
Opérations sur les automates

Consignes

Sauf mention contraire, les questions de ce sujet doivent être traitées dans l’ordre. Chaque question est
caractérisée par un ou plusieurs ”types”, signalés par un pictogramme :

• Les questions marquées avec Keyboard nécessitent d’écrire un programme dans le langage demandé. Le
code produit doit compiler, s’exécuter correctement et être testé même lorsque l’énoncé
ne le demande pas explicitement. La clarté du code est également importante : il faut pouvoir
en expliquer le fonctionnement à l’examinateur ou l’examinatrice à sa demande.

• Les questions marquées Hand-point-up sont à traiter à l’oral. Elles peuvent néanmoins être préparées en amont,
y compris à l’aide d’un support écrit si vous en avez besoin.

• Les questions marquées PENCIL-ALT sont aussi à traiter à l’oral mais à l’aide d’un support écrit. Il est demandé
pour ces questions d’écrire la réponse ou les grandes lignes de votre raisonnement sur une feuille et
de s’appuyer dessus lors de l’explication à l’examinateur ou examinatrice.

Lors du passage de l’examinateur ou de l’examinatrice, vous devez présenter les réponses apportées aux
questions traitées depuis le dernier passage. Il est toujours possible de solliciter un passage en levant la
main, que ce soit pour vérifier une solution, discuter d’une idée ou demander de l’aide. Une fois que votre
appel a été vu, vous pouvez aborder les questions suivantes en attendant.

Le sujet demande de compléter le code compagnon Operations_automates.ml. Ce dernier fournit du code
qui sera présenté au fil de l’énoncé. Sauf mention contraire, il est interdit d’utiliser des boucles ou des
références. Il est en revanche permis d’utiliser toutes les fonctions du module List.

- - - - - - -

L’objectif de ce sujet est de résoudre algorithmiquement le problème P suivant :{
Entrée : Deux automates finis potentiellement non déterministes A et B.
Sortie : Oui si A et B reconnaissent le même langage ; non sinon.

Les automates seront manipulés en OCaml via le type suivant, fourni dans le code compagnon :

type automate = {alphabet : char list;
nb_etats : int;
initiaux : int list;
finaux : int list;
transitions : (int * char * int) list}

Les états d’un automate seront toujours numérotés de 0 à nb_etats−1. Les transitions de l’automate sont
stockées sous forme de liste dans le champ transitions. Par exemple, si (0,'a',3) fait partie de la liste
transitions, cela signifie qu’il existe une transition depuis l’état 0 vers l’état 3 étiquetée par la lettre a.
On supposera dans tout le sujet que les automates manipulés utilisent un même alphabet Σ.
Pour les exemples et les tests, on aura Σ = {a, b}.

1. PENCIL-ALT Keyboard Dessiner un automate non déterministe à trois états qui reconnaît le langage (a+b)?ab(a+b)?

sur {a, b}. Puis, définir dans le code un automate ab permettant de le représenter en OCaml.

2. Hand-point-up Le code compagnon définit un automate test_1. Quel langage reconnaît-il ? Proposer une façon
pertinente de renommer cet automate. Reprendre ces questions avec l’automate test_2.



Pour savoir si deux automates A et B reconnaissent le même langage, on se propose de construire un
automate qui reconnaît L(A)∆L(B) où ∆ représente la différence symétrique. On rappelle que si E et F
sont deux ensembles, E∆F = (E ∪ F ) \ (E ∩ F ).

3. PENCIL-ALT Rappeler comment exprimer une différence symétrique à l’aide d’unions, d’intersections et de
complémentaires. Expliquer comment le calcul de L(A)∆L(B) permettra de répondre au problème P.

4. PENCIL-ALT Dessiner un automate A1 reconnaissant le complémentaire du langage reconnu par l’automate
test_1 défini dans le code compagnon. Puis, dessiner un automate A′ reconnaissant l’intersection du
langage reconnu par A1 et du langage reconnu par l’automate ab défini en question 1.

5. Keyboard Écrire une fonction union : automate -> automate -> automate permettant de faire l’union
de deux automates. L’automate résultant de cette opération devra bien avoir ses états numérotés de
0 à son nombre d’états moins un.

La renumérotation des états devient plus délicate dans le cas d’une intersection où d’une déterminisation.
Le code compagnon fournit une fonction correspondance :'a list -> ('a, int) Hashtbl.t telle que
correspondance etats renvoie un dictionnaire dont les valeurs numérotent tous les éléments de etats
(qui sont donc les clés de ce dictionnaire) consécutivement à partir de 0.

6. Hand-point-up Peut-on effectivement renommer les éléments d’une liste quel que soit le type de ses éléments
avec la fonction correspondance ? Justifier.

7. Keyboard Écrire renommage_etat : ('a, int) Hashtbl.t -> 'a -> int telle que renommage_etat dico
e renvoie le numéro de e selon la correspondance établie par le dictionnaire dico.

Écrire de même une fonction renommage_liste_etats : ('a, int) Hashtbl.t -> 'a list -> int
list qui renomme tous les états d’une liste puis une fonction renommage_transitions : ('a, int)
Hashtbl.t -> ('a*char*'a) list -> (int*char*int) list qui renomme tous les états dans une
liste de transitions.

Le code compagnon fournit une fonction automate_parties qu’il n’est pas nécessaire de comprendre. Elle
prend en entrée un automate A. Elle renvoie des informations sur l’automate A′ obtenu à partir de A par
déterminisation accessible (avec complétion), à savoir, dans cet ordre :

• La liste des états de A′.

• Son état initial.

• La liste de ses états finaux.

• La liste de ses transitions.

Les états dans la sortie ne sont en revanche pas numérotés consécutivement à partir de 0.

8. Keyboard En utilisant la question 7, écrire une fonction determinisation : automate -> automate qui
déterminise l’automate en entrée. Vérifier la cohérence du résultat obtenu sur l’automate test_1.

9. Keyboard Hand-point-up Écrire une fonction complementaire : automate -> automate permettant de complémen-
tariser l’automate en entrée. Justifier brièvement la correction de votre algorithme.

10. Keyboard Décommenter la fonction intersection fournie dans le code compagnon puis écrire une fonction
difference_symetrique réalisant la différence symétrique de deux automates.

11. Hand-point-up Combien d’états a l’automate résultant de la différence symétrique entre test_2 défini dans le
code compagnon et A′ construit à la question 4 ? D’où pourrait provenir ce phénomène ?

12. Keyboard Déduire des questions précédentes une fonction equivalents indiquant si les deux automates en
entrée reconnaissent le même langage. On pourra s’aider de fonctions intermédiaires.

13. Keyboard Hand-point-up Les automates test_2 et A′ sont-ils équivalents ? Est-ce surprenant ?


