q

→i¬p ∨ q, q ⊢ p → q
∨e¬p ∨ q ⊢ p → q

39 p → q ⊢ ¬p ∨ q avec (raa)

On note Γ = p → q,¬(¬p ∨ q)
hyp

Γ, p ⊢ p
hyp

Γ, p ⊢ p → q
→eΓ, p ⊢ q

∨iΓ, p ⊢ ¬p ∨ q
hyp

Γ, p ⊢ ¬(¬p ∨ q)
¬eΓ, p ⊢ ⊥

¬iΓ ⊢ ¬p
∨iΓ ⊢ ¬p ∨ q

hyp
Γ ⊢ ¬(¬p ∨ q)

¬e
p → q,¬(¬p ∨ q) ⊢ ⊥

raa
p → q ⊢ ¬p ∨ q

40 p → q ⊢ ¬p ∨ q avec (te)

te
p → q ⊢ p ∨ ¬p

hyp
p → q, p ⊢ p → q

hyp
p → q, p ⊢ p

→e
p → q, p ⊢ q

∨i
p → q, p ⊢ ¬p ∨ q

hyp
p → q,¬p ⊢ ¬p

∨i
p → q,¬p ⊢ ¬p ∨ q

∨e
p → q ⊢ ¬p ∨ q

Conjonction

41 ¬(p ∧ ¬q) ⊢ p → q avec (raa)
hyp

¬(p ∧ ¬q), p,¬q ⊢ p
hyp

¬(p ∧ ¬q), p,¬q ⊢ ¬q
∧i

¬(p¬q), p,¬q ⊢ p ∧ ¬q
hyp

¬(p ∧ ¬q), p,¬q ⊢ ¬(p ∧ ¬q)
¬e

¬(p ∧ ¬q), p,¬q ⊢ ⊥
raa

¬(p ∧ ¬q), p ⊢ q
→i

¬(p ∧ ¬q) ⊢ p → q

42 ¬(p ∧ ¬q) ⊢ p → q avec (te)

On note φ = ¬(p ∧ ¬q).
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te
¬(p ∧ ¬q) ⊢ q ∨ ¬q

hyp
¬(p ∧ ¬q), q, p ⊢ q

→i
¬(p ∧ ¬q), q ⊢ p → q

hyp
φ,¬q,⊢ p

hyp
φ,¬q ⊢ ¬q

∧i
φ, q ⊢ p ∧ ¬q

hyp
φ,¬q ⊢ ¬(p ∧ ¬q)

¬e
¬(p ∧ ¬q),¬q ⊢ ⊥

⊥e
¬(p ∧ ¬q),¬q ⊢ p → q

∨e
¬(p ∧ ¬q) ⊢ p → q

43 p → q ⊢m ¬(p ∧ ¬q)
hyp

p → q, p ∧ ¬q ⊢ p ∧ ¬q
∧e

p → q, p ∧ ¬q ⊢ p
hyp

p → q, p ∧ ¬q ⊢ p → q
→e

p → q, p ∧ ¬q ⊢ p → q

hyp
p → q, p ∧ ¬q ⊢ p ∧ ¬q

∧e
p → q, p ∧ ¬q ⊢ ¬q

¬e
p → q, p ∧ ¬q ⊢ ⊥

¬i
p → q ⊢ ¬(p ∧ ¬q)

Modus Tollens

44 p → q,¬q ⊢m ¬p
hyp

p → q,¬q, p ⊢ p → q
hyp

p → q,¬q, p ⊢ p
→e

p → q,¬q, p ⊢ q
hyp

p → q,¬q, p ⊢ ¬q
¬e

p → q,¬q, p ⊢ ⊥
¬i

p → q,¬q ⊢ ¬p

On en déduit : p → q ⊢m ¬q → ¬p

45 ¬q → ¬p ⊢ p → q avec (raa)

hyp
¬q → ¬p, p,¬q ⊢ p

hyp
¬q → ¬p, p,¬q ⊢ ¬q → ¬p

hyp
¬q → ¬p, p,¬q ⊢ ¬q

→e¬q → ¬p, p,¬q ⊢ ¬p
¬e¬q → ¬p, p,¬q ⊢ ⊥

raa
¬q → ¬p, p ⊢ q

→i¬q → ¬p ⊢ p → q

46 ¬q → ¬p ⊢ p → q avec (te)

On note Γ = ¬q → ¬p, p.

te
Γ ⊢ q ∨ ¬q

hyp
Γ, q ⊢ q

hyp
Γ,¬q ⊢ ¬q

hyp
Γ,¬q ⊢ ¬q → ¬p

→eΓ,¬q ⊢ ¬p
hyp

Γ,¬q ⊢ p
¬eΓ,¬q ⊢ ⊥

⊥eΓ,¬q ⊢ q
∨e¬q → ¬p, p ⊢ q

→i¬q → ¬p ⊢ p → q
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4.4 Négation de l’implication
47 ¬(p → q) ⊢ p avec (raa)

hyp
¬(p → q),¬p, p,¬q ⊢ p

hyp
¬(p → q),¬p, p,¬q ⊢ ¬p

¬e
¬(p → q),¬p, p,¬q ⊢ ⊥

raa
¬(p → q),¬p, p ⊢ q

→i
¬(p → q),¬p ⊢ p → q

hyp
¬(p → q),¬p ⊢ ¬(p → q)

¬e
¬(p → q),¬p ⊢ ⊥

raa
¬(p → q) ⊢ p

48 ¬(p → q) ⊢ p avec (te)

On note Γ = ¬(p → q),¬p, p

te
¬(p → q) ⊢ p ∨ ¬p

hyp
¬(p → q), p ⊢ p

hyp
Γ ⊢ p

hyp
Γ ⊢ ¬p

¬e
¬(p → q),¬p, p ⊢ ⊥

⊥e
¬(p → q),¬p, p ⊢ q

→i
¬(p → q),¬p ⊢ p → q

hyp
¬(p → q),¬p ⊢ ¬(p → q)

¬e
¬(p → q),¬p ⊢ ⊥

⊥e
¬(p → q),¬p ⊢ p

∨e¬p → q ⊢ p

49 ¬(p → q) ⊢m ¬q
hyp

¬(p → q), q, p ⊢ q
→i

¬(p → q), q ⊢ p → q
hyp

¬(p → q), q ⊢ ¬(p → q)
¬e

¬(p → q), q ⊢ ⊥
¬i

¬(p → q) ⊢ ¬q

50 ¬(p → q) ⊢ p ∧ ¬q
Exercice 47 ou 48

¬(p → q) ⊢ p

Exercice 49
¬(p → q) ⊢ ¬q

∧i
¬(p → q) ⊢ p ∧ ¬q

51 p ∧ ¬q ⊢m ¬(p → q)
hyp

p ∧ ¬q, p → q ⊢ p ∧ ¬q
∧e

p ∧ ¬q, p → q ⊢ p
hyp

p ∧ ¬q, p → q ⊢ p → q
→e

p ∧ ¬q, p → q ⊢ q

hyp
p ∧ ¬q, p → q ⊢ p ∧ ¬q

∧e
p ∧ ¬q, p → q ⊢ ¬q

¬e
p ∧ ¬q, p → q ⊢ ⊥

¬i
p ∧ ¬q ⊢ ¬(p → q)
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52 ¬(p → q) ⊢i q → p

hyp
¬(p → q), q, p ⊢ q

→i
¬(p → q), q ⊢ p → q

hyp
¬(p → q), q ⊢ ¬(p → q)

¬e
¬(p → q), q ⊢ ⊥

⊥e
¬(p → q), q ⊢ p

→i
¬(p → q) ⊢ q → p
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4.5 Implication avec disjonction
Distributivité de la disjonction à droite

53 p → (q ∨ r) ⊢ (p → q) ∨ (p → r) avec (raa)

Étape 1 On commence un résultat plus faible ; on note φ = p → (q ∨ r).

hyp
φ, p ⊢ p

hyp
φ, p ⊢ p → (q ∨ r)

→e
φ, p ⊢ q ∨ r

hyp
φ, p, q ⊢ q

→i
φ, q ⊢ p → q

∨i
φ, q ⊢ (p → q) ∨ (p → r)

mon
φ, p, q ⊢ (p → q) ∨ (p → r)

hyp
φ, p, r ⊢ r

→i
φ, r ⊢ p → q

∨i
φ, r ⊢ (p → q) ∨ (p → r)

mon
φ, p, r ⊢ (p → q) ∨ (p → r)

∨e
p → (q ∨ r), p ⊢ (p → q) ∨ (p → r)

Étape 2 On finit en introduisant la négation du résultat souhaité au contexte ci-dessus.
On note Γ = p → (q ∨ r),¬

(
(p → q) ∨ (p → r)

)
.

Étape 1
p → (q ∨ r), p ⊢ (p → q) ∨ (p → r)

mon
Γ, p ⊢ (p → q) ∨ (p → r)

hyp
Γ, p ⊢ ¬

(
(p → q) ∨ (p → r)

)
¬eΓ, p ⊢ ⊥

mon
Γ, p,¬q ⊢ ⊥

raa
Γ, p ⊢ q

→iΓ ⊢ p → q
∨iΓ ⊢ (p → q) ∨ (p → r)

hyp
Γ ⊢ ¬

(
(p → q) ∨ (p → r)

)
¬eΓ ⊢ ⊥ raa

p → (q ∨ r) ⊢ (p → q) ∨ (p → r)

54 p → (q ∨ r) ⊢ (p → q) ∨ (p → r) avec (te)

On utilise l’étape 1 ci-dessus.

te
φ ⊢ p ∨ ¬p

Étape 1
φ, p ⊢ (p → q) ∨ (p → r)

hyp
φ,¬p, p ⊢ p

hyp
φ,¬p, p ⊢ ¬p

¬e
φ,¬p, p ⊢ ⊥

⊥e
φ,¬p, p ⊢ q

→i
φ,¬p ⊢ p → q

∨i
φ,¬p ⊢ (p → q) ∨ (p → r)

∨e
p → (q ∨ r) ⊢ (p → q) ∨ (p → r)

55 (p → q) ∨ (p → r) ⊢m p → (q ∨ r)

On note φ = (p → q) ∨ (p → r).

hyp
φ, p ⊢ (p → q) ∨ (p → r)

hyp
φ, p, p → q ⊢ p → q

hyp
φ, p, p → q ⊢ p

→e
φ, p, p → q ⊢ q

∨i
φ, p, p → q ⊢ q ∨ r

Idem
φ, p, p → r ⊢ q ∨ r

∨e
φ, p ⊢ q ∨ r

→i(p → q) ∨ (p → r) ⊢ p → (q ∨ r)
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Distributivité de la disjonction à gauche
On remarquera la transformation en conjonction d’implications.

56 (p ∨ q) → r ⊢m (p → r) ∧ (q → r)

On note φ = (p ∨ q) → r.

hyp
φ, p ⊢ (p ∨ q) → r

hyp
φ, p ⊢ p

∨i
φ, p ⊢ p ∨ q

→e
φ, p ⊢ r

→i
φ ⊢ p → r

hyp
φ, q ⊢ (p ∨ q) → r

hyp
φ, q ⊢ q

∨i
φ, q ⊢ p ∨ q

→e
φ, q ⊢ r

→i
φ ⊢ q → r

∧i(p ∨ q) → r ⊢ (p → r) ∧ (q → r)

57 p → r, q → r ⊢m (p ∨ q) → r

On pose Γ = p → r, q → r, p ∨ q.

hyp
Γ ⊢ p ∨ q

hyp
Γ, p ⊢ p → r

hyp
Γ, p ⊢ p

→eΓ, p ⊢ r

hyp
Γ, q ⊢ q → r

hyp
Γ, q ⊢ q

→eΓ, q ⊢ r
∨e

p → r, q → r, p ∨ q ⊢ r
→i

p → r, q → r ⊢ (p ∨ q) → r
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4.6 Implication avec conjonction
Distributivité de la conjonction à droite

58 p → (q ∧ r) ⊢m (p → q) ∧ (p → r)

hyp
p → (q ∧ r), p ⊢ p → (q ∧ r)

hyp
p → (q ∧ r), p ⊢ p

→e
p → (q ∧ r), p ⊢ q ∧ r

∧e
p → (q ∧ r), p ⊢ q

→i
p → (q ∧ r) ⊢ p → q

hyp
p → (q ∧ r), p ⊢ p → (q ∧ r)

hyp
p → (q ∧ r), p ⊢ p

→e
p → (q ∧ r), p ⊢ q ∧ r

∧e
p → (q ∧ r), p ⊢ r

→i
p → (q ∧ r) ⊢ p → r

∧i
p → (q ∧ r) ⊢ (p → q) ∧ (p → r)

59 (p → q) ∧ (p → r) ⊢m p → (q ∧ r)

On note Γ = (p → q) ∧ (p → r).

hyp
Γ, p ⊢ p → q

hyp
Γ, p ⊢ p

→e(p → q) ∧ (p → r), p ⊢ q

hyp
Γ, p ⊢ p → r

hyp
Γ, p ⊢ p

→e(p → q) ∧ (p → r), p ⊢ r
∧i(p → q) ∧ (p → r), p ⊢ q ∧ r

→i
p → q, p → r ⊢ p → (q ∧ r)

Distributivité de la conjonction à gauche
On remarquera la transformation en disjonction d’implications.

60 (p ∧ q) → r ⊢ (p → r) ∨ (q → r) avec (raa)

Étape 1 On commence un résultat plus faible où on ajoute p dans le contexte.

hyp
(p ∧ q) → r, p, q ⊢ (p ∧ q) → r

hyp
(p ∧ q) → r, p, q ⊢ p

hyp
(p ∧ q) → r, p, q ⊢ q

∧i(p ∧ q) → r, p, q ⊢ p ∧ q
→e(p ∧ q) → r, p, q ⊢ r

→i(p ∧ q) → r, p ⊢ q → r
∨i(p ∧ q) → r, p ⊢ (p → r) ∨ (q → r)

Étape 2 On ajoute ¬
(
(p → r) ∨ (q → r)

)
dans le contexte.

On note Γ = (p ∧ q) → r,¬
(
(p → r) ∨ (q → r)

)
.

Étape 1
(p ∧ q) → r, p ⊢ (p → r) ∨ (q → r)

mon
Γ, p ⊢ (p → r) ∨ (q → r)

hyp
Γ, p ⊢ ¬

(
(p → r) ∨ (q → r)

)
¬eΓ, p ⊢ ⊥

mon
Γ, p,¬r ⊢ ⊥

raa
Γ, p ⊢ r

→iΓ ⊢ p → r
∨iΓ ⊢ (p → r) ∨ (q → r)

hyp
Γ ⊢ ¬

(
(p → r) ∨ (q → r)

)
¬e

(p ∧ q) → r,¬
(
(p → r) ∨ (q → r)

)
⊢ ⊥

raa
(p ∧ q) → r ⊢ (p → r) ∨ (q → r)
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61 (p ∧ q) → r ⊢ (p → r) ∨ (q → r) avec (te)

On utilise l’étape 1 ci-dessus

te
(p ∧ q) → r ⊢ p ∨ ¬p

Étape 1
(p ∧ q) → r, p ⊢ (p → r) ∨ (q → r)

hyp
(p ∧ q) → r,¬p, p ⊢ p

hyp
(p ∧ q) → r,¬p, p ⊢ ¬p

¬e(p ∧ q) → r,¬p, p ⊢ ⊥
⊥e(p ∧ q) → r,¬p, p ⊢ r
→i(p ∧ q) → r,¬p ⊢ p → r

∨i(p ∧ q) → r,¬p ⊢ (p → r) ∨ (q → r)
∨e(p ∧ q) → r ⊢ (p → r) ∨ (q → r)

62 (p → r) ∨ (q → r) ⊢m (p ∧ q) → r

On note Γ = (p → r) ∨ (q → r), p ∧ q.

hyp
Γ ⊢ (p → r) ∨ (q → r)

hyp
Γ, p → r ⊢ p → r

hyp
Γ, p → r ⊢ p ∧ q

∧eΓ, p → r ⊢ p
→eΓ, p → r ⊢ r

Idem
Γ, q → r ⊢ r

∨e(p → r) ∨ (q → r), p ∧ q ⊢ r
→i(p → r) ∨ (q → r) ⊢ (p ∧ q) → r

Une autre formule équivalente pour la conjonction à gauche
Les deux formules ci-dessus sont aussi équivalentes à p → (q → r).

63 (p ∧ q) → r ⊢m p → (q → r)

hyp
(p ∧ q) → r, p, q ⊢ (p ∧ q) → r

hyp
(p ∧ q) → r, p, q ⊢ p

hyp
(p ∧ q) → r, p, q ⊢ q

∧i(p ∧ q) → r, p, q ⊢ p ∧ q
→e(p ∧ q) → r, p, q ⊢ r

→i(p ∧ q) → r, p ⊢ q → r
→i(p ∧ q) → r ⊢ p → (q → r)

64 p → (q → r) ⊢m (p ∧ q) → r

hyp
p → (q → r), p ∧ q ⊢ p → (q → r)

hyp
p → (q → r), p ∧ q ⊢ p ∧ q

∧e
p → (q → r), p ∧ q ⊢ p

→e
p → (q → r), p ∧ q ⊢ q → r

hyp
p → (q → r), p ∧ q ⊢ p ∧ q

∧e
p → (q → r), p ∧ q ⊢ q

→e
p → (q → r), p ∧ q ⊢ r

→i
p → (q → r) ⊢ (p ∧ q) → r

65 (p → r) ∨ (q → r) ⊢m p → (q → r)

On note Γ = (p → r) ∨ (q → r), p, q.

hyp
Γ ⊢ (p → r) ∨ (q → r)

hyp
Γ, p → r ⊢ p → r

hyp
Γ, p → r ⊢ p

→eΓ, p → r ⊢ r

Idem
Γ, q → r ⊢ r

∨e(p → r) ∨ (q → r), p, q ⊢ r
→i(p → r) ∨ (q → r), p ⊢ q → r

→i(p → r) ∨ (q → r) ⊢ p → (q → r)
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66 p → (q → r) ⊢ (p → q) ∨ (p → r) avec (raa)

On note Γ = p → (q → r),¬
(
(p → q) ∨ (p → r)

)
.

hyp
Γ, p ⊢ p → (q → r)

hyp
Γ, p ⊢ p

→eΓ, p ⊢ q → r
∨iΓ, p ⊢ (p → r) ∨ (q → r)

hyp
Γ, p ⊢ ¬

(
(p → q) ∨ (p → r)

)
¬eΓ, p ⊢ ⊥

mon
Γ, p,¬r ⊢ ⊥

raa
Γ, p ⊢ r

→iΓ ⊢ p → r
∨iΓ ⊢ (p → r) ∨ (q → r)

hyp
Γ ⊢ ¬

(
(p → q) ∨ (p → r)

)
¬e

p → (q → r),¬
(
(p → q) ∨ (p → r)

)
⊢ ⊥

raa
p → (q → r) ⊢ (p → q) ∨ (p → r)

67 p → (q → r) ⊢ (p → q) ∨ (p → r) avec (te)

On note φ = p → (q ∨ r)

te
p → (q → r) ⊢ p ∨ ¬p

hyp
φ, p ⊢ p → (q → r)

hyp
φ, p ⊢ p

→e
p → (q → r), p ⊢ q → r

∨i
p → (q → r), p ⊢ (p → r) ∨ (q → r)

hyp
φ,¬p, p ⊢ p

hyp
φ,¬p, p ⊢ ¬p

¬e
φ,¬p, p ⊢ ⊥

⊥e
φ,¬p, p ⊢ r

→i
p → (q → r),¬p ⊢ p → r

∨i
p → (q → r),¬p ⊢ (p → q) ∨ (p → r)

∨e
p → (q → r) ⊢ (p → q) ∨ (p → r)
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4.7 Deux implications
68 p → q, q → r ⊢m p → r

hyp
p → q, q → r, p ⊢ p

hyp
p → q, q → r, p ⊢ p → q

→e
p → q, q → r, p ⊢ q

hyp
p → q, q → r, p ⊢ q → r

→e
p → q, q → r, p ⊢ r

→i
p → q, q → r ⊢ p → q

69 p → (q ∨ r), q → s, r → s ⊢m p → s

On note Γ = p → (q ∨ r), q → s, r → s, p.
hyp

Γ ⊢ p → (q ∨ r)
hyp

Γ ⊢ p
→eΓ ⊢ q ∨ r

hyp
Γ, q ⊢ q → s

hyp
Γ, q ⊢ q

→eΓ, q ⊢ s

hyp
Γ, r ⊢ r → s

hyp
Γ, r ⊢ r

→eΓ, r ⊢ s
∨e

p → (q → r), q → s, r → s, p ⊢ s
→i

p → (q → r), q → s, r → s ⊢ p → s

70 p → q, r → s ⊢m (p ∧ r) → (q ∧ s)

On note Γ = p → q, r → s, p ∧ r.

hyp
Γ ⊢ p → q

hyp
Γ ⊢ p ∧ r

∧eΓ ⊢ p
→e

p → q, r → s, p ∧ r ⊢ q

hyp
Γ ⊢ r → s

hyp
Γ ⊢ p ∧ r

∧eΓ ⊢ r →e
p → q, r → s, p ∧ r ⊢ s

∧i
p → q, r → s, p ∧ r ⊢ q ∧ s

→i
p → q, r → s ⊢ (p ∧ r) → (q ∧ s)

71 p → q, r → s ⊢m (p ∨ r) → (q ∨ s)

On note Γ = p → q, r → s, p ∨ r.

hyp
p → q, r → s, p ∨ r ⊢ p ∨ r

hyp
Γ, p ⊢ p → q

hyp
Γ, p ⊢ p

→e
p → q, r → s, p ∨ r, p ⊢ q

∨i
p → q, r → s, p ∨ r, p ⊢ q ∨ s

hyp
Γ, r ⊢ r → s

hyp
Γ, r ⊢ r

→e
p → q, r → s, p ∨ r, r ⊢ s

∨i
p → q, r → s, p ∨ r, r ⊢ q ∨ s

∨e
p → q, r → s, p ∨ r ⊢ q ∨ s

→i
p → q, r → s ⊢ (p ∨ r) → (q ∨ s)

72 p → q, p → ¬q ⊢m ¬p

hyp
p → q, p → ¬q, p ⊢ p → q

hyp
p → q, p → ¬q, p ⊢ p

→e
p → q, p → ¬q, p ⊢ q

hyp
p → q, p → ¬q, p ⊢ p → ¬q

hyp
p → q, p → ¬q, p ⊢ p

→e
p → q, p → ¬q, p ⊢ ¬q

¬e
p → q, p → ¬q, p ⊢ ⊥

¬i
p → q, p → ¬q ⊢ ¬p
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73 p → q,¬p → r ⊢ ¬r → q avec (raa)

On note Γ = p → q,¬p → r,¬r,¬q.
hyp

Γ, p ⊢ p → q
hyp

Γ, p ⊢ p
→eΓ, p ⊢ q

hyp
Γ, p ⊢ ¬q

¬eΓ, p ⊢ ⊥
¬iΓ ⊢ ¬p

hyp
Γ ⊢ ¬p → r

→e
p → q,¬p → r,¬r,¬q ⊢ r

hyp
p → q,¬p → r,¬r,¬q ⊢ ¬r

¬e
p → q,¬p → r,¬r,¬q ⊢ ⊥

raa
p → q,¬p → r,¬r ⊢ q

→i
p → q,¬p → r ⊢ ¬r → q

74 p → q,¬p → r ⊢ ¬r → q avec (te)

On note Γ = p → q,¬p → r,¬r.

te
Γ ⊢ p ∨ ¬p

hyp
Γ, p ⊢ p

hyp
Γ, p ⊢ p → q

→eΓ, p ⊢ q

hyp
Γ,¬p ⊢ ¬p

hyp
Γ,¬p ⊢ ¬p → r

→eΓ,¬p ⊢ r
hyp

Γ,¬p ⊢ ¬r
¬eΓ,¬p ⊢ ⊥

⊥eΓ,¬p ⊢ q
∨e

p → q,¬p → r,¬r ⊢ q
→i

p → q,¬p → r ⊢ ¬r → q

75 p → (q ∨ r), q → s, r → s ⊢m p → s

On note Γ = p → (q ∨ r), q → s, r → s, p.
hyp

Γ ⊢ p → (q ∨ r)
hyp

Γ ⊢ p
→eΓ ⊢ q ∨ r

hyp
Γ, q ⊢ q → s

hyp
Γ, q ⊢ q

→eΓ, q ⊢ s

hyp
Γ, r ⊢ r → s

hyp
Γ, r ⊢ r

→eΓ, r ⊢ s
∨e

p → (q → r), q → s, r → s, p ⊢ s
→i

p → (q → r), q → s, r → s ⊢ p → s
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4.8 Compositions d’implications
Voir (p ∧ q) → r ⊢m p → (q → r) et sa réciproque aux exercices 63 et suivant.

76 p → (q → r) ⊢m q → (p → r)
hyp

p → (q → r), p, q ⊢ p → (q → r)
hyp

p → (q → r), p, q ⊢ p
→e

p → (q → r), p, q ⊢ q → r
hyp

p → (q → r), p, q ⊢ q
→e

p → (q → r), p, q ⊢ r
→i

p → (q → r), q ⊢ p → r
→i

p → (q → r) ⊢ q → (p → r)

77 p ⊢m (p → q) → q

hyp
p, p → q ⊢ p → q

hyp
p, p → q ⊢ p

→e
p, p → q ⊢ q

→i
p ⊢ (p → q) → q

78 (p → q) → p ⊢ p avec (raa)
hyp

φ,¬p, p,¬q ⊢ p
hyp

φ,¬p, p,¬q ⊢ ¬p
¬e

φ,¬p, p,¬q ⊢ ⊥
raa

φ,¬p, p ⊢ q
→i

φ,¬p ⊢ p → q
hyp

φ,¬p ⊢ (p → q) → p
→e

φ,¬p ⊢ p
hyp

φ,¬p ⊢ ¬p
¬e(p → q) → p,¬p ⊢ ⊥

raa
(p → q) → p ⊢ p

79 (p → q) → p ⊢ p avec (te)

te
φ ⊢ p ∨ ¬p

hyp
φ, p ⊢ p

hyp
φ,¬p, p ⊢ p

hyp
φ,¬p, p ⊢ ¬p

¬e
φ,¬p, p ⊢ ⊥

⊥e
φ,¬p, p ⊢ q

→i
φ,¬p ⊢ p → q

hyp
φ,¬p ⊢ (p → q) → p

→e
φ,¬p ⊢ p

∨e(p → q) → p ⊢ p

80 p → (q → r), p,¬r ⊢m ¬q

On note Γ = p → (q → r), p,¬r, q.

hyp
Γ ⊢ p → (q → r)

hyp
Γ ⊢ p

→eΓ ⊢ q → r
hyp

p → (q → r), p,¬r, q ⊢ q
→e

p → (q → r), p,¬r, q ⊢ r
hyp

p → (q → r), p,¬r, q ⊢ ¬r
¬e

p → (q → r), p,¬r, q ⊢ ⊥
¬i

p → (q → r), p,¬r ⊢ ¬q
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81 p → (q → r), p → q, p ⊢m r

On note Γ = p → (q → r), p → q, p.

hyp
Γ ⊢ p → (q → r)

hyp
Γ ⊢ p

→e
p → (q → r), p → q, p ⊢ q → r

hyp
Γ ⊢ p → q

hyp
Γ ⊢ p

→e
p → (q → r), p → q, p ⊢ q

→e
p → (q → r), p → q, p ⊢ r

82 p → (p → q), p ⊢m q

hyp
p → (p → q), p ⊢ p → (p → q)

hyp
p → (p → q), p ⊢ p

→e
p → (p → q), p ⊢ p → q

hyp
p → (p → q), p ⊢ p

→e
p → (p → q), p ⊢ q

83 p → (p → q), (p → q) → p ⊢m q

Étape 1 On commence par prouver p → (p → q), (p → q) → p ⊢m p.
On note Γ = p → (p → q), (p → q) → p

hyp
p → (p → q), (p → q) → p ⊢ (p → q) → p

hyp
Γ, p ⊢ p → (p → q)

hyp
Γ, p ⊢ p

→eΓ, p ⊢ p → q
hyp

Γ, p ⊢ p
→e

p → (p → q), (p → q) → p, p ⊢ q
→i

p → (p → q), (p → q) → p ⊢ p → q
→e

p → (p → q), (p → q) → p ⊢ p

On utilise l’étape 1, 2 fois

hyp
Γ ⊢ p → (p → q)

Étape 1
Γ ⊢ p

→e
p → (p → q), (p → q) → p ⊢ p → q

Étape 1
p → (p → q), (p → q) → p ⊢ p

→e
p → (p → q), (p → q) → p ⊢ q
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4.9 Transformations
84 p → q ⊢m p → (p ∧ q)

hyp
p → q, p ⊢ p

hyp
p → q, p ⊢ p → q

hyp
p → q, p ⊢ p

→e
p → q, p ⊢ q

∧i
p → q, p ⊢ p ∧ q

→i
p → q ⊢ p → (p ∧ q)

85 p → r ⊢m (p ∧ q) → r

hyp
p → r, p ∧ q ⊢ p → r

hyp
p → r, p ∧ q ⊢ p ∧ q

∧e
p → r, q → r, p ∧ q ⊢ p

→e
p → r, p ∧ q ⊢ r

→i
p → r ⊢ (p ∧ q) → r

86 p → q ⊢m (p ∧ r) → (q ∧ r)

hyp
p → q, p ∧ r ⊢ p → q

hyp
p → q, p ∧ r ⊢ p ∧ r

∧e
p → q, p ∧ r ⊢ p

→e
p → q, p ∧ r ⊢ q

hyp
p → q, p ∧ r ⊢ p ∧ r

∧e
p → q, p ∧ r ⊢ r

∧i
p → q, p ∧ r ⊢ q ∧ r

→i
p → q ⊢ (p ∧ r) → (q ∧ r)

87 p → q ⊢m (p ∨ r) → (q ∨ r)

hyp
p → q, p ∨ r ⊢ p ∨ r

hyp
p → q, p ∨ r, p ⊢ p → q

hyp
p → q, p ∨ r, p ⊢ p

→e
p → q, p ∨ r, p ⊢ q

∨i
p → q, p ∨ r, p ⊢ q ∨ r

hyp
p → q, p ∨ r, p ⊢ r

∨i
p → q, p ∨ r, q ⊢ q ∨ r

∨e
p → q, p ∨ r ⊢ q ∨ r

→i
p → q ⊢ (p ∨ r) → (q ∨ r)

88 q → r ⊢m (p → q) → (p → r)

hyp
q → r, p → q, p ⊢ q → r

hyp
q → r, p → q, p ⊢ p → q

hyp
q → r, p → q, p ⊢ p

→e
q → r, p → q, p ⊢ q

→e
q → r, p → q, p ⊢ r

→i
q → r, p → q, p ⊢ p → r

→i
q → r ⊢ (p → q) → (p → r)

89 (p ∧ r) → (q ∧ r), r ⊢m p → q

hyp
(p ∧ r) → (q ∧ r), r, p ⊢ (p ∧ r) → (q ∧ r)

hyp
(p ∧ r) → (q ∧ r), r, p ⊢ p

hyp
(p ∧ r) → (q ∧ r), r, p ⊢ r

∧i(p ∧ r) → (q ∧ r), r, p ⊢ p ∧ r
→e(p ∧ r) → (q ∧ r), r, p ⊢ q ∧ r

∧e(p ∧ r) → (q ∧ r), r, p ⊢ q
→i(p ∧ r) → (q ∧ r), r ⊢ p → q
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90 (p ∨ r) → (q ∨ r),¬r ⊢i p → q

On note Γ = (p ∨ r) → (q ∨ r),¬r, p

hyp
Γ ⊢ (p ∨ r) → (q ∨ r)

hyp
Γ ⊢ p

∨iΓ ⊢ p ∨ r
→eΓ ⊢ q ∨ r

hyp
Γ, q ⊢ q

hyp
Γ, r ⊢ r

hyp
Γ, r ⊢ ¬r

¬eΓ, r ⊢ ⊥
⊥eΓ, r ⊢ q
∨e(p ∨ r) → (q ∨ r),¬r, p ⊢ q

→i(p ∨ r) → (q ∨ r),¬r ⊢ p → q
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