
Épreuve orale d’informatique

Exercices de type B
Exercice 3 HORNSAT (type B)

Cet énoncé est accompagné d’un ou plusieurs codes compagnons en OCaml fournissant certaines des
fonctions mentionnées dans l’énoncé : ils sont à compléter en y implémentant les fonctions demandées.
On attend un style de programmation fonctionnel. L’utilisation des fonctions du module List est
autorisée ; celle des fonctions du module Option est interdite.

Une formule du calcul propositionnel est une formule de Horn s’il s’agit d’une formule sous forme
normale conjonctive (FNC) dans laquelle chaque clause (éventuellement vide, auquel cas la clause en
question est la disjonction d’un ensemble vide de littéraux et est donc sémantiquement équivalente à
⊥) contient au plus un littéral positif. Dans la suite, on considère qu’une clause d’une telle formule
contient au plus une occurrence de chaque variable (en particulier, les clauses sont sans doublons).

1. Les formules suivantes sont-elles des formules de Horn ?

a) F1 = (¬x0∨¬x1∨¬x3)∧ (x0∨¬x1)∧ (¬x2∨x0∨¬x3)∧ (¬x0∨¬x3∨x2)∧x2∧ (¬x3∨¬x2).
b) F2 = (x0 ∨ ¬x1) ∧ (¬x2 ∨ ¬x3 ∨ ¬x0) ∧ ¬x1 ∧ (x1 ∨ ¬x1 ∨ x0) ∧ (¬x0 ∨ x2).

c) F3 = (¬x1∨¬x4)∧x1∧ (¬x0∨¬x3∨¬x4)∧ (x0∨¬x1)∧ (x2∨¬x3∨¬x4)∧ (x4∨¬x0∨¬x1).
On utilise le type suivant pour manipuler les formules de Horn : une formule de Horn est une liste de
clauses de Horn ; une clause étant la donnée d’un int option valant None si la clause ne contient pas
de littéral positif et Some i si xi en est l’unique littéral positif et d’une liste d’entiers correspondants
aux numéros des variables intervenant dans les littéraux négatifs.

type clause_horn = int option * int list
type formule_horn = clause_horn list

2. Écrire une fonction avoir_clause_vide : formule_horn -> bool qui renvoie true si et seule-
ment si la formule en entrée contient une clause vide (donc ne contenant ni littéral positif, ni
aucun littéral négatif).

On appelle clause unitaire une clause réduite à un littéral positif. Par ailleurs, propager une variable
xi dans une formule F sous FNC consiste à modifier F comme suit :

• Toute clause de F qui ne fait pas intervenir la variable xi est conservée telle quelle.

• Toute clause de F qui fait intervenir le littéral xi est supprimée entièrement.

• On supprime le littéral ¬xi de toutes les clauses de F qui font intervenir ce littéral.

On souligne que supprimer ¬x d’une clause C qui ne fait intervenir que ce littéral ne revient pas à
supprimer la clause C. On s’intéresse à l’algorithme A suivant dont on admet (pour le moment) qu’il
permet de déterminer si une formule de Horn F est satisfiable :

tant que il y a une clause unitaire xi dans F
F ← propager xi dans F

si F contient une clause vide alors
renvoyer faux

sinon
renvoyer vrai

3. À l’aide de cet algorithme déterminer si les formules de Horn de la question 1 sont satisfiables.
On utilisera ces formules pour tester les fonctions implémentées aux questions suivantes.

6 28 octobre 2024



Épreuve orale d’informatique

4. Écrire une fonction trouver_clause_unitaire : formule_horn -> int option renvoyant None
si la formule en entrée n’a pas de clause unitaire et Some i où xi est l’une des clauses unitaires
sinon.

5. Justifier que propager une variable dans une formule de Horn donne une formule de Horn. Écrire
une fonction propager : formule_horn -> int -> formule_horn qui prend en entrée une
formule de Horn F et un entier i et calcule la formule résultat de la propagation de xi dans F .

6. Déduire des questions précédentes une fonction etre_satisfiable : formule_horn -> bool
renvoyant true si et seulement si la formule de Horn en entrée est satisfiable.

7. Quelle est la complexité de votre algorithme en fonction de la taille de la formule en entrée ?
Que peut-on dire des problèmes de décision SAT et HORN-SAT (dont la définition est la même que
celle de SAT à ceci près que les formules considérées sont supposées être des formules de Horn) ?

8. On s’intéresse à présent à la correction de l’algorithme A.

a) Si F est une clause de Horn sans clause unitaire ni clause vide, donner une valuation simple
qui satisfait F .

b) On admet que si F est une formule de Horn faisant intervenir une clause unitaire xi et F �

est le résultat de la propagation de xi dans F , alors que F est satisfiable si et seulement si
F � est satisfiable. En déduire la correction de l’algorithme A.

9. Expliquer comment on pourrait modifier les fonctions précédentes afin de déterminer une valua-
tion satisfaisant une formule de Horn dans le cas où elle existe plutôt que de juste dire si elle est
satisfiable ou non. On ne demande pas d’implémentation.

Proposition de corrigé

1. F1 et F3 sont des formules de Horn mais pas F2, ce qui est implicitement suggéré par le code.

2. Avec notre modélisation, la clause vide est (None, []) d’où :

let avoir_clause_vide (f:formule_horn) :bool =
List.mem (None, []) f

3. La formule F1 est satisfiable d’après cet algorithme mais pas F3.

Techniquement on peut arrêter les propagations dès qu’on produit une clause vide.

4. On propose :

let rec trouver_clause_unitaire (f:formule_horn) :int option = match f with
|[] -> None
|(Some v,l)::q -> if l = [] then Some v else trouver_clause_unitaire q
|_::q -> trouver_clause_unitaire q

5. La fonction auxiliaire enlever_neg supprime si elle existe la seule occurrence d’un entier dans
une liste d’entiers (on utilise ici l’hypothèse selon laquelle il n’y a pas de littéral en doublon dans
nos clauses de Horn) puis on applique le principe décrit par l’énoncé.

7 28 octobre 2024


