
DS5
Durée : 4 heures

L’utilisation de la calculatrice n’est pas autorisée pour cette épreuve.

Ce sujet est composé de 5 parties indépendantes.

1 Quelques preuves de déduction

Construire, à l’aide du système de déduction naturelle, les arbres de dérivation correspondant aux séquents
suivants :

1. ¬(φ ∨ ψ) ⊢ ¬φ ∧ ¬ψ

2. ¬φ ∨ ψ ⊢ φ⇒ ψ

3. φ ⊢ ¬¬φ

4. ∃xφ ⊢ ¬∀x¬φ

2 Arbres de décision (la programmation sera à effectuer en C)

On considère le jeu de données suivant :

A B C V
0 0 0 0
0 1 0 1
1 0 0 1
1 1 0 0
1 1 1 0

On souhaite construire un arbre de décision pour classifier la variable V en fonction des valeurs de A,B et
C.

On note V0 (resp. V1) les ensembles de lignes pour lesquels la valeur de V est 0 (resp 1).

On rappelle que l’entropie est définie par :

H(V) = −|V0|
|V |

ln

(
|V0|
|V |

)
− |V1|

|V |
ln

(
|V1|
|V |

)
et que le gain de V par rapport à un critère quelconque D est défini par :

G(V |D) = H(V)−
(
|D0|
|V |

H(V |D = 0) +
|D1|
|V |

H(V |D = 1)

)
1. Donner les formules numériques (sans les calculer) pour H(V), H(V |A = 0), H(V |A = 1) et H(V |C =

1).

2. On admettra ici que H(V) = 0, 673 et que G(V |A) = 0, 0142. Déterminer G(V |B) et G(V |C) (on
admettra que ln(2) = 0, 693 et on rappelle que pour diviser par 5 il suffit de multiplier par 2 et diviser
par 10).

3. En déduire un arbre de décision qui serait obtenu en appliquant l’algorithme ID3 à ce jeu de données.

L’objectif maintenant est de mettre en oeuvre une fonction de backtracking en C qui permettra de
calculer un arbre de décision de hauteur minimale qui classifie parfaitement un jeu de données.

1

On dit qu’un arbre de décision classifie parfaitement un jeu de données si toutes les données aboutis-
sant dans une feuille ont la même valeur, un tel arbre n’existe pas pour tout jeu de données mais
on supposera dans le cas de notre algorithme qu’il en existe bien pour le jeu de données passé en
argument.

Pour faciliter le stockage des données, les attributs sont notés de 0 à k−2 quand il y a k−1 attributs
et la variable que l’on cherche à classifier est nommée k − 1. Le jeu de données est stocké dans un
tableau de booléens mettant bout à bout tous les points des données. Par exemple, le jeu de données
étudié ci-dessus est représenté par :

bool data[]={false,false,false,false,
false,true,false,true,
true,false,false,true,
true,true,false,false,
true,true,true,false};

Ainsi, un jeu de données à n points sera représenté par un tableau unidimensionnel de taille n× k.

Au fur et à mesure de l’exécution, pendant la construction de l’arbre, nous allons considérer seulement
des sous-ensembles de points de données, ou des sous ensembles de la liste des attributs. Pour ce faire,
nous utiliserons deux tableaux de booléens bool attr_actif[] de taille k et bool data_actif[] de
taille n.

4. Ecrire une fonction bool non_vide(bool data[], bool data_actif[], int n, int k) qui prend
en argument un ensemble de n données ayant k − 1 attributs, et qui renvoie false ssi aucun point
n’est actif et true sinon.

5. Ecrire une fonction bool tous_faux(bool data[], bool data_actif[], int n int k) qui prend
en argument un ensemble de n données ayant k − 1 attributs et qui renvoie true ssi tous les points
actifs ont pour valeur false pour la variable k − 1 que l’on cherche à classifier.

6. Ecrire une fonction bool *filtre(bool data[], bool data_actif[], int attr, bool valeur, int n, int k)
qui prend en argument un ensemble de n données ayant k − 1 attributs et qui crée une copie du
tableau data_actif en retirant (mettant à false) les points dont l’attribut attr n’a pas la valeur
valeur.

On suppose que l’on dispose d’une fontion tous_vrais analogue à la fonction tous_faux.

On utilise la structure suivante pour définir un arbre de décision :

struct arbre { int test; struct arbre* left; struct arbre* right;};

typedef struct arbre arbre_t;

Le champs test correspond au numéro de l’attribut considéré, le champ left correspond au sous-arbre
composé des éléments dont la valeur est négative (false) et le champ right correspond au sous-arbre
composé des éléments dont la valeur est positive. Les feuilles, sont représentées en utilisant une valeur

2

particulière pour test : on utilise −1 pour une classification positive et −2 pour une classification
négative. Les champs left et right ont des valeurs NULL pour une feuille. On vous fournit les
fonctions suivantes pour créer de nouvelles feuilles :

arbre_t* feuille_zero(){
arbre_t* a = malloc(sizeof(arbre_t));
a->test=-2;
a->left=NULL;
a->right=NULL;
return a;

}

arbre_t* feuille_un(){
arbre_t* a = malloc(sizeof(arbre_t));
a->test=-1;
a->left=NULL;
a->right=NULL;
return a;

}

7. Ecrire une fonction int depth(arbre_t *a) qui calcule la profondeur d’un arbre.

8. Ecrire une fonction void libere(arbre_t *a) qui libère l’espace alloué pour un arbre.

9. On est maintenant en mesure d’écrire notre fonction de backtracking, voici une propostion pour
laquelle vous devez compléter les cas de bases : indiquer ce qu’il faut mettre dans les lignes 5 et 8.

3

1 arbre_t* backtrack_ss(bool data[], bool data_actif[], bool attr_actif[], int n, int k){
2 if (non_vide(data,data_actif,n,k)){
3
4 if (tous_faux(data,data_actif, n,k)){
5
6 }
7 else if (tous_vrais(data,data_actif,n,k)){
8
9 }
10 else {int meilleur = MAX_INT;
11 arbre_t* left=NULL; arbre_t* right=NULL;
12 int meilleur_critere=-1;
13
14 for (int c=0;c<k-1;c++){
15 if (attr_actif[c]){
16 attr_actif[c]=false;
17
18 bool* dataplus = filtre(data,data_actif,c,true,n,k);
19 arbre_t* aplus = backtrack(data,dataplus,attr_actif,n,k);
20 free(dataplus);
21 int hplus= depth(aplus);
22
23 bool* datamoins = filtre(data,data_actif,c,false,n,k);
24 arbre_t* amoins = backtrack(data,datamoins,attr_actif,n,k);
25 free(datamoins);
26 int hmoins= depth(amoins);
27
28 if (1+max(hplus,hmoins)< meilleur){
29
30 left=amoins;
31 right=aplus;
32 meilleur_critere=c;
33 }
34 else { }
35 attr_actif[c]=true;
36 }
37 }

38 arbre_t* a = malloc(sizeof(arbre_t));
39 a->test=meilleur_critere;
40 a->left=left;
41 a->right=right;
42 return a;
43 }
44
45 }
46
47 else {return NULL;}
48 }

4

10. Il y a des fuites mémoire dans la solution proposée, corrigez ce problème. On pourra se contenter
d’indiquer les lignes où on ajoute quelque chose sans tout recopier et en s’appouyant sur la numéro-
tation du code.

11. La solution proposée n’est pas vraiment une solution de backtracking, expliquer pourquoi? Pro-
poser une stratégie d’élagage et écrire une solution finale dans laquelle on adopte une stratégie de
backtracking.

3 Caractérisation des programmes bien typés

Le langage OCAML utilise un système d’inférence pour vérifier que les expressions qu’on lui donne sont
bien typées. Nous allons, dans cette partie, manipuler ce système relatif à un petit fragment du langage
OCAML.

Nous allons établir une relation entre les expressions bien typées (e) et les types (τ) que nous noterons
⊢ e : τ . Par exemple, on aura ⊢ 12 : int ou encore ⊢ true : bool. Ce type de relation sera appelé un
jugement.

1. Donner le jugement que l’on obtiendrait avec l’expression List.map (fun x->x-1).

La présentation donnée ici est incomplète car si on considère une fonction fun x -> e de type
'a -> 'b alors le type de l’expression e sera bien 'b à condition que l’on ait bien pris l’argument x
de type 'a. Ainsi, on aura besoin d’avoir un contexte Γ qui contiendra les types des variables qui
sont susceptibles d’être présentes dans une des expressions.

Nous écrirons finalement Γ ⊢ e : τ . Par exemple :

{x : int, l : int list, f : int → int} ⊢ ((f x) :: l) : int list

Le système d’inférence utilise alors les axiomes suivants :

(a) Pour toutes les constantes du langage on dispose d’un axiome le reliant à son type. Par exemple,
Γ ⊢ 42 : int.

(b) Pour toute variable x contenue dans Γ, si son type associé par Γ est τ alors Γ ⊢ x : τ . Par
exemple : {x : int, l : int list} ⊢ x : int

(c)
Γ, x : σ ⊢ e : τ

Γ ⊢ (fun x→ e) : σ → τ
.

(d)
Γ ⊢ f : σ → τ Γ ⊢ e : σ

Γ ⊢ f e : τ .

Pour rendre vos preuves lisibles, vous indiquerez à côté de chaque étape de dérivation, la règle (a,b,c
ou d) utilisée.

2. On considère l’environnement Γ = {f : α → (β → γ), g : β → α} où α, β et γ sont des types
arbitraires. Montrer à l’aide du système décrit ci-dessus que : Γ, x : β ⊢ g x : α.

3. En déduire, dans le même environnement que : Γ ⊢ (fun x→ f (g x) x) : β → γ.

5

4. Considérons maintenant l’expression e = (fun h → h 1 2)(fun x → 3). Nous allons raisonner par
l’absurde pour montrer que cette expression n’est pas typable. Supposons donc que l’on a réussi à
dériver ⊢ e : α. On pourra utiliser le fait que le type int ne peut pas être décomposé comme un type
de la forme α→ β.

(a) Quelle est la seule règle qui a pu être utilisée en dernier pour obtenir ce jugement ? On remarque
alors qu’il est nécessaire de fournir des dérivations pour les jugements : ⊢ fun x → 3 : β et
⊢ fun h→ h 1 2 : β → α pour un certain type β.

(b) Considérons d’abord le jugement ⊢ (fun x→ 3) : β. De quelle forme doit alors être le type β?

(c) En procédant par conditions nécessaires sur le schéma de dérivation qui permettrait d’obtenir
⊢ (fun h→ h 1 2) : β → α, montrer que nécessairement, β = int→ (int→ α).

(d) Conclure.

Etendons notre système pour autoriser la manipulation des couples à l’aide de la règle, nommée
(couple), suivante :

Γ ⊢ e1 : τ1; Γ ⊢ e2 : τ2
Γ ⊢ (e1, e2) : τ1 ∗ τ2

.

Considérons les fonctions associées aux manipulations de couples fst : 'a* 'b -> 'b et
snd : 'a* 'b->'b

5. Rappeler ce que font ces deux fonctions. Parmi les expressions Ocaml suivantes, lesquelles sont
correctement typées ? Expliquer. Quand l’expression est syntaxiquement correcte, donner son type
et sa valeur.

(a) fst (3,4)

(b) fst 3

(c) snd (true, false)

(d) snd (true, [])

(e) fst (fst ([1;2],[3;4]))

6. Les fonctions fst et snd sont dites polymorphes. Rappeler le sens de ce terme et donner un (ou
plusieurs) exemple(s) concret(s) permettant de mettre en évidence cette propriété.

Ainsi, à partir de maintenant on pourra utiliser dans notre système d’inférence ces deux fonctions
comme des constantes dont les types respectifs sont les suivants :

fst : ∀α∀β, (α ∗ β) → α et snd : ∀α∀β, (α ∗ β) → β

Nous allons donc ajouter une règle d’inférence, nommée (poly), permettant de manipuler des types
contenant un quantificateur universel :

Γ ⊢ e : ∀ατ
Γ ⊢ e : τ [α→ σ]

.

où l’on peut choisir le type souhaité pour valeur de σ et où τ [α → σ] désigne la formule τ où on
substitue σ à chaque occurence de α.

7. Ecrire une preuve de ⊢ (fst (42, false)) : int.

6

4 Séquents valides en calcul des prédicats

Toutes les fonctions de ce problème seront implémentées en utilisant le langage Ocaml.

Dans cet exercice, on se place dans le contexte du calcul des prédicats. La première partie de l’énoncé
introduit une façon de manipuler des formules du premier ordre en Ocaml en toute généralité. La seconde
étudie la validité de séquents dans un langage du premier ordre fixé.

Partie 1 Formules bien formées

Pour manipuler des formules sur un langage du premier ordre, on introduit les types polymorphes suivants
pour représenter les symboles de fonction, les symboles de relation et les termes. On introduit également
un type spécifique pour les connecteurs binaires afin d’alléger l’écriture des fonctions à venir.

type 'f fonction = 'f*int
type 'r relation = 'r*int
type ('f,'v) terme = V of 'v | F of 'f fonction * ('f,'v) terme list
type op_binaire = Et | Ou | Implique | Equivalent

Les fonctions sont définies comme étant des couples : le premier élément est leur symbole, de type ’f, et le
second est leur arité. La chose est similaire pour les relations. Par exemple,

let ex = F(('f',1),[V(4)])

est de type (char,int) terme et représente le terme f(4). Autrement dit, les symboles de variables sont de
type int et les symboles de fonction sont de type char. Attention, dans l’expression ci-dessus, 4 est bien un
symbole dénotant une variable et pas une constante.

1. Déterminer le type du terme t défini ci-dessous et indiquer quel terme il représente :

let t = F(("plus",2), [V('x'); F(("cos",1),[V('y')])])

Le type définissant les termes ne peut pas vérifier que les arités des fonctions utilisées sont bien respectées,
il est donc possible d’introduire un terme mal formé. Pour éviter cela :

2. Ecrire une fonction récursive terme_bien_forme de signature (’a,’b) terme –> bool renvoyant true si
le terme en entrée respecte les arités des symboles de fonctions et false sinon.

On introduit à présent un type polymorphe pour manipuler des formules du premier ordre dont les variables
sont de type ’v, les symboles de fonction de type ’f et ceux de relation de type ’r :

type ('f,'r,'v) formule =
R of 'r relation * ('f,'v) terme list

|Forall of 'v * ('f,'r,'v) formule
|Exists of 'v * ('f,'r,'v) formule
|Non of ('f,'r,'v) formule
|Op_bin of op_binaire * ('f,'r,'v) formule * ('f,'r,'v) formule

3. Déclarer une variable f de type (string, string, char) formule représentant la formule

∀xx+ cos(y) = x+ cos(y)

4. Comme pour les termes, le type utilisé pour les formules n’interdit pas d’écrire une formule ne re-
spectant pas les arités de relations. Ecrire une fonction formule_bien_formee de signature (’a,’b,’c)

7

formule –> bool indiquant si la formule en entrée est bien formée vis-à-vis de toutes les arités.

Dans la suite, les formules manipulées seront systématiquement syntaxiquement correctes et il ne sera pas
nécessaire de vérifier que c’est le cas.

5. Ecrire une fonction apparait de signature ’a –> (’b,’a) terme –> bool telle que apparait x t indique si
la variable x est présente dans le terme t.

6. Ecrire une fonction est_libre de signature ’a –> (’b,’c’,a) formule –> bool telle que est_libre x f renvoie
true si et seulement si une des occurrences de x est libre dans f.

7. En déduire une fonction est_close de signature (’a,’b,’c) formule –> ’c list –> bool prenant en entrée
une formule f et une liste lv de variables qu’on supposera être la liste des variables intervenant dans
f et indiquant si la formule f est close. Justifier brièvement sa correction.

Partie 2 Sémantique et déduction sur un langage du premier ordre

Dans cette partie on considère le langage du premier ordre L dont la signature est la suivante :

F = ∅ et R = {= : 2, R : 2}

Sur ce langage, on se donne les trois formules closes suivantes :

- F1 = ∀xR(x, x)

- F2 = ∀x ∀y (R(x, y) ∧R(y, x) ⇒ x = y)

- F3 = ∀x ∀y ∀z (R(x, y) ∧R(y, z) ⇒ R(x, z))

On note F = F1 ∧ F2 ∧ F3.

8. La structure M dont le domaine est R et dans laquelle la relation R est interprétée par l’inégalité
stricte < (la relation = étant toujours interprétée comme étant l’égalité) est-elle un modèle pour F ?
Si oui, justifier, si non, exhiber un modèle pour F .

9. Indiquer pour chacun des séquents Γ ⊢ G sur L suivants s’il est valide ou non. Si Γ ⊢ G est valide, en
donner une preuve syntaxique en déduction naturelle. Si Γ ⊢ G n’est pas valide, donner une preuve
sémantique de ce fait en exhibant une structure qui contredit Γ |= G.

a) ⊢ ¬F1 ∧ ¬F2 ⇒ ¬(F1 ∨ F2). Dire sans justifier si l’implication réciproque est vraie.

b) F ⊢ ∀x ∀y (R(x, y) ∨R(y, x)).

c) F ⊢ ∀x ∃y R(x, y).

d) F ⊢ ∀x ∃y (R(x, y) ∧ ¬(x = y)).

e) F ⊢ ∃x ∀y R(y, x)

8

5 Clusturing en dimension 1

On souhaite mettre en place du soutien différencié au travail dans une classe de lycée. Pour ce faire, on
souhaite séparer les élèves en plusieurs groupes de niveaux homogènes pour leur proposer des exercices
adaptés à leur niveau. On dispose pour cela des notes des élèves et on veut les regrouper selon la similitude
de leurs notes.

Formellement, on dispose d’un ensemble E de N réels x0 ≤ x1 ≤ . . . ≤ xN−1. On cherche à déterminer
une partition de [[0, N − 1]] en K ≤ N sous-ensembles P = {C0, C1, . . . , CK−1} non vides tels que le score

S(P) =
K−1∑
i=0

∑
j∈Ci

(xj − µi)
2

soit minimal, où µi =
1

|Ci|
∑
j∈Ci

xj est la moyenne des éléments correspondant à la classe Ci. Autrement

dit, on veut minimiser la somme des carrés des écarts de chaque élément à la moyenne de sa classe.

Par exemple, pour E = {1, 2, 3, 5, 8, 10, 14, 15, 18}, une solution optimale pour K = 3 est donnée par la
partition suivante :

x
1

x0

2

x1

3

x2

5

x3

8

x4

10

x5

14

x6

15

x7

18

x8

C0 C1 C2

Si {C0, C1, . . . , CK−1} est une partition solution du problème, on remarque qu’on peut supposer sans perte
de généralité que les classes sont rangées par ordre croissant, c’est-à-dire que pour i < i′ et j ∈ Ci, j′ ∈ Ci′ ,
alors xj ≤ xj′ . On supposera cette hypothèse vérifiée pour l’ensemble des partitions du problème.

5.1 Préliminaires

1. Comment trouver une solution au problème lorsque K = N ? Lorsque K = N − 1 ? Justifier.

2. Appliquer l’algorithme des K-moyennes sur l’ensemble E de l’exemple précédent. On prendra K = 3,
et on initialisera les barycentres à b0 = 1, b1 = 8 et b2 = 10. On donnera les détails des étapes de
calculs jusqu’à convergence de l’algorithme.

On accepte (et on souhaite) une représentation graphique pour la description des étapes de calcul.

On cherche à écrire une fonction void tri(double* tab, int n) qui trie un tableau tab de taille n
en C. Pour ce faire, on propose les fonctions suivantes :

9

void fusion(double* tab1, int n1, double* tab2, int n2, double* tab){
int i1 = 0;
int i2 = 0;
for (int i=0; i<n1 + n2; i++){

if (tab1[i1] <= tab2[i2]){
tab[i] = tab1[i1];
i1++;

} else {
tab[i] = tab2[i2];

}
}

}

void tri(double* tab, int n){
if (n < 1) return;
int n1 = n / 2;
int n2 = n - n / 2;
double* tab1 = malloc(n1 * sizeof(double));
double* tab2 = malloc(n2 * sizeof(double));
for (int i=0; i<n; i++){

if (i < n1) tab1[i] = tab[i];
else tab2[i - n1] = tab[i];

}
tri(tab1, n1);
tri(tab2, n2);
fusion(tab1, n1, tab2, n2, tab);

}

3. Le code précédent comporte plusieurs (moins de 5) erreurs. Préciser les lignes où apparaissent ces
erreurs et un moyen de les corriger. On demande de NE PAS recopier tout le code.

Pour la suite de cette partie, on supposera que le tableau E représentant un ensemble E sera toujours
trié.

Pour E = {x0, . . . , xN−1} et 0 ≤ i < j ≤ N , on note Semc(i, j) (pour « somme des écarts à la moyenne
au carré ») la valeur

Semc(i, j) =

j−1∑
k=i

(xk − µ)2

où µ est la moyenne des éléments de {xi, xi+1, . . . , xj−1}.

4. Écrire une fonction double moyenne(double* E, int i, int j) qui prend en argument un tableau
E de N valeurs {x0, . . . , xN−1} triées et deux indices 0 ≤ i < j ≤ N et renvoie la moyenne des
éléments de {xi, xi+1, . . . , xj−1}.

5. Écrire une fonction double somme_emc(double* E, int i, int j) qui prend en argument une
liste E de N valeurs triées et deux indices 0 ≤ i < j ≤ N et calcule et renvoie Semc(i, j).

10

On représente une partition P = {C0, C1, . . . , CK−1} de [[0, N−1]] par un tableau P de tailleK telle que
P[i] est le plus petit élément de Ci. Avec l’hypothèse faite précédemment sur les Ci, le tableau P doit
nécessairement être trié. On remarque, de plus, que P[0] vaut toujours 0. Par exemple, la partition
{{0, 1, 2, 3}, {4, 5}, {6, 7, 8}} donnée dans l’exemple de la figure 1 est représentée par {0, 4, 6}.

6. Dans cette question, on suppose N = 9. Quelle est le tableau P associé à la partition
P = {{0, 1, 2}, {3, 4}, {5, 6, 7}, {8}} ? Quelle est la partition associée au tableau {0, 1, 4, 5} ?

7. Écrire une fonction double score(double* E, int N, int* P, int K) qui prend en argument un
ensemble E de taille N et une partition P de [[0, N − 1]] de taille K et renvoie le score S(P) tel qu’il a
été défini précédemment.

8. En déduire une fonction int* clustering3(double* E, int N) qui prend en argument un ensemble
E de taille N ≥ 3 et renvoie une partition P de [[0, N − 1]] de taille K = 3 de score minimal.

9. Quelle est la complexité temporelle de la fonction précédente ? Justifier.

5.2 Clustering hiérarchique ascendant

On cherche dans cette sous-partie à calculer une solution pas nécessairement optimale par une ap-
proche de clustering hiérarchique ascendant (CHA).

10. Écrire une fonction int classes_plus_proches(double* E, int N, int* P, int K) qui prend en
argument un ensemble E de taille N et une partition P de [[0, N − 1]] de taille K > 1 et renvoie un
indice iopt tel que Ciopt et Ciopt+1 sont les classes les plus proches, c’est-à-dire celles qui ont leurs
moyennes les plus proches. En cas d’égalité, on choisira l’indice iopt minimal.

11. Écrire une fonction int* fusion_classes(int* P, int K, int iopt) qui prend en argument une
partition P de [[0, N−1]] de taille K et un indice 0 ≤ iopt < K−1 et renvoie une partition de [[0, N−1]]
de taille K − 1 où les classes d’indices iopt et iopt + 1 ont été fusionnées.

12. En déduire une fonction int* CHA(double* E, int N, int K) qui calcule et renvoie une partition
de taille K d’un ensemble E selon l’algorithme de clustering hiérarchique ascendant.

13. Déterminer la complexité temporelle de la fonction CHA en fonction de N et de K.

5.3 Solution optimale en programmation dynamique

Pour n ∈ [[0, N]] et k ∈ [[1,K]], on note D(n, k) le score minimal possible d’une partition de
{x0, . . . , xn−1} en k classes non vides.

14. Que vaut D(n, k) lorsque k = 1 ?

15. Montrer que pour n > 0 et k > 1, D(n, k) =
n−1
min
i=k−1

(D(i, k − 1) + Semc(i, n)).

16. En déduire une fonction double clustering_dynamique(double* E, int N, int K) qui calcule le
score minimal possible d’une partition de E en K classes non vides.

17. Déterminer la complexité temporelle de la fonction précédente.

18. Expliquer en français comment modifier la fonction précédente pour qu’elle renvoie une partition
optimale plutôt que le score minimal. On ne demande pas de coder cette solution.

⋆ ⋆ ⋆

11

	Quelques preuves de déduction
	Arbres de décision (la programmation sera à effectuer en C)
	Caractérisation des programmes bien typés
	Séquents valides en calcul des prédicats
	Clusturing en dimension 1
	Préliminaires
	Clustering hiérarchique ascendant
	Solution optimale en programmation dynamique

