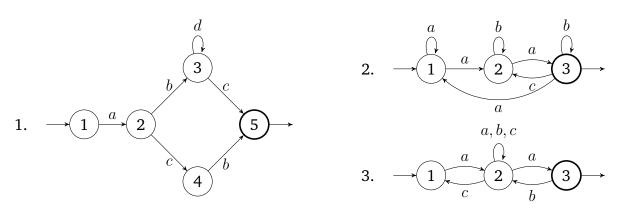
Feuille d'exercices n°3 - Langages locaux, langages reconnaissables

Notions abordées

- langages locaux
- application de l'algorithme de Berry-Sethi (pour obtenir l'automate de Glushkov)
- stabilité des langages reconnaissables
- utilisation du lemme de l'étoile

Exercice 1 : Des automates vers les expressions régulières

Q. 1 En utilisant l'algorithme du cours, donner, pour chacun des automates ci-dessous, une expression régulière reconnaissant le même langage.



Exercice 2 : Des expressions régulières vers les automates

- **Q. 1 En utilisant l'algorithme du cours**, donner, pour chacune des expressions régulières cidessous, un automate reconnaissant le même langage.
 - 1. $a(ab|b^{\star})|a$

- 2. $(\varepsilon|a)^*ab((a|b)^*)$
- 3. $a(b|c)(ba|ab^*)^*$

Exercice 3 : Une caractérisation des langages locaux

Soit L un langage sur un alphabet Σ . On dit qu'un langage L vérifie (\bigstar) ssi

$$\forall (u,v,u',v') \!\in\! (\Sigma^\star)^4, \forall a \in \Sigma, (u \cdot a \cdot v \in L \text{ et } u' \cdot a \cdot v' \in L) \Rightarrow u \cdot a \cdot v' \in L$$

- **Q. 1** Montrer que si L est local, alors L vérifie (\bigstar) . On en déduit une manière de prouver qu'un langage n'est pas local par contraposée.
- **Q. 2** Montrer que si L vérifie (\bigstar) , alors il est local.

- **Q. 3** Montrer que le langage L des mots sur l'alphabet $\{a, b, c\}$ ne contenant pas à la fois des b et des c est un langage régulier. Est-il local?
- **Q. 4** La classe des langages locaux est-elle stable par passage au complémentaire? par intersection?

Exercice 4: Langages reconnaissables ou non

Pour chacun des langages ci-dessous, dire s'il est reconnaissable ou non. Dans le cas d'un langage reconnaissable, fournir un automate qui le reconnaît. Dans le cas contraire justifier qu'il n'est pas reconnaissable.

- **Q.** 1 $L_1 = \{(ab)^n \mid n \in \mathbb{N}\}$
- **Q. 2** $L_2 = \{a^n b^n \mid n \in \mathbb{N}\}$
- **Q. 3** $L_3 = \{a^n b^m \mid 0 \le n < m\}$
- **Q. 4** $L_4 = \{u \mid |u|_a = |u|_b\}$
- **Q. 5** $L_5 = \{a^{n^3} \mid n \in \mathbb{N}\}$
- **Q. 6** $L_6 = \{a^n \mid n \text{ est premier}\}$
- **Q.** 7 D le langage des mots de parenthèses (sur l'alphabet $\Sigma = \{(,)\}$ bien parenthésés. D est défini inductivement par :
 - $\varepsilon \in D$;
 - Si $(u, v) \in D^2$ alors $uv \in D$;
 - Si $u \in D$ alors $(u) \in D$.
- **Q. 8** *O* le langage des expressions OCAML (sur l'alphabet $\Sigma = \text{char}$).

Exercice 5 : Stabilités des langages reconnaissables

- Q. 1 Le complémentaire d'un langage régulier est-il reconnaissable?
- **Q. 2** On appelle **miroir** d'un mot $u = u_1 u_2 ... u_n$ le mot $u_n u_{n-1} ... u_2 u_1$, et par extension **miroir** d'un langage l'ensemble des miroirs des mots qu'il contient. Montrer que si un langage est reconnaissable alors son miroir l'est aussi.
- **Q. 3** Si L est reconnaissable, l'ensemble des mots admettant un facteur dans L est-il reconaissable?
- **Q. 4** Si L est reconnaissable, l'ensemble des mots admettant un sous-mot dans L est-il reconaissable?
- **Q. 5** Le carré d'un langage L est défini comme étant $L_{\square} = \{uu \mid u \in L\}$. \wedge **ATTENTION**: à ne pas confondre avec $L \cdot L$. Si L est reconnaissable, L_{\square} est-il nécessairement reconnaissable?
- **Q. 6** Si L est un langage sur Σ , on définit $\sqrt{L} = \{u \in \Sigma^{\star} \mid u \cdot u \in L\}$. Montrer que si L est reconnaissable alors \sqrt{L} l'est aussi.