Feuille de révisions n°1 - Programmation en OCAML : manipulation de listes

1 Pied a I’étrier

R. 1-1 Ecrire une fonction récursive retournant le dernier élément d’une liste d’'un type quelconque.
Cette fonction levera une exception Invalid_argument dans le cas ot la liste est vide. On rappelle
que I'exception Invalid_argument est prédéfinie en OCami, elle doit étre accompagnée d’'une chaine
de caracteres. Par exemple : I'évaluation de I'expression raise (Invalid_argument(”’ceci est un
message d'erreur”)) leve 'exception Invalid_argument(”ceci est un message d'erreur”).

R. 1-2 Ecrire une fonction récursive retournant le dernier élément d’une liste d’'un type quelconque.
Cette fonction doit retourner None si la liste est vide et Some(x) si la liste contient au moins un
élément et que le dernier élément est x.

R. 1-3 Ecrire une fonction permettant de calculer le miroir d’une liste. Une attention toute particu-
liere sera accordée au fait de ne pas fournir une implémentation en O(n?) due a une malencontreuse
utilisation de @. On n’utilisera pas de fonctionnelle d’itération.

R. 1-4 Ecrire une fonction permettant de calculer le miroir d’'une liste. Une attention toute particu-
liere sera accordée au fait de ne pas fournir une implémentation en ©(n?) due a une malencontreuse
utilisation de @. On s’efforcera d’utiliser la fonctionnelle List.fold_left.

R. 1-5 Ecrire une fonction permettant de calculer la concaténation de deux listes. On n’utilisera pas
de fonctionnelle d’itération.

R. 1-6 Ecrire une fonction permettant de calculer la concaténation de deux listes. On s’efforcera
d’utiliser la fonctionnelle List.fold_left.

R. 1-7 Ecrire une fonction prenant en argument une liste 1 et un élément x et calculant la liste 1
privée de toutes les occurrences de I'élément x.

R. 1-8 Ecrire une fonction prenant en argument une liste 1 et un indice i et retournant deux listes :
la sous-liste des éléments de 1 d’indice inférieurs stricts a i et la sous-liste des éléments de 1 d’indices
supérieurs a i. Cette fonction doit faire appel a une fonction auxiliaire récursive terminale.

R. 1-9 Ecrire une fonction prenant en argument une liste 1 et un indice i et retournant deux listes :
la sous-liste des éléments de 1 d’indice inférieurs stricts a i et la sous-liste des éléments de 1 d’indices
supérieurs a i. Cette fonction doit étre récursive et ne pas faire appel a des fonctions récursives
auxiliaires.

R. 1-10 Ecrire une fonction prenant en argument une liste 1 et la découpant en deux listes, dans la
premiere on rangera les éléments d’indices pairs dans 1, dans la seconde on rangera les éléments
d’indices impairs dans 1. L'ordre des éléments dans les listes résultats doit étre celui de la liste
d’entrée.

R. 1-11 Ecrire une fonction testant si une liste est un palindrome. Cette fonction doit étre en ©O(n)
ou n est la longueur de la liste.



2 Listes de listes

R. 1-12 Ecrire une fonction prenant en argument une liste de listes 1 et retournant la liste des
éléments se trouvant dans une des listes de 1. Les éléments devront étre rangés dans le méme ordre
que dans la liste initiale. Par exemple sur la liste [[1;2]; [3;4;5]; []; [6]] on obtiendra [1; 2;
3; 4; 5; 6].0On utilisera la fonction de concaténation de listes @, en prenant garde a ne pas obtenir
une complexité quadratique.

R. 1-13 Ecrire une fonction prenant en argument une liste de listes 1 et retournant la liste des
éléments se trouvant dans une des listes de 1. Les éléments devront étre rangés dans le méme ordre
que dans la liste initiale. Par exemple sur la liste [[1;2]1; [3;4;5]1; []; [61] on obtiendra [1; 2;
3; 4; 5; 6]. On n'utilisera pas, et on ne redéfinira pas non plus, 'opération de concaténation de
listes. On utilisera deux fonctions mutuellement récursives.

R. 1-14 Ecrire une fonction prenant en argument une liste de listes 1 et retournant la liste des
éléments se trouvant dans une des listes de 1. Les éléments devront étre rangés dans le méme ordre
que dans la liste initiale. Par exemple sur la liste [[1;2]; [3;4;51; []; [6]] on obtiendra [1; 2;
3; 4; 5; 6]. On n’utilisera pas, et on ne redéfinira pas non plus, 'opération de concaténation de
listes. On utilisera une unique fonction auxiliaire récursive terminale.

R. 1-15 Ecrire une fonction prenant en argument une liste de listes 1 et retournant la liste des
éléments se trouvant dans une des listes de 1. Les éléments devront étre rangés dans le méme ordre
que dans la liste initiale. Par exemple sur la liste [[1;2]; [3;4;5]; []; [6]] on obtiendra [1; 2;
3; 4; 5; 6]. On n’utilisera pas, et on ne redéfinira pas non plus, 'opération de concaténation de
listes, on se limitera a des itérations au moyen de la fonctionnelle List.fold_left.

3 Listes et comparaisons

R. 1-16 Ecrire une fonction récursive prenant en argument une liste et retournant un couple dont
la premiére composante est le minimum de la liste et la seconde composante est le maximum. Cette
fonction doit étre récursive et ne pas utiliser de fonctions récursives auxiliaires. Dans le cas ou la
liste est vide on levera I'exception Invalid_argument.

R. 1-17 Ecrire une fonction récursive prenant en argument une liste et retournant un couple dont
la premiere composante est le minimum de la liste et la seconde composante est le maximum. Cette
fonction doit étre récursive terminale et peut utiliser une fonction récursive auxiliaire. Dans le cas
ou la liste est vide on levera I'exception Invalid_argument.

R. 1-18 Ecrire une fonction récursive prenant en argument une liste et retournant un couple dont
la premieére composante est le minimum de la liste et la seconde composante est le maximum. Cette
fonction doit utiliser la fonctionnelle List.fold_left comme mécanisme d’itération. Dans le cas ou
la liste est vide on lévera I'exception Invalid_argument.

R. 1-19 Ecrire une fonction permettant de découper une liste en sous-séquences (non vides) crois-
santes maximales pour 'extension a gauche. Par exemple la liste [1; 4; 5; 8; 7; 5; 2; 3; 4; 9;
3; 3; 3; 5; 5; 7; 2]estdécoupéeen[[1; 4; 5; 81; [7]1; [5]1; [2; 3; 4; 91; [3; 3; 3; 5;
5; 71; [2]].

R. 1-20 Ecrire une fonction permettant de découper une liste en sous-séquences (non vides) mo-
notones maximales pour ’extension a gauche. Par exemple la liste [1; 4; 5; 8; 7; 2; 3; 4; 9;
3; 3; 3; 5; 5; 7; 2] est découpée en [[1; 4; 5; 81; [7; 5; 21; [3; 4; 91; [3; 3; 3; 5;
5; 71; [2]1]



R. 1-21 Ecrire une fonction prenant en arguments une liste (1: 'a list), un entier k, une fonction
f: 'a -> int a valeurs dans [0, k] et retournant la liste des éléments de 1 triés par image par f
croissante. On demande une implémentation en ©(max(n, k)) ou n est la taille de la liste 1.

4 Quelques utilisations classiques des listes en algorithmique

R. 1-22 Ecrire une fonction permettant de trier une liste au moyen de I'algorithme du tri fusion.

R. 1-23 Fournir une implémentation du type de données abstrait file au moyen de deux listes. On
assurera une complexité amortie en ©O(1) pour chaque opération.

R. 1-24 Ecrire une fonction prenant en argument une liste et retournant la liste des permutations
de cette liste.

R. 1-25 Ecrire une fonction prenant en argument un entier naturel n et retournant la liste des 2"
listes contenant n booléens. Ainsi dans la liste résultat on devra pouvoir trouver chaque liste de n
booléens.

5 Produit de listes

R. 1-26 Ecrire une fonction prenant en argument 11 et 12 deux listes de types respectifs 'a list
et 'b list, ainsi qu'une fonction de type 'a -> 'b -> unit qui appelle cette fonction sur tous les
couples d’éléments (a,b) avec acl1 et bel2. Cette fonction ne doit utiliser aucune fonctionnelle
d’itération dans cette fonction.

R. 1-27 Ecrire une fonction prenant en argument 11 et 12 deux listes de types respectifs 'a list
et 'b list, ainsi qu'une fonction de type 'a -> 'b -> unit qui appelle cette fonction sur tous les
couples d’éléments (a,b) avec acl1 et bel2. Cette fonction doit utiliser la fonctionnelle d’itération
List.iter.

R. 1-28 Ecrire une fonction prenant en argument 11 et 12 deux listes de types respectifs 'a list
et 'b list, et calculant une liste de type ('a * 'b) list représentant le produit cartésien de 11
et 12. Par exemple le produit de [1;2;2] et ['a’; 'b’'] peut étre représenté par [(3, 'b'); (3,
'a'); (2, 'b'); (2, 'a'); (1, 'b"); (1, 'a')]oun’importe quelle permutation de cette liste.
Cette fonction doit utiliser une référence et la fonctionnelle d’itération List.iter.

R. 1-29 Ecrire une fonction prenant en argument 11 et 12 deux listes de types respectifs 'a list
et 'b list, et calculant une liste de type ('a * 'b) list représentant le produit cartésien de
11 et 12. Par exemple le produit de [1;2;2] et ['a’;'b’'] peut étre représenté par [(3, 'b’);
(3, 'a’); (2, 'b'y; (2, 'a’); (1, 'b'); (1, 'a’)] oun’importe quelle permutation de cette
liste. Cette fonction ne doit utiliser aucune fonctionnelle d’itération, en particulier ni List.iter ni
List.fold_left.



	fdr 1 : Programmation en OCaml: manipulation de listes
	Pied à l'étrier
	Listes de listes
	Listes et comparaisons
	Quelques utilisations classiques des listes en algorithmique
	Produit de listes


