Il peut y avoir plusieurs items a cocher par question. Toutes les questions ont au moins un item & cocher.
Une réponse est considérée comme juste si aucune mauvaise proposition est sélectionnée et que toutes les
bonnes propositions sont sélectionnées.

1 Programmation

1. En C, une variable globale est allouée :
N
(A) sur la pile @ucun des deux
(B) sur le tas

2. En C, c’est une erreur de :

appeler free deux fois sur le méme pointeur issu d’'un malloc

ppeler free sur un pointeur vers un objet One jamais appeler free sur un pointeur issu

sur la pile d’'un malloc

appeler free sur le pointeur nul CLO‘-/’**&U“’\)LL !

ey : .
‘(C) dppeler free sur &t[1], si t est un pointeur
e VTN e Gl

Mmcs oo LVW\A~<LL’ v
3. Quand on fait let u = v @ w en OCaml :

—

(A) kela prend un temps proportionnel & |v] (D) n et v sont partiellement aliasées
(B) cela prend un temps proportionnel a |w|
(C) cela prend un temps proportionnel a |v|+|w| (E) u et w sont partiellement aliasées

2 Structure de Données
4. Quelle structure de donnée correspond au principe LIFO ?

Une pile (D) Une table de hachage
(B) Un tableau dynamique
(C) Une file (E) Une liste doublement chainée

5. Quelle structure de donnée correspond au principe FIFO 7

(A) Une pile (D) Une table de hachage
(B) Un tableau dynamique
(C) VUne file (E) Une liste doublement chainée
6. Qu’est-ce qu’'une collision ?
(A) L’absence de réponses lors d’une requéte ser- chage.
b (D) La tentative de retrait d’un élément dans une
(B) L’arrét d’un fil d’exécution & cause d’une im- pile vide.
. possibilité d’entrer en section critique. (E) La tentative d’ajout d’un élément dans une
(C)) Deux éléments ayant la méme valeur de ha- file pleine.

7. Une file peut :

(A) JEtre implémentée par deux piles avec des
opérations élémentaires en temps constant en
complexité amortie.

(B) Etre implémentée par deux piles avec des opé-
rations élémentaires en temps constant dans
le pire cas.

8. Les tableaux circulaires :

(A) Nécessitent une architecture spéciale.
) Permettent d’implémenter les piles.
(C) Permettent d’implémenter les files.

9. Une fonction de hachage peut étre utilisée :

En sécurité informatique
Pour la reconnaissance de motif dans un texte

our la mémolsation

(C) Etre implémentée avec une seule pile.
(D) Simuler une table de hachage.

5, 0
@/ﬁre implémentée avec avec une liste sim-

plement chainée mutable et une complexité
constante sur les opérations élémentaires.

{

,\ (Aomc\;bt’a k og\lo;» S VLN a_cc;) t;v \C&
0. ol b
—

@Ont une taille fixe.

(E) Sont spécifiques au C et au Python et ne
peuvent étre utilisé en OCaml.

(D) Pour accélérer I'algorithme des k plus proches
voisins

10. On considére un arbre binaire strict, avec n noeuds internes, f feuilles et hauteur h. Quelles relations

sont vérifiées ?

(A) f<n
(B) fhnwm 2l
11. Un tas(min) binaire :

TN .
(A)) permet de reéaliser efficacement une file de
priorité.
(B)) permet de lire I’élément minimal en temps
constant.

(C) permet d’extraire I’élément minimal en temps

12. Le parcours en largeur d’'un arbre est :

-
Linéaire en le nombre de nceuds.
Linéaire en le nombre d’arétes.
(C) Linéaire en la hauteur.

fzn—i—l
@f+n+h7é0

constant.

(D) permet de réaliser efficacemment un diction-
naire.

permet d’ajouter un élément en temps loga-
rithmique.

(D) Jamais utilisé en pratique.

(E) L’ordre inverse du parcours en profondeur.

13. On peut reconstruire un arbre binaire strict a partir du résultat de :

(A) son parcours en largeur

(B) son parcours en profondeur infixe

14. Un arbre rouge-noir :

(A) permet de réaliser efficacement une file de
priorité.

(B) permet de lire I’élément minimal en temps
constant.

Json parcours en profondeur préfixe

yson parcours en profondeur postfixe

(C) permet d’extraire 1’élément minimal en temps
constant.

i
@ermet de réaliser efficacemment un diction-

naire.

@ermet d’ajouter un élément en temps loga-
rithmique.

(F) n'offre de bonnes garanties de complexité

15. Les arbres bicolores

qu’en moyenne.

(G) pst une arbre binaire de recherche.

@euvent atre utilisés pour coder une structure /(D))Nécessitent un bit d’informations supplémen-
d

e dictionnaire.

)

B) N’assurent aucune garantie de complexité
N

(
(C

ont pas d’utilité pratique.

’taires par noeuds qu'un arbre binaire.

(E) Ne peuvent pas stocker de valeurs.

16. La structure de tas est utilisée dans les algorithmes suivants :

<l
@lgorithme de Huffman

(B) Algorithme de parcours en profondeur
(C) Algorithme de Kosaraju

17. Un tas & n noeuds est

Eé‘)“ Un arbre binaire parfait.
B) JAvec [5] feuilles.

‘QC)/}De hauteur O(logy(n)).

@Algorithme de tri par tas

(E)

lgorithme de Dijkstra

(D) JReprésentable facilement par un tableau de
taille n.

(E) Un arbre binaire de recherche équilibré.

18. Il existe une implémentation de la structure unir et trouver qui permet une complexité :

i
(A) Constante pour I'opération unir
B))Constante pour I'opération trouver

(C) Constante dans le pire cas pour l'opération
unir et I'opération trouver.

19. Un ABR ¢

g
(A)/permet de chercher un élément en temps li-
néaire en sa hauteur.

(B) permet de chercher un élément en temps lo-
gorithmique en sa taille.

(C) a des étiquettes croissantes dans l'ordre pré-
20. Le nombre chromatique d'un graphe G

(A) Correspond au plus grand entier k tel qu'il
existe une k-coloration de G.

(B) Correspond au plus petit entier k tel qu’il
existe une k-coloration de G.

21. Un tableau redimensionnable :

@ermet I’accés & un élément par son indice en

temps constant dans le pire cas.

(B) permet I'ajout d’'un élément en temps contant
dans le pire cas.

D))Constante en complexité amortie pour I'opé-
ration unir et I'opération trouver.

(E) En o(log(n)) dans le pire cas pour les opéra-
tions unir et trouver.

fixe.
(D) De degré 6 avec 6 sommets

(E) Avec un degré p et un nombre de sommets g
tels que p et g sont premiers.

(C) Dépend de I'implémentation des graphes en
machines.

Est majoré par le degré maximum du graphe.

(E) Est minoré par le degré minimum du graphe.

(C) permet 'ajout d’un élément & droite en temps
constant amorti.

(D) permet l'ajout d’un élément & une position
quelconque en temps constant amorti.

22. Un graphe non orienté & m arétes sur n sommiets est un arbre si et seulement si :

(A) Tl est acyclique.

1 est acyclique avec m =n — 1.

oute paire de sommets est reliée par un
23. Le poids d’un sous-graphe T de G

(A) Ne peut pas étre négatif.
(B) Est majoré par la somme du poids de toutes
les arétes du graphe G.

<\,
@Correspond a la somme des poids des arétes

unique chemin.

(D) Il posséde une racine.

(E)

1 est connexe avec m < n.

de T.
(D) Dépend du sens de parcours du graphe.

(E) Aucune des réponses ci-dessus.

24. La complexité d'un parcours en profondeur d’un graphe G = (5, A) est :

(A) En O (]S]*) quelle que soit la représentation
du graphe.

(B) En O (|A|) pour un graphe sous forme de liste

d’adjacence.
@n O (|S|?) pour une représentation sous

forme de matrice d’adjacence.
(D) En O (|S| + |A|) pour une représentation par
matrice d’adjacence.

(E) Est en O (]|S| + |A|) pour une représentation
par matrice d’incidence.

25. La représentation naturelle du graphe des pages webs reliés par un lien hypertexte est :

(A) Par matrice d’incidence.
(B) Par matrice d’adjacence.

ar liste d’adjacence.

26. Soit A un ensemble construit par induction.

AN
@ou‘c ensemble £ possédant les mémes pro-

priétés inductives que A englobe £

—
(B) Certains objets de A ont été construits par

3 Algorithmie

27. Un invariant de boucle
™N

(A)

ermet de prouver la correction d'un algo-
rithme.

(B) Est vérifié si et seulement si la propriété est
vraie lorsqu’on la suppose vraie au début de
la boucle.

28. Le tri par tas :

) est un tri par comparaisons.

Jpeut-étre réalisé en place.

29. Le tri rapide :

(D) Par forét.

(E) Aucune des propositions ci-dessus.

une infinité d’opérations.

~

(T)\ est en bijection avec N.

(C) Peut ne pas étre vérifié a la sortie de la boucle.

(D) Correspond & une formulation de la correc-
tion de l'algorithme sur des sous-problémes.

(E) Aucune des propositions ci-dessus.

@a un complexité en O(nlog(n)) dans le pire

cas.

(A
B

(C) a une complexité en O(nlog(n)) dans le pire

)/est un tri par comparaisons.
)\

peut-étre réalisé en place.

cas.

@ypeut gagner & étre randomisé.

(E) aune complexité linéaire dans le meilleur cas.

30. Un algorithme qui se termine en un temps probabiliste, mais avec une réponse exacte est un algorithme

de

(A) Atlanta

(
(

B) Bellagio
6) as Vegas

(D) Macao

(E) Monte-Carlo

31. Un algorithme dont le temps de calcul est garanti, mais dont le résultat n’est correct qu’avec une

certaine probabilité est un algorithme de

(A) Atlanta
(B) Bellagio
(C) Las Vegas

32. L’algorithme du tri rapide

(A) A une complexité dans le pire cas en
O©(nlog(n)) et une complexité moyenne en

~8(n)

(B) ,\,)A une complexité dans le pire cas en ©(n?)
et une complexité moyenne en ©(nlog(n))

(C) Est un algorithme d’Atlanta.

(D) Macao

b
@ Monte-Carlo

(D) A la méme complexité dans le pire cas et en
moyenne.

(E) Peut terminer plus tard dans sa version pro-
babiliste que dans le pire cas de la méthode
déterministe.

33. Parmi les algorithmes suivants lesquels permettent de trouver les occurrences d’une chaine de caractéres

dans une autre :

Huffman

34. Un algorithme par retour sur trace :

(A) Correspond & un parcours en largeur d’un
arbre.

i (B))Correspond & un parcours en profondeur
d’unx arbre.

©

st un algorithme de recherche exhaustive.

35. Un parcours en profondeur permet de :

/‘—\
@Déeider si un graphe est 2-coloriable.

(B) Calculer les distances entre chaque sommet et
- un point donner.

(C)k Calculer les composantes connexes.

36. Un algorithme par séparation et évaluation

@abin Karp

(E) Liv Zempel Welch

(D) Nécessite d’ordonner les données.

(E) Permet une résolution polynomiale d’un Su-
doku.

' Demande de pouvoir rejeter des solutions par-
tielles.

e

(D)) Obtenir un tri topologique.

il
@Détecter les cycles.

@Calculer les composantes fortement connexes.

P

(A) Permet de résoudre certains problémes en- majorer la valeur des solutions partielles.
tiers en se basant sur une résolution fraction-

. (E) Nous donne un algorithme polynomial pour
N résoudre MAX-2-SAT.
B) JUtilise une heuristique. =
¢ \ F')) est une variante du backtracking.
(C) Dans un probléme de minimisation consiste &) o
I .) “~ Wi U e
minorer la valeur des solutions partielles. (G) s’applique & des problémes de décision.

s =

(D) Dans un probléme de minimisation consiste & (H) Jfournit des solutions optimales.

37. Quels algorithmes sont des algorithmes gloutons ?

. ‘ el
(A) Algorithme de Huffman @Algorithme de résolution du sac a dos frac-
i tionnaire.
Algorithme de Dijkstra, .
(E)) Algorithme d’ordonnancement des taches de

(C) lgorithme de Kruskal durée unaire.

38. Pour lesquels de ces problémes un algorithme par retour sur trace est-il une solution pertinente 7

(A) Trouver un chemin entre deux points d’un . graphe.

graphe. Wésoudre SAT.
@I“rouver un chemin eulérien dans un graphe. (E) Résoudre MaxSat.
(C)

rouver un chemin hamiltonien dans un @3—colorier un graphe.
39. Un algorithme de programmation dynamique

(A) Nécessite de stocker des valeurs dans un ta- @Consiste a formuler la solution d’'un pro-
7/ bleau. s bl dshachage! bléme en fonction de la solution & des sous-
(B) se résoput de maniére récursive. problémes.

(C) Consiste a partitionner les solutions en sous- (E)) utilise plus d’espace pour améliorer la conm-
problémes disjoints. plexité en temps.

40. En posant C(0) = C(1) = 1, pour quelle formule de récurrence obtient-on C (n) =O(\") avec A > 17

@C(n) =3C(n—1) (C) C(n) =3C (%) + O(n*log(n))
i (D) C(n) =20 (3) + O(n)
G B S () ctw) =20 (3) + 0(2")

41. L’algorithme de Kosaraju appliqué 4 un graphe

A)DCalcule les composantes fortement connexes. @Permet de résoudre 2-SAT en temps polyno-

@ Utilise un double parcours en profondeur. mial. @_ (.rm
: S @w QAM()‘

Utilise le graphe transposé. @ Utlhse une structure de plle
42. Lesquels de ces algorithmes permettent de calculer la plus petlte distance entre deux points ? tx m\mﬂj’“

dola A
.A* (D) L’algorithme de Boyer-Moore perc CURAD
(B) L’algorithme alpha-beta L
L’algorithme de Dijkstra (E) JL’algorithme de Floyd-Warshall

43. Quelles propriétés sont justes sur les arbres couvrants ?

(A) Tout graphe posséde un arbre couvrant.

(B))Si le poids de toutes les arétes de G sont deux
a deux distincts et que G est connexe, G ad-
met un unique arbre couvrant de poids mini-
mum.

(C) SiG admet un unique arbre couvrant de poids

44. Quelles propositions sont vraies sur les couplages ?

(A) Un couplage maximal est nécessairement
maximum.

(B) Un couplage maximum est nécessairement
maximal.

45. L’algorithme des & plus proches voisins

(A) Est un algorithme d’apprentissage non super-
Visé.

(B) Gagne en précision lorsqu’on augmente k.

46. Un arbre de décision

@Est un algorithme d’apprentissage supervisé

(B) Classe correctement tous les éléments de 1’en-
semble d’apprentissage

(C) Peuvent étre amélioré a 'aide d’arbres k-d.
47. Algorithme des k-moyennes

(A) Repose sur I'entropie de Shannon

(B) Converge vers une réponse optimale.

minimum, les poids de ses arétes sont dis-
. tincts deux & deux.

(D))L’aréte de poids minimum appartient a un
arbre couvrant de poids minimum.

(E) L’aréte de poids maximum n’appartient & au-
cun arbre couvrant de poids minimum.

(C) Tout graphe biparti admet un nombre pair de

~, sommets.

((D) Un couplage sans chemin augmentant dans

un graphe biparti est maximum.

(C) Nécessite que k soit impair.

) > .
(D) JAucune des réponses ci-dessus.

(D) Peut étre construit sans calcul d’entropie

grace a lalgorithme ID3

(E) A une hauteur bornée par la dimension des
données. {
AL

(e hmt

kg
Ufogt

1 i
- iy e dmoee §

SO - 9

€ converge pas nécessairement.

(D)) Ne reconnait pas des classes non-convexes.

48. La classification obtenue par un algorithme de regroupement hiérarchique ascendant :

(A) Est indépendante de la distance choisie.

B)) Ne permet pas "la remise en question".
p p

plexité du calcul de la distance considérée.

(D) Ne reconnait pas des classes non-convexes.

A une complexité dépendante de la com- (E) Nécessite un calcul de médiane.

49. Quel type d’algorithme nous permet de résoudre le probléme des 8 reines le plus efficacement ?

(A) Un algorithme min max.
(B) Un algorithme alpha-beta.
(C) L’algorithme des attracteurs.

(D) Un algorithme glouton.

(E)\\ Un algorithme de retour sur trace.
50. Un algorithme reposant sur une heuristique :

(A) Donne une valeur approchée du résultat avec férente.

L ! @DPeut—étre ajusté pour une utilisation pratique
e peut généralement garantir le temps o AR ; i G
s i . précise en adaptant ’heuristique considérée.
d’exécution et Ioptimalité du résultat.

(B)

(C) Ne peut étre exécuté avec une heuristique dif- (E) Aucune des réponses ci-dessus.

T

51. Les positions gagnantes pour J; dans un jeu-

(A) JPeuvent étre calculées en temps polynomial
en la taille du jeu.

(B
(C

) Dépendent des réponses de I’adversaire.
)

Sont nécessairement dans Sp, les sommets

controlés par Jy

(D)/Peuvent mener a une défaite de .J; suivant sa
stratégie.

(E) Aucune des réponses ci-dessus.

52. Dans un jeu a deux joueurs déterministe et 4 information compléte :

(A)) certaines positions peuvent étre gagnantes
pour aucun des deux joueurs.

(B) certaines positions peuvent étre gagnantes
53. L’algorithme de Dijkstra :

(A) est une variante du parcours en profondeur.
(B)/est une variante du parcours en largeur.

(C) a une complexité temporelle linéaire en la
taillde du graphe.

54. L’algorithme de Floyd Warshall :

(A) a une complexité temporelle en O(n?) ou n
est le nombre de sommets du graphe.

B) Jpermet de gérer les arétes de poids négatifs.
(C) permet de gérer les cycles de poids négatifs.

55. L’algorithme A* :

-

(A) a une complexité temporelle équivalente a
celle de Dijkstra si on utilise une heuristique
admissible.

(B)/ calcule bien les plus courts chemins si on uti-
lise une heuristique admissible.

56. Un ordre topologique sur un graphe :

(A) est unique s'il existe.
n’a de sens que si le graphe est orienté.

| peut étre calculé a aide d’un parcours en
profondeur.

pour les deux joueurs.

(C) toute position est gagnante pour exactement
un des joueurs.

(Dj a une complexité spatiale linéaire en la taillge
du graphe.

(E) nécessite une heuristique.

(D) Jest bien adapté si on souhaite calculer les dis-
tances entre tous les couples de sommets.

(E) nécessite une heuristique.

(C) calcule bien les plus courts chemins si on uti-
lise une heuristique monotone.

(D) est bien adapté si on souhaite calculer les dis-
tances entre tous les couples de sommets.

@ nécessite une heuristique.

: A
mem - dok e
e b |
(E) peut toujours étre calculé pour le graphe des

composantes fortement connexe d’un graphe
orienté.

xiste pour tout graphe orienté.

57. Pour un graphe & n sommets et p arétes, la complexité temporelle d’un parcours en profondeur est :

@) JO(n+p) si le graphe est représenté sous forme
de listes d’adjacence.

de matrice d’adjacence.

(B) O(n+p) sile graphe est représenté sous forme @ O(n?) dans les deux cas.

U

4 Concurrence et Synchronisation
58. Un fil d’exécution

(A) Termine nécessairement. (D) N’a pas d’utilité si on ne dispose que d'un seul
(B) JPeut partager de la mémoire avec les autres processeur.
fils d’exécutions.

et
/
@A une exécution entrelacée avec les autre fils. [(E) JEntraine un non-déterminisme.

59. L’ordonnanceur est implémenté par le systéme d’exploitation.

@Vrai (B) Faux

60. La création d’une section critique

(A) Ne peut étre assurée sans risque de famine tuelle.
PN ol i deux fils d’exécution. (C) Impose une attente active pour certains fils
@Doit satisfaire le principe d’exclusion mu- d’exécution.

. . : . . ! 2 i
61. Parmi les problémes suivants, lequel est le plus grave : ‘%\, o \)W

(A) Famine probabiliste (D) ituation de compétition Sw‘ﬂ)‘i@k/j
(B) Famine avérée
(C) Interblocage (E) Ils sont tous aussi grave

62. L’algorithme de la boulangerie de Lamport

P o
(A) Posséde un risque de famine avéré. (D) /Ne favorise aucun processus.
(B) Nécessite de savoir déterminer la maximum
___d’un tableau de mnaiére atomique. (]EJ\ Nécessite de connaitre le nombre de threads
@Utilise I’attente active. qui voint utiliser le verrou.
63. Une "situation de compétition"se produit quand :
(A) deux fils tentent de lire une méme variable en _ riable en méme temps sans synchronisation.
- _méme temps sans synchronisation. (C) i fils essaie de lire pendant qu’un autre fils
\ § 8 v . s .
@deux fils tentent d’écrire dans une méme va- essaie d’écrire dans une méme variable.

64. Pour les sémaphores, quels noms d’opérations représentent une incrémentation.

(D) wait(s)

|

(B) init(s)) e
(C) lock(s) QE? post(s)

5 Logique

65. Quelles formules sont des tautologies ?

(A) (A5 B)»C) & (A= (B-0) (D) ((AVB)A(CV D))« (AAC)V (BAD)
(B) (AV B) A (—AV —B)
(C)) (AN (AV B)) + -A (E) (AA-B) = (~AAB)

66. Une variable libre

(A) Peut-étre lite au méme endroit dans la for-
mule.

(B)) Peut-étre liée & un autre endroit dans la for-
mule.

(C) A une portée.

(D) N’a pas d’incidence sur I’évaluation d’une for-
mule.

(E) Est toujours associé a une variable liée.

67. Soit ¢ et ¥ deux formules telles que ¥ = ¢. Cela signifie que :

@ Que ¢ est une conséquence de

(B) Que ¢ est une sous-alternative a 1

(C) Que les valuations satisfaisantes ¢ satisfont
aussi ¥

68. Une équivalence entre formules.

(A) Signifie qu’elles ont le méme arbre de dériva-
tion.

eut se prouver par 1’étude des tables de vé-
rite.

eut se prouver a l'aide de substitution dans

Sous forme normale négative

(D) /Si ¢ est une antilogie, alors ¢ est une antilo-
gie.

(E) La notation = n’existe que sous la forme
v = ¢ avec v une valuation.

des formules qu’on sait équivalentes.

(D) Ne peut étre démontrée sans la déduction na-
turelle.

(E) Peut se prouver par une étude de la matrice
de confusion.

(D) Sous forme normale de Chomsky

@)Avec quantificateur

70. On sait résoudre le probléme SAT en temps polynomial sur des instances

@ 2-FNC
) 3-FNC

71. Une régle dérivée

(A) Peut étre utilisée dans une autre preuve.
Peut étre prouvée par table de vérité.

(C) Permet d’augmenter le nombre de séquents

prouvables.

(D) Aucune des réponses ci-dessus.

72. On peut prouver A - ——A avec les régles de base de la déduction naturelle (logique intuitionniste).

(A) Vrai/

(B) Faux

73. En logique propositionnelle intuitionniste, I' - C' si et seulement si I' = C

(A) Vrai

10

@_Fa;\;

