
Feuille d’exercices n°5.1 - Classes de complexité P et NP

Notions abordées
- modélisation, problèmes de décision
- problèmes NP
- réduction polynomiale d’un problème à un autre
- plusieurs problèmes NP-difficiles classiques

Exercice 1 : Problèmes de partitions
On décrit en français 4 problèmes de décisions NP-complets classiques.
SubsetSum Étant donnés n entiers w1, w2, . . . , wn, et un entier W , on se demande si on peut

sélectionner une partie des wi dont la somme est exactement W .
Partition Étant donnés n entiersw1, w2, . . . , wn, on se demande s’il est possible de les partitionner

en deux ensembles de même somme♣.
Knapsack Étant donnés n objets de poids p1, p2, . . . , pn et de valeurs v1, v2, . . . , vn ainsi qu’un poids

maximal P et une valeur objectif K, on se demande s’il est possible de trouver un sous-
ensemble d’objets dont la somme des valeurs est au moins K, sans dépasser le poids P .

BinPacking Étant donnés n objets de taille t1, t2, . . . , tn, C la capacité des boîtes, etK un nombre
maximum de boîtes, on se demande s’il est possible de ranger les n objets dans au plus K
boîtes en respectant la contrainte de capacité.

Q. 1 Proposer une définition formelle des quatre problèmes de décision décrits ci-avant.

Solution

SubsetSum :
�
Entrée : Un entier n∈N, une suite finie (wi)i∈�1,n� ∈Nn, un entier W
Sortie : Existe-t-il I ⊆ �1, n� tel que �

i∈I wi = W ?

Partition :
�
Entrée : Un entier n∈N, une suite finie (wi)i∈�1,n� ∈Nn

Sortie : Existe-t-il I ⊆ �1, n� tel que �
i∈I wi = �

i/∈I wi ?

Knapsack :





Entrée : Un entier n∈N, deux suites finies (pi)i∈�1,n� ∈Nn et (vi)i∈�1,n� ∈Nn,
un entier P ∈N et un seuil K ∈N

Sortie : Existe-t-il I ⊆ �1, n� tel que �
i∈I pi � P et �

i∈I vi � K ?

BinPacking :
�Entrée : Un entier n∈N, (ti)i∈�1,n� ∈Nn, C ∈N∗ et un seuil K ∈N
Sortie : Existe-t-il ϕ : �1, n� → �1, K� telle que ∀i∈�1, K�, �

j∈ϕ−1({i}) tj � C ?

♣. On note que cette somme est alors nécessairement la moitié de la somme totale des wi.
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Q. 2 On dit de manière informelle qu’un problème Q est un cas particulier d’un autre problème
R, ou que R est une généralisation de Q, lorsque Q se réduit “très simplement”♣ au problème
R. C’est par exemple le cas lorsque la fonction de réduction est l’identité. Montrer que :
a. le problème SubsetSum est un cas particulier du problème Knapsack,
b. le problème Partition est un cas particulier du problème Knapsack,
c. le problème Partition est un cas particulier du problème BinPacking.

Solution
a. Soit w = (wi)i∈�1,n� ∈ Nn une instance du problème SubsetSum.
Une entrée du problème Knapsack est constituée de deux suites finies de même taille et
deux entiers. On définit à partir de w l’entrée de Knapsack suivante.

p1, p2, . . . , pn
déf= w1, w2, . . . , wn

v1, v2, . . . , vn
déf= w1, w2, . . . , wn

K
déf= W

P
déf= W

On remarque alors que :

(p, v, K, P ) ∈ Knapsack+ ⇔ ∃I ⊆ �1, n�,
�

i∈I

xi � P et
�

i∈I

vi � K

⇔ ∃I ⊆ �1, n�,
�

i∈I

wi � W et
�

i∈I

wi � W

⇔ ∃I ⊆ �1, n�,
�

i∈I

wi = W

⇔ w ∈ SubsetSum+

Le problème SubsetSum est donc un cas particulier du problème Knapsack.
De plus cette réduction est clairement calculable en temps polynomial.

b. Soit w = (wi)i∈�1,n� ∈ Nn une instance du problème Partition. On pose S = �n
i=1 wi.

Une entrée du problème Knapsack est constituée de deux suites finies de même taille et
deux entiers. On définit à partir de w l’entrée de Knapsack suivante.

p1, p2, . . . , pn
déf= w1, w2, . . . , wn

v1, v2, . . . , vn
déf= w1, w2, . . . , wn

P
déf=

� 1
2S si S est paire
−1 sinon

K
déf= S

On remarque alors que :
- Si S est impaire, nécessairement w est une instance négative de Partition, et

(p, v, K, P ) est une instance négative de Knapsack car la contrainte de poids avec
P = −1 est insatisfiable vu que les pi sont positifs.

♣. et donc en particulier en temps polynomial
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- Sinon, i.e. si S est paire, on a K = P = 1
2S, d’où les équivalences suivantes.

(p, v, K, P ) ∈ Knapsack+ ⇔ ∃I ⊆ �1, n�,
�

i∈I

xi � P et
�

i∈I

vi � K

⇔ ∃I ⊆ �1, n�,
�

i∈I

wi �
1
2S et

�

i∈I

wi �
1
2S

⇔ ∃I ⊆ �1, n�,
�

i∈I

wi = 1
2S

⇔ ∃I ⊆ �1, n�,
�

i∈I

wi =
�

i/∈I

wi

⇔ w ∈ Partition+

Dans tous les cas on a (p, v, K, P ) ∈ Knapsack+ ⇔ w ∈ Partition+, donc le problème
Partition est un cas particulier du problème Knapsack.
De plus cette réduction est clairement calculable en temps polynomial.

c. Soit w = (wi)i∈�1,n� ∈ Nn une instance du problème Partition. On pose S = �n
i=1 wi.

Une entrée du problème BinPacking est constituée de deux entiers C etK et d’une suite
finie (ti) d’entiers. On définit à partir de w l’entrée de BinPacking suivante.

t1, t2, . . . , tn
déf= w1, w2, . . . , wn

C
déf= 1

2S

K
déf= 2

On remarque alors que S = �
j∈�1,n� tj :

(t, C, k) ∈ BinPacking+ ⇔ ∃ϕ ∈ �1, K��1,n�, ∀i ∈ �1, K�,
�

j∈ϕ−1(i)
tj � C

⇔ ∃ϕ ∈ {1, 2}�1,n�, ∀i ∈ �1, 2�,
�

j∈ϕ−1(i)
tj �

1
2S

⇔ ∃I ⊆ �1, n�,
�

j∈I

tj �
1
2S et

�

j /∈I

tj �
1
2S

⇔ ∃I ⊆ �1, n�,
�

j∈I

tj = 1
2S et

�

j /∈I

tj = 1
2S

⇔ ∃I ⊆ �1, n�,
�

j∈I

tj =
�

j /∈I

tj

⇔ w ∈ Partition+

Le problème Partition est donc un cas particulier du problème Knapsack.
De plus cette réduction est clairement calculable en temps polynomial.

Q. 3 Montrer que SubsetSum �P Partition.

Solution
Soit

�
(wi)i∈�1,n�, W ) une entrée de SubsetSum. On pose S = �n

i=1 wi.
Un entrée du problème Partition est une suite finie d’entiers. On définit à partir de w l’entrée
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de Partition suivante.

w�
1, w�

2, . . . , w�
n, , w�

n+2
déf= w1, w2, . . . , wn

w�
n+1

déf= 2S − W

w�
n+2

déf= S + w

On remarque alors que
n+2�
i=1

w�
i = 4S, ainsi I ⊆ �1, n + 2� est une solution de cette instance de

Partition si �
i∈I

= �
i/∈I

= 2S. En particulier on a :
- si n+1 /∈ I et n+2 /∈ I alors �

i�∈I w�
i � 3S > 2S, donc I n’est pas solution.

- si n+1 ∈ I et n+2 ∈ I alors �
i∈I w�

i � 3S > 2S, donc I n’est pas solution.
Finalement :

((wi)i∈�1,n�, W ) ∈ SubsetSum ⇔ ∃I � ⊆ �1, n + 2�,
�

i∈I�
w�

i =
�

i/∈I�
w�

i

⇔ ∃I � ⊆ �1, n + 2�,
�

i∈I�
w�

i = 2S

⇔ ∃I � ⊆ �1, n + 2�,
�

i∈I�
w�

i = 2S et (n + 1 ∈ I � et n + 2 /∈ I �)

ou
�

i∈I�
w�

i = 2S et (n + 1 ∈ I � et n + 2 /∈ I �)

⇔ ∃I ⊆ �1, n�,
�

i∈I

wi = 2S − 2S + W = W

ou
�

i∈I

wi = 2S − S − W = S − W

⇔ ∃I ⊆ �1, n�,
�

i∈I

wi = W

Finalement le problème SubsetSum se réduit au problème Partition et la réduction est clai-
rement polynomiale.
On peut aussi définir l’instance suivante :

w�
1, w�

2, . . . , w�
n, , w�

n+2
déf= w1, w2, . . . , wn

w�
n+1

déf= S

w�
n+2

déf= 2W

Dans ce cas
n+2�
i=1

w�
i = S +S +2W = 2(S +W ), pour I ⊆ �1, n+2� une solution de cette instance

on a nécessairement (n+1, n + 2) ∈ I × IC ou (n+1, n + 2) ∈ IC × I. Cette affirmation permet
de mener les mêmes équivalences que plus haut et de conclure de même.

Q. 4 On souhaite démontrer que les 4 problèmes SubsetSum, Partition, Knapsack et BinPa-
cking sont NP-difficiles. Quelle réduction polynomiale permettrait d’obtenir ce résultat ?
On ne demande pas de construire cette réduction car c’est l’objet de la question suivante.
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Solution
Il suffit d’exhiber une réduction polynomiale d’un problème qu’on sait être NP-difficile à Sub-
setSum par exemple de 3-SAT à SubsetSum, la NP-difficulté de Partition, Knapsack et Bin-
Packing s’en déduiront vue les réductions préalablement démontrées (et résumées ci-dessous).

Knapsack

SubsetSum Partition

BinPacking

1.a 1.b 1.c
2

Réduction polynomiale de 3-SAT à SubsetSum. On fixe une entrée du problème 3-SAT re-
présentée par une famille de m 3-clauses (cj)j∈�0,m� sur l’ensemble des variables propositionnelles
Q = {x1, x2, . . . , xn}. Pour i ∈ �1, n� et j ∈ �0, m�, on note xi ∈ cj le fait que le littéral xi apparaisse
dans la clause cj, et on note ¬xi ∈ cj le fait que le littéral ¬xi apparaisse dans la clause cj. On
considère les entiers (ai)i∈�1,n� et (bi)i∈�1,n� définis comme suit.

ai = 10m−1+i +
m−1�

j=0
1xi∈cj

10j

bi = 10m−1+i +
m−1�

j=0
1¬xi∈cj

10j

Q. 5 Pour l’instance de 3-SAT suivante : (x1 ∨¬x2 ∨x4)∧ (¬x1 ∨x3 ∨¬x4)∧ (x2 ∨x3 ∨¬x4), donner
les valeurs de :• n ; • m ; • (ai)i∈�1,n� ; • (bi)i∈�1,n�.
Afin de rendre apparent le rôle joué par les chiffres des nombres (ai)i∈�1,n� et (bi)i∈�1,n�, on
s’efforcera de représenter les nombres comme des tableaux de chiffres et de bien séparer les
m chiffres de poids faibles, des n chiffres de poids forts.

Solution
n = 4, m = 3,
• a1 = 0 0 0 1 0 0 1 : x1 est dans la clause c1, pas dans les autres.
• a2 = 0 0 1 0 1 0 0 : x2 est dans la clause c3, pas dans les autres.
• a3 = 0 1 0 0 1 1 0 : x3 est dans les clauses c2 et c3, pas dans c1.
• a4 = 1 0 0 0 0 0 0 : x4 est dans la clause c1.
• b1 = 0 0 0 1 0 1 0 : ¬x1 est dans la clause c2, pas dans les autres.
• b2 = 0 0 1 0 0 0 1 : ¬x2 est dans la clause c1, pas dans les autres.
• b3 = 0 1 0 0 0 0 0 : ¬x3 n’est dans aucune clause.
• b4 = 1 0 0 0 1 1 0 : ¬x4 est dans les clauses c2 et c3, pas dans c1.

Dans la suite de cet exercice, pour (k, j) ∈ N2 nous noterons la notation [k]j le j-ème chiffre de k,
de sorte que pour tout k ∈ N, k = �+∞

i=0 [k]j10j.
Q. 6 Démontrer que le calcul de �n

i=1 ai + �n
i=1 bi ne conduit pas à une retenue.

Solution
• Soit j ∈ �0, m−1�, par définition des (ai) et (bi) : [ai]j = 1xi∈cj

et [bi]j = 1¬xi∈cj
. Or, pour tout

j ∈ �0, m − 1� la clause cj contient exactement 3 littéraux, ainsi �n
i=1[ai]j + �n

i=1[bi]j = 3.
Finalement les m chiffres de poids faibles de la somme �n

i=1 ai + �n
i=1 bi ne conduisent pas

à une retenue.
• Soit j ∈ �m, m + n − 1�, par définition des (ai) et (bi) : [ai]j = δm−1+i,j = [bi]j, ainsi
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�n
i=1[ai]j + �n

i=1[bi]j = 2. Finalement les n chiffres de poids forts de la somme �n
i=1 ai +�n

i=1 bi ne conduisent pas à une retenue.

Q. 7 Montrer que s’il existe ρ ∈ BQ qui est un modèle de toutes les clauses (cj)j∈�0,m−1�, alors
il existe deux sous-ensembles A et B partitionnant �1, n� tels que �

i∈A ai + �
i∈B bi est un

entier dont l’écriture en base 10 est de la forme wm+n−1wm+n−2 . . . wmwm−1 . . . w1w0 avec
∀j ∈ �0, m�, wj ∈ {1, 2, 3} et ∀i ∈ �1, n�, wm−1+i = 1.

Solution
Soit ρ ∈ Bn un modèle de toutes les clauses (cj)j∈�0,m−1�. On pose A = {i ∈ �1, n� | ρ(xi) = V}
et B = {i ∈ �1, n� | ρ(xi) = F}. Montrons que de tels ensembles conviennent.
• A � B = �1, n�
• Soit j ∈ �0, m−1�, [�n

i∈A ai+
�n

i∈B bi]j = �
i∈A[ai]j +�

i∈B[bi]j � 3 de la question précédente.
Par ailleurs ρ est un modèle des clauses (cj)j∈�0,m−1� ainsi il existe une variable proposition-
nelle xi de cj telle que xi ∈ cj et ρ(xi) = V ou ¬xi ∈ cj et ρ(xi) = F. Dans le premier cas
[ai]j = 1 et i ∈ A, dans le second [bi]j = 1 et i ∈ B, d’où �

i∈A[ai]j + �
i∈B[bi]j � 1.

• Soit j ∈ �m, m + n − 1�, [�n
i∈A ai + �n

i∈B bi]j = �
i∈A[ai]j + �

i∈B[bi]j = �
i∈A δm−1+i,j +�

i∈B δm−1+i,j = 1i∈A + 1i∈B = 1.

Q. 8 Proposer deux familles d’entiers (di)i∈�0,m� et (ei)i∈�0,m� telles qu’il existe un modèle de toutes
les clauses (cj)j∈�0,m−1� si et seulement s’il existe une suite extraite de (a1, a2, . . . , an, b1, b2,
. . . , bn, d0, d1, . . . , dm−1, e0, e1, . . . , em−1) dont la somme des termes vaut l’entier dont l’écriture
décimale est 11 . . . 1� �� �

n

33 . . . 3� �� �
m

.

Solution
D’après la question précédente, les sommes “bien choisies” de ai et bi conduisent à des chiffres
de poids faibles de valeurs dans {1, 2, 3}. Ainsi afin de permettre “d’atteindre” des chiffres 3
on fournit des entiers dj = 10j pour j ∈ �0, m − 1� et ej = dj. Dans notre exemple :
• d1 = 0 0 0 0 0 0 1
• e1 = 0 0 0 0 0 0 1
• d2 = 0 0 0 0 0 1 0
• e2 = 0 0 0 0 0 1 0
• d3 = 0 0 0 0 1 0 0
• e3 = 0 0 0 0 1 0 0
Remarquons tout d’abord que le résultat de la question 6 est toujours vérifié malgré l’ajout
des (di) et (ei).
Montrons alors les deux sens de l’équivalence demandée.

⇒ Soit ρ un modèle de chacune des clauses (cj)j∈�0,m−1�. Soit A et B tels que définis dans la
question précédente. Notons alors S = �

i∈A ai+
�

i∈B bi. D’après la question précédente :
pour tout j ∈ �0, m − 1�, [S]j ∈ �1, 3� et pour tout j ∈ �m, m + n − 1�, [S]j = 1. Soit alors
D = {j ∈ �0, m − 1� | [S]j ∈ {1, 2}} et E = {j ∈ �0, m − 1� | [S]j = 1}. Finalement en
notant T = �

i∈A ai + �
i∈B bi + �

i∈D di + �
i∈E ei :

- pour tout j ∈ �0, m − 1�, [T ]j = [S]j + 1Sj∈{1,2} + 1Sj=1 = 3 ;
- pour tout j ∈ �m, m + n − 1�, [T ]j = [S]j = 1.

D’où le résultat avancé.
⇐ SoientA,B,D,E des sous-ensembles de �1, n� (pourA etB) et �1, m� (pourD etE) tels

que T
déf= �

i∈A ai + �
i∈B bi + �

i∈D di + �
i∈E ei = 11 . . . 1� �� �

n

33 . . . 3� �� �
m

. Soit j ∈ �m, m + n − 1�,
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par construction des (ci) et (di) : [T ]j = �
i∈A[ai]j + �

i∈B[bi]j = 1i∈A + 1i∈B = 1. Ainsi
A � B = �1, n�. Soit alors l’environnement propositionnel ρ défini pour tout i ∈ �1, n�
par ρ(xi) = V si et seulement si i ∈ A. Soit alors j ∈ �0, m − 1�, par construction�

i∈D[di]j + �
i∈E[ei]j � 2, ainsi �

i∈A[ai]j + �
i∈B[bi]j � 1, par disjonction de cas :

- Si il existe i ∈ A tel que [ai]j = 1 alors xi ∈ cj, et par définition de ρ, ρ(xi) = V,
ainsi �cj�ρ = V.

- Si il existe i ∈ B tel que [ai]j = 1 alors ¬xi ∈ cj, et par définition de ρ, ρ(xi) = F,
ainsi �cj�ρ = V.

Finalement �cj�ρ = V, et ceci étant vrai pour tout j ∈ �0, m − 1� on en déduit que ρ est
un modèle de toutes les clauses (cj)j∈�0,m−1�.

Q. 9 Conclure quant à la NP-difficulté des problèmes.

Solution
La fonction f associant, à une instance (ci)i∈�1,m� de 3-SAT, la famille d’entiers
((ai)i∈�1,n�, (di)i∈�1,n�, (ci)i∈�1,m�, (di)i∈�1,m�) est calculable en temps polynomial. Par ailleurs la
question précédente nous assure que pour toute instance (ci)i∈�1,m� de 3-SAT : (ci)i∈�1,m� ∈
3-SAT+ ⇔ f((ci)i∈�1,m�) ∈ SubsetSum+. Ainsi SubsetSum est np-difficile car 3-SAT l’est.
D’après les réductions résumée à la Q. 4, les problèmes Partition, Knapsack et BinPacking
le sont aussi.

Q. 10 Montrer que ces problèmes sont NP-complets.

Solution
Il nous reste à justifier que ces problèmes sont bien dans la classe NP. On le justifie en
donnant pour chaque problème l’ensemble des certificats et un problème de vérification qui
conviennent.
• SubsetSum. On choisit l’ensemble des certificats C = �

Cn où Cn = P(�1, n�). Les éléments
de Cn admettent une représentation de taille polynomiale en n. On choisit alors le problème
de vérification :

Vérif :
�
Entrée : I ∈ C, un entier n ∈ N, une suite finie (wi)i∈�1,n� ∈ Nn, un entier W
Sortie : �

i∈I wi = W ?

Vérif ∈ P.
• Partition. On choisit l’ensemble des certificats C = �

Cn où Cn = P(�1, n�). Les éléments
de Cn admettent une représentation de taille polynomiale en n. On choisit alors le problème
de vérification :

Vérif :
�
Entrée : I ∈ C, un entier n ∈ N, une suite finie (wi)i∈�1,n� ∈ Nn

Sortie : �
i∈I wi = �

i/∈I wi ?

Vérif ∈ P.
• Knapsack. On choisit l’ensemble des certificats C = �

Cn où Cn = P(�1, n�). Les éléments
de Cn admettent une représentation de taille polynomiale en n. On choisit alors le problème
de vérification :

Vérif :





Entrée : I ∈ C, un entier n ∈ N, deux suites finies (pi)i∈�1,n� ∈ Nn et
(vi)i∈�1,n� ∈ Nn, un entier P ∈ N et un seuil K ∈ N

Sortie : �
i∈I pi � P et �

i∈I vi � K ?
.

Vérif ∈ P.
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• BinPacking. On choisit l’ensemble des certificats C = �
Cn où Cn = �1, n��1,n�. Les éléments

de Cn admettent une représentation de taille polynomiale en n. On choisit alors le problème
de vérification :

Vérif :




Entrée : ϕ ∈ C, un entier n ∈ N, (ti)i∈�1,n� ∈ Nn, C ∈ N∗ et un seuil
K ∈ N

Sortie : ∀i ∈ �1, K�, �
j∈ϕ−1({i}) tj � C ?

Vérif ∈ P.
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