Clustering en dimension 1

1.1 Préliminaires

Question 1 Si K = N, chaque classe d’équivalence est de cardinal 1 (sinon 'une est vide) et le score est
nul, ce qui est bien minimal. Si K = N — 1, toutes les classes sont de cardinal 1, sauf une qui est de cardinal 2
(par le principe des tiroirs). Pour minimiser le score, il faut mettre dans la méme classe les deux éléments les
plus proches de FE.

Question 2

On a 'exécution suivante :

b() bl b2

| 1 2 3 | |) 8 | |10 14 15 18
CO Cl 02
bo bl bQ

| 1 2 3 | |) 8 10 | | 14 15 18
Co 01 02
bO b1 b2

| 1 2 3 | |) 8 10 | | 14 15 18
CO Cl CQ

Question 3

Les erreurs sont :

— ligne 5 : il faut vérifier que ni i1, ni i2 n’a atteint la derniere valeur. On doit remplacer la condition
booléenne par if (i2 == n2 || (i1 < n1 &§& tab1[i1] <= tab2[i2])){

— entre les lignes 9 et 10 : il faut penser a incrémenter i2 en rajoutant i2++;

— ligne 15 : le cas d’arrét doit aussi prendre en compte le cas du tableau a un seul élément, sinon ’algorithme

ne termine pas. Il faut remplacer cette ligne par if (n <= 1) return;

entre les lignes 26 et 27 : il faut penser a libérer la mémoire. Il faut rajouter free(tabl); free(tab2);.

Question 4 Il suffit juste de faire attention aux indices.

double moyenne(double* E, int i, int j){
double mu = 0;
for (int k=1i; k<j; k++){
mu += E[k];
}

return mu / (j - i);

Question 5 Le code ressemble au précédent en faisant d’abord le calcul de la moyenne.

double somme_emc(double* E, int i, int j){
double mu = moyenne(E, i, j);
double S = 0;
for (int k=1i; k<j; k++){
S += (E[k] - mu) * (E[Kk] - mu);
}

return S;

Question 6 Le tableau associé a la partition P = {{0, 1,2}, {3,4},{5,6,7},{8}} est {0, 3, 5, 8}. La
partition associée au tableau {0, 1, 4, 5} est P = {{0},{1,2,3},{4},{5,6,7,8}}.

Question 7 1l faut ici faire attention a la maniére dont sont délimitées les classes d’équivalence. On traite
la derniére classe & part, qui contient les valeurs jusqu’a = n_1.

double score(double* E, int N, int* P, int K){
double SP = somme_emc(E, P[K - 1], N);
for (int 1=0; i<K-1; i++){

SP += somme_emc(E, P[i], P[i + 1]);
}

return SP;

Question 8 Il suffit d'une double boucle pour déterminer les indices des plus petits éléments de C'; et Cs.
On calcule le score a chaque étape et on garde la partition de score minimal. On fait attention a différencier
l'usage d’un tableau statique et d’un tableau dynamique (pour pouvoir renvoyer le tableau, il faut I’allouer sur
le tas).

int* clustering3(double* E, int N){
int Pmin = malloc(3 * sizeof(int));
Pmin[0] = 0; Pmin[1] = 1; Pmin[2] = 2;
for (int i=1; i<N-1; i++){
for (int j=i+1; j<N; j++){
int P[3] = {0, i, j};
if (score(E, N, P, 3) < score(E, N, Pmin, 3)){
Pmin[1] = i; Pmin[2] = j;
}

}

return Pmin;

Question 9 On donne les complexités des fonctions précédentes :
— moyenne(E, i, j) est en O(j — i), au méme titre que somme_emc(E, i, j);
— score(E, N, P, K) est en O(N), car on calcule somme_emc pour chaque classe, dont la somme des
cardinaux est N (attention & ne pas faire une analyse trop grossiére ici) ;

— on en déduit que clustering3(E) est en O(N?3), car on fait le calcul d’un score de 'ordre de O(N?) fois.
La création et copie des tableaux n’est pas & prendre en compte (car ce sont des tableaux de taille 3).

1.2 Clustering hiérarchique ascendant

Question 10 On garde en mémoire I'indice i,py et 'écart de moyenne entre C;_, et C;_, +1. Ensuite, on
parcourt tous les indices jusqu’a K — 2 et on vérifie si I’écart est strictement inférieur pour éventuellement
mettre a jour. On fait toujours attention a traiter la derniere classe a part. C’est pour cette raison qu’il y a
un opérateur ternaire. On rappelle que b?x:y renvoie x si b vaut true et y sinon.

int classes_plus_proches(doublex E, int N, int* P, int K){
int iopt = 0O;
double moyl = moyenne(E, P[1], (K==2)?N:P[2]);
int ecartopt = moyl - moyenne(E, P[0], P[1]);
for (int i=1; i<K-1; i++){
double moy2 = moyenne(E, P[i + 1], (K==1+2)2N:P[i + 2]);
double ecart = moy2 - moyl;
if (ecart < ecartopt){
iopt = 1i;
ecartopt = ecart;
}
moyl = moy2;
}

return iopt;

A noter, on aurait pu partir de la fin du tableau pour éviter les tests supplémentaires.

Question 11 On crée un nouveau tableau, qu’on remplit avec les éléments d’indice différent de iopt + 1.

int* fusion_classes(int* P, int K, int iopt){
int* nouvP = malloc((K - 1) * sizeof(int));
for (int 1=0; i<K; i++){
if (i <= iopt){
nouvP[i] = P[i];
} else if (i > iopt + 1){
nouvP[i - 1] = P[il;
I3
I3

return nouvP;

Question 12 On se contente d’appliquer 'algorithme décrit précédemment avec les fonctions déja écrites.
On pense a libérer la mémoire du tableau P lorsqu’on fusionne des classes.

int* CHA(double* E, int N, int K){
int* P = malloc(N * sizeof(int));
for (int i=0; i<N; i++) P[i] = i;
int taille = N;
while (taille > K){
int iopt = classes_plus_proches(E, N, P, taille);
int* nouvP = fusion_classes(P, taille, iopt);

free(P);
P = nouvP;
taille--;
}
return P;

Question 13

— La fonction classe_plus_proches calcule de 'ordre de K moyennes, pour une somme des tranches
d’indices égale & N. La complexité est donc en O(N).

— La fonction fusion_classes se contente de créer et remplir un tableau de taille K — 1, donc en O(K)
(avec K < N).

— Finalement, la fonction CHA fait appel aux deux fonctions précédentes, pour k € [K, N], soit une com-
plexité en O((N — K) x N).

1.3 Solution optimale en programmation dynamique

Question 1!4 Lorsque k = 1, D(n, k) = Semc(0,7) (il n’y a qu’une seule classe). Ce score peut étre calculé

en O(n).

Question 15 Une partition des n éléments de taille k consiste en une partition de ¢ < n éléments en k — 1
classes, a laquelle on rajoute une classe formée des n — i derniers éléments. Comme aucune classe ne doit étre
vide, on consideére ¢ > k — 1. La partition optimale atteint le minimum parmi toutes les partitions possibles de
cette forme, ce qui donne bien la formule voulue.

Question 10 On écrit une fonction auxiliaire cluster_rec qui prend en argument ’ensemble E, des entiers
n et k et un dictionnaire (ici codé par une matrice) mémoisant les résultats, et renvoie D(n, k). L’initialisation
et I’hérédité se font selon les deux questions précédentes.

double cluster_rec(double* E, int n, int k, double*x* dic){
if (dic[n][k] < 0){

if (k == 1){
dic[n][k] = somme_emc(E, 0, n);
} else {

dic[n]l[k] = cluster_rec(E, k - 1, k - 1, dic) + somme_emc(E, k - 1, n);;
for (int i=k-1; i<n; i++){
double d = cluster_rec(E, i, k - 1, dic) + somme_emc(E, i, n);
if (d < dic[n]l[k1){
dic[n][k] = d;
}

}
}

return dic[n][k];

Une fois cette fonction écrite, il suffit de lancer un appel avec n = N et k = K, en utilisant un dictionnaire
vide. On pense a libérer la mémoire avant de renvoyer la valeur.

double clustering_dynamique(double* E, int N, int K){
doublex* dic = malloc((N + 1) * sizeof(doublex));
for (int n=0; n<=N; n++){
dic[n] = malloc((K + 1) » sizeof(double));
for (int k=0; k<=K; k++){
dic[n]l[k] = -1;

}

}

double d = cluster_rec(E, N, K, dic);

for (int n=0; n<=N; n++){
free(dic[n]);

}

free(dic);

return d;

Question .17 On remarque qu’il y a de l'ordre de N x K valeurs qui sont calculées dans le dictionnaire.
De plus, chaque valeur nécessaire de calculer le minimum par la boucle for. Cette boucle, de taille n — k, fait
un appel & somme_emc, de complexité O(n —). En combinant tout ¢a, on obtient une complexité totale en

O(K x N3).

Question 18 Dans le calcul du minimum, on peut garder en mémoire I'indice i qui permet d’atteindre ce
minimum, ce qui correspond au plus petit élément de la classe C_1 dans une partition de taille k. On peut
alors reconstruire une solution compléte en utilisant les valeurs présentes dans le dictionnaire.

