
Feuille de révisions n°1 - Programmation en OCaml : manipulation de listes

1 Pied à l’étrier

R. 1-1 Écrire une fonction récursive retournant le dernier élément d’une liste d’un type quelconque.
Cette fonction lèvera une exception Invalid_argument dans le cas où la liste est vide. On rappelle
que l’exception Invalid_argument est prédéfinie en OCaml, elle doit être accompagnée d’une chaîne
de caractères. Par exemple : l’évaluation de l’expression raise (Invalid_argument("ceci est un
message d'erreur")) lève l’exception Invalid_argument("ceci est un message d'erreur").

R. 1-2 Écrire une fonction récursive retournant le dernier élément d’une liste d’un type quelconque.
Cette fonction doit retourner None si la liste est vide et Some(x) si la liste contient au moins un
élément et que le dernier élément est x.

R. 1-3 Écrire une fonction permettant de calculer le miroir d’une liste. Une attention toute particu-
lière sera accordée au fait de ne pas fournir une implémentation enO(n2) due à une malencontreuse
utilisation de @. On n’utilisera pas de fonctionnelle d’itération.

R. 1-4 Écrire une fonction permettant de calculer le miroir d’une liste. Une attention toute particu-
lière sera accordée au fait de ne pas fournir une implémentation enO(n2) due à une malencontreuse
utilisation de @. On s’efforcera d’utiliser la fonctionnelle List.fold_left.

R. 1-5 Écrire une fonction permettant de calculer la concaténation de deux listes. On n’utilisera pas
de fonctionnelle d’itération.

R. 1-6 Écrire une fonction permettant de calculer la concaténation de deux listes. On s’efforcera
d’utiliser la fonctionnelle List.fold_left.

R. 1-7 Écrire une fonction prenant en argument une liste l et un élément x et calculant la liste l
privée de toutes les occurrences de l’élément x.

R. 1-8 Écrire une fonction prenant en argument une liste l et un indice i et retournant deux listes :
la sous-liste des éléments de l d’indice inférieurs stricts à i et la sous-liste des éléments de l d’indices
supérieurs à i. Cette fonction doit faire appel à une fonction auxiliaire récursive terminale.

R. 1-9 Écrire une fonction prenant en argument une liste l et un indice i et retournant deux listes :
la sous-liste des éléments de l d’indice inférieurs stricts à i et la sous-liste des éléments de l d’indices
supérieurs à i. Cette fonction doit être récursive et ne pas faire appel à des fonctions récursives
auxiliaires.

R. 1-10 Écrire une fonction prenant en argument une liste l et la découpant en deux listes, dans la
première on rangera les éléments d’indices pairs dans l, dans la seconde on rangera les éléments
d’indices impairs dans l. L’ordre des éléments dans les listes résultats doit être celui de la liste
d’entrée.

R. 1-11 Écrire une fonction testant si une liste est un palindrome. Cette fonction doit être en O(n)
où n est la longueur de la liste.



2 Listes de listes

R. 1-12 Écrire une fonction prenant en argument une liste de listes l et retournant la liste des
éléments se trouvant dans une des listes de l. Les éléments devront être rangés dans le même ordre
que dans la liste initiale. Par exemple sur la liste [[1;2]; [3;4;5]; []; [6]] on obtiendra [1; 2;
3; 4; 5; 6]. On utilisera la fonction de concaténation de listes @, en prenant garde à ne pas obtenir
une complexité quadratique.

R. 1-13 Écrire une fonction prenant en argument une liste de listes l et retournant la liste des
éléments se trouvant dans une des listes de l. Les éléments devront être rangés dans le même ordre
que dans la liste initiale. Par exemple sur la liste [[1;2]; [3;4;5]; []; [6]] on obtiendra [1; 2;
3; 4; 5; 6]. On n’utilisera pas, et on ne redéfinira pas non plus, l’opération de concaténation de
listes. On utilisera deux fonctions mutuellement récursives.

R. 1-14 Écrire une fonction prenant en argument une liste de listes l et retournant la liste des
éléments se trouvant dans une des listes de l. Les éléments devront être rangés dans le même ordre
que dans la liste initiale. Par exemple sur la liste [[1;2]; [3;4;5]; []; [6]] on obtiendra [1; 2;
3; 4; 5; 6]. On n’utilisera pas, et on ne redéfinira pas non plus, l’opération de concaténation de
listes. On utilisera une unique fonction auxiliaire récursive terminale.

R. 1-15 Écrire une fonction prenant en argument une liste de listes l et retournant la liste des
éléments se trouvant dans une des listes de l. Les éléments devront être rangés dans le même ordre
que dans la liste initiale. Par exemple sur la liste [[1;2]; [3;4;5]; []; [6]] on obtiendra [1; 2;
3; 4; 5; 6]. On n’utilisera pas, et on ne redéfinira pas non plus, l’opération de concaténation de
listes, on se limitera à des itérations au moyen de la fonctionnelle List.fold_left.

3 Listes et comparaisons

R. 1-16 Écrire une fonction récursive prenant en argument une liste et retournant un couple dont
la première composante est le minimum de la liste et la seconde composante est le maximum. Cette
fonction doit être récursive et ne pas utiliser de fonctions récursives auxiliaires. Dans le cas où la
liste est vide on lèvera l’exception Invalid_argument.

R. 1-17 Écrire une fonction récursive prenant en argument une liste et retournant un couple dont
la première composante est le minimum de la liste et la seconde composante est le maximum. Cette
fonction doit être récursive terminale et peut utiliser une fonction récursive auxiliaire. Dans le cas
où la liste est vide on lèvera l’exception Invalid_argument.

R. 1-18 Écrire une fonction récursive prenant en argument une liste et retournant un couple dont
la première composante est le minimum de la liste et la seconde composante est le maximum. Cette
fonction doit utiliser la fonctionnelle List.fold_left comme mécanisme d’itération. Dans le cas où
la liste est vide on lèvera l’exception Invalid_argument.

R. 1-19 Écrire une fonction permettant de découper une liste en sous-séquences (non vides) crois-
santes maximales pour l’extension à gauche. Par exemple la liste [1; 4; 5; 8; 7; 5; 2; 3; 4; 9;
3; 3; 3; 5; 5; 7; 2] est découpée en [[1; 4; 5; 8]; [7]; [5]; [2; 3; 4; 9]; [3; 3; 3; 5;
5; 7]; [2]].

R. 1-20 Écrire une fonction permettant de découper une liste en sous-séquences (non vides) mo-
notones maximales pour l’extension à gauche. Par exemple la liste [1; 4; 5; 8; 7; 2; 3; 4; 9;
3; 3; 3; 5; 5; 7; 2] est découpée en [[1; 4; 5; 8]; [7; 5; 2]; [3; 4; 9]; [3; 3; 3; 5;
5; 7]; [2]]



R. 1-21 Écrire une fonction prenant en arguments une liste (l: 'a list), un entier k, une fonction
f: 'a -> int à valeurs dans J0, kK et retournant la liste des éléments de l triés par image par f
croissante. On demande une implémentation en O(max(n, k)) où n est la taille de la liste l.

4 Quelques utilisations classiques des listes en algorithmique

R. 1-22 Écrire une fonction permettant de trier une liste au moyen de l’algorithme du tri fusion.

R. 1-23 Fournir une implémentation du type de données abstrait file au moyen de deux listes. On
assurera une complexité amortie en O(1) pour chaque opération.

R. 1-24 Écrire une fonction prenant en argument une liste et retournant la liste des permutations
de cette liste.

R. 1-25 Écrire une fonction prenant en argument un entier naturel n et retournant la liste des 2n

listes contenant n booléens. Ainsi dans la liste résultat on devra pouvoir trouver chaque liste de n
booléens.

5 Produit de listes

R. 1-26 Écrire une fonction prenant en argument l1 et l2 deux listes de types respectifs 'a list
et 'b list, ainsi qu’une fonction de type 'a -> 'b -> unit qui appelle cette fonction sur tous les
couples d’éléments (a,b) avec a∈l1 et b∈l2. Cette fonction ne doit utiliser aucune fonctionnelle
d’itération dans cette fonction.

R. 1-27 Écrire une fonction prenant en argument l1 et l2 deux listes de types respectifs 'a list
et 'b list, ainsi qu’une fonction de type 'a -> 'b -> unit qui appelle cette fonction sur tous les
couples d’éléments (a,b) avec a∈l1 et b∈l2. Cette fonction doit utiliser la fonctionnelle d’itération
List.iter.

R. 1-28 Écrire une fonction prenant en argument l1 et l2 deux listes de types respectifs 'a list
et 'b list, et calculant une liste de type ('a * 'b) list représentant le produit cartésien de l1
et l2. Par exemple le produit de [1;2;2] et ['a';'b'] peut être représenté par [(3, 'b'); (3,
'a'); (2, 'b'); (2, 'a'); (1, 'b'); (1, 'a')] ou n’importe quelle permutation de cette liste.
Cette fonction doit utiliser une référence et la fonctionnelle d’itération List.iter.

R. 1-29 Écrire une fonction prenant en argument l1 et l2 deux listes de types respectifs 'a list
et 'b list, et calculant une liste de type ('a * 'b) list représentant le produit cartésien de
l1 et l2. Par exemple le produit de [1;2;2] et ['a';'b'] peut être représenté par [(3, 'b');
(3, 'a'); (2, 'b'); (2, 'a'); (1, 'b'); (1, 'a')] ou n’importe quelle permutation de cette
liste. Cette fonction ne doit utiliser aucune fonctionnelle d’itération, en particulier ni List.iter ni
List.fold_left.


	fdr 1 : Programmation en OCaml: manipulation de listes
	Pied à l'étrier
	Listes de listes
	Listes et comparaisons
	Quelques utilisations classiques des listes en algorithmique
	Produit de listes


