
Composition d’informatique n°6
Corrigé

⋆ ⋆ ⋆

1 Clustering en dimension 1

1.1 Préliminaires

Question 1 Si K = N , chaque classe d’équivalence est de cardinal 1 (sinon l’une est vide) et le score est
nul, ce qui est bien minimal. Si K = N − 1, toutes les classes sont de cardinal 1, sauf une qui est de cardinal 2
(par le principe des tiroirs). Pour minimiser le score, il faut mettre dans la même classe les deux éléments les
plus proches de E.

Question 2 On a l’exécution suivante :

x
1 2 3 5 8 10 14 15 18
b0 b1 b2

C0 C1 C2

x
1 2 3 5 8 10 14 15 18

b0 b1 b2

C0 C1 C2

x
1 2 3 5 8 10 14 15 18

b0 b1 b2

C0 C1 C2

Question 3 Les erreurs sont :
– ligne 5 : il faut vérifier que ni i1, ni i2 n’a atteint la dernière valeur. On doit remplacer la condition

booléenne par if (i2 == n2 || (i1 < n1 && tab1[i1] <= tab2[i2])){
– entre les lignes 9 et 10 : il faut penser à incrémenter i2 en rajoutant i2++;
– ligne 15 : le cas d’arrêt doit aussi prendre en compte le cas du tableau à un seul élément, sinon l’algorithme

ne termine pas. Il faut remplacer cette ligne par if (n <= 1) return;
– entre les lignes 26 et 27 : il faut penser à libérer la mémoire. Il faut rajouter free(tab1); free(tab2);.

Question 4 Il suffit juste de faire attention aux indices.

double moyenne(double* E, int i, int j){
double mu = 0;
for (int k=i; k<j; k++){

mu += E[k];
}
return mu / (j - i);

}

1

Question 5 Le code ressemble au précédent en faisant d’abord le calcul de la moyenne.

double somme_emc(double* E, int i, int j){
double mu = moyenne(E, i, j);
double S = 0;
for (int k=i; k<j; k++){

S += (E[k] - mu) * (E[k] - mu);
}
return S;

}

Question 6 Le tableau associé à la partition P = {{0, 1, 2}, {3, 4}, {5, 6, 7}, {8}} est {0, 3, 5, 8}. La
partition associée au tableau {0, 1, 4, 5} est P = {{0}, {1, 2, 3}, {4}, {5, 6, 7, 8}}.

Question 7 Il faut ici faire attention à la manière dont sont délimitées les classes d’équivalence. On traite
la dernière classe à part, qui contient les valeurs jusqu’à xN−1.

double score(double* E, int N, int* P, int K){
double SP = somme_emc(E, P[K - 1], N);
for (int i=0; i<K-1; i++){

SP += somme_emc(E, P[i], P[i + 1]);
}
return SP;

}

Question 8 Il suffit d’une double boucle pour déterminer les indices des plus petits éléments de C 1 et C2.
On calcule le score à chaque étape et on garde la partition de score minimal. On fait attention à différencier
l’usage d’un tableau statique et d’un tableau dynamique (pour pouvoir renvoyer le tableau, il faut l’allouer sur
le tas).

int* clustering3(double* E, int N){
int Pmin = malloc(3 * sizeof(int));
Pmin[0] = 0; Pmin[1] = 1; Pmin[2] = 2;
for (int i=1; i<N-1; i++){

for (int j=i+1; j<N; j++){
int P[3] = {0, i, j};
if (score(E, N, P, 3) < score(E, N, Pmin, 3)){

Pmin[1] = i; Pmin[2] = j;
}

}
}
return Pmin;

}

Question 9 On donne les complexités des fonctions précédentes :
– moyenne(E, i, j) est en O(j − i), au même titre que somme_emc(E, i, j) ;
– score(E, N, P, K) est en O(N), car on calcule somme_emc pour chaque classe, dont la somme des

cardinaux est N (attention à ne pas faire une analyse trop grossière ici) ;
– on en déduit que clustering3(E) est en O(N3), car on fait le calcul d’un score de l’ordre de O(N 2) fois.

La création et copie des tableaux n’est pas à prendre en compte (car ce sont des tableaux de taille 3).

1.2 Clustering hiérarchique ascendant

2

Question 10 On garde en mémoire l’indice iopt et l’écart de moyenne entre Ciopt et Ciopt+1. Ensuite, on
parcourt tous les indices jusqu’à K − 2 et on vérifie si l’écart est strictement inférieur pour éventuellement
mettre à jour. On fait toujours attention à traiter la dernière classe à part. C’est pour cette raison qu’il y a
un opérateur ternaire. On rappelle que b?x:y renvoie x si b vaut true et y sinon.

int classes_plus_proches(double* E, int N, int* P, int K){
int iopt = 0;
double moy1 = moyenne(E, P[1], (K==2)?N:P[2]);
int ecartopt = moy1 - moyenne(E, P[0], P[1]);
for (int i=1; i<K-1; i++){

double moy2 = moyenne(E, P[i + 1], (K==i+2)?N:P[i + 2]);
double ecart = moy2 - moy1;
if (ecart < ecartopt){

iopt = i;
ecartopt = ecart;

}
moy1 = moy2;

}
return iopt;

}

À noter, on aurait pu partir de la fin du tableau pour éviter les tests supplémentaires.

Question 11 On crée un nouveau tableau, qu’on remplit avec les éléments d’indice différent de iopt + 1.

int* fusion_classes(int* P, int K, int iopt){
int* nouvP = malloc((K - 1) * sizeof(int));
for (int i=0; i<K; i++){

if (i <= iopt){
nouvP[i] = P[i];

} else if (i > iopt + 1){
nouvP[i - 1] = P[i];

}
}
return nouvP;

}

Question 12 On se contente d’appliquer l’algorithme décrit précédemment avec les fonctions déjà écrites.
On pense à libérer la mémoire du tableau P lorsqu’on fusionne des classes.

int* CHA(double* E, int N, int K){
int* P = malloc(N * sizeof(int));
for (int i=0; i<N; i++) P[i] = i;
int taille = N;
while (taille > K){

int iopt = classes_plus_proches(E, N, P, taille);
int* nouvP = fusion_classes(P, taille, iopt);
free(P);
P = nouvP;
taille--;

}
return P;

}

Question 13

3

– La fonction classe_plus_proches calcule de l’ordre de K moyennes, pour une somme des tranches
d’indices égale à N . La complexité est donc en O(N).

– La fonction fusion_classes se contente de créer et remplir un tableau de taille K − 1, donc en O(K)
(avec K ⩽ N).

– Finalement, la fonction CHA fait appel aux deux fonctions précédentes, pour k ∈ [[K, N]], soit une com-
plexité en O((N − K) × N).

Question 14 On considère N = 4 et K = 2. On pose E = {0, 2, 4, 7}. L’algorithme de CHA donnera les
classes P1 = {{0, 2, 4}, {7}}. Avec une telle partition, on aurait un score S(P1) = (4 + 4) + 0 = 8. Cependant,
avec la partition P2 = {{0, 2}, {4, 7}}, on obtient un score de S(P2) = (1 + 1) + (2, 25 + 2, 25) = 6, 5.

1.3 Solution optimale en programmation dynamique

Question 15 Lorsque k = 1, D(n, k) = Semc(0, n) (il n’y a qu’une seule classe). Ce score peut être calculé
en O(n).

Question 16 Une partition des n éléments de taille k consiste en une partition de i < n éléments en k − 1
classes, à laquelle on rajoute une classe formée des n − i derniers éléments. Comme aucune classe ne doit être
vide, on considère i ⩾ k − 1. La partition optimale atteint le minimum parmi toutes les partitions possibles de
cette forme, ce qui donne bien la formule voulue.

Question 17 On écrit une fonction auxiliaire cluster_rec qui prend en argument l’ensemble E, des entiers
n et k et un dictionnaire (ici codé par une matrice) mémoïsant les résultats, et renvoie D(n, k). L’initialisation
et l’hérédité se font selon les deux questions précédentes.

double cluster_rec(double* E, int n, int k, double** dic){
if (dic[n][k] < 0){

if (k == 1){
dic[n][k] = somme_emc(E, 0, n);

} else {
dic[n][k] = cluster_rec(E, k - 1, k - 1, dic) + somme_emc(E, k - 1, n);;
for (int i=k-1; i<n; i++){

double d = cluster_rec(E, i, k - 1, dic) + somme_emc(E, i, n);
if (d < dic[n][k]){

dic[n][k] = d;
}

}
}

}
return dic[n][k];

}

Une fois cette fonction écrite, il suffit de lancer un appel avec n = N et k = K, en utilisant un dictionnaire
vide. On pense à libérer la mémoire avant de renvoyer la valeur.

4

4

5

6

double clustering_dynamique(double* E, int N, int K){
double** dic = malloc((N + 1) * sizeof(double*));
for (int n=0; n<=N; n++){

dic[n] = malloc((K + 1) * sizeof(double));
for (int k=0; k<=K; k++){

dic[n][k] = -1;
}

}
double d = cluster_rec(E, N, K, dic);
for (int n=0; n<=N; n++){

free(dic[n]);
}
free(dic);
return d;

}

Question 18 On remarque qu’il y a de l’ordre de N × K valeurs qui sont calculées dans le dictionnaire.
De plus, chaque valeur nécessaire de calculer le minimum par la boucle for. Cette boucle, de taille n − k, fait
un appel à somme_emc, de complexité O(n − i). En combinant tout ça, on obtient une complexité totale en
O(K × N3).

Question 19 Dans le calcul du minimum, on peut garder en mémoire l’indice i qui permet d’atteindre ce
minimum, ce qui correspond au plus petit élément de la classe Ck−1 dans une partition de taille k. On peut
alors reconstruire une solution complète en utilisant les valeurs présentes dans le dictionnaire.

Question 20 On remarque les formules suivantes :
– µ(i, i + 1) = xi ;

– µ(i, n + 1) = (n − i)µ(i, n) + xn

n + 1 − i
.

Ces formules peuvent être utilisées pour calculer tous les µ(i, n), i < n, en temps O(N 2) au total. Dès lors, on
remarque, en adaptant la formule admise que :

– Semc(i, i + 1) = 0 ;
– Semc(i, n + 1) = Semc(i, n) + n−i

n+1−i (xn − µ(i, n))2.

À nouveau, on peut utiliser ces formules pour calculer les Semc(i, n) en temps O(N 2) au total.

2 Correspondance de Curry-Howard

On considère un ensemble fini de variables V = {x0, x1, . . ., xn−1}, avec n ∈ N. On définit l’ensemble des
formules propositionnelles F de variables V par induction par :

– ⊥ ∈ F ;
– pour x ∈ V, x ∈ F ;
– si A, B ∈ F , alors A ∧ B, A ∨ B et A → B sont dans F .
On remarque en particulier que la négation ne fait pas partie de la définition par induction des formules.
On rappelle en annexe les règles d’inférence des logiques minimale, intuitionniste et classique. On notera

Γ ⊢m A, Γ ⊢i A et Γ ⊢c A pour indiquer qu’un séquent Γ ⊢ A est prouvable en logique minimale, intuitionniste
et classique respectivement.

On admet et on pourra utiliser le fait que la logique classique est correcte et complète pour la sémantique
booléenne usuelle.

5

17

8

