Feuille d’exercices n°5.1 - Classes de complexité P et NP

— Notions abordées
- modélisation, probléemes de décision
- problemes NP
- réduction polynomiale d’'un probleme a un autre
- plusieurs probléemes NP-difficiles classiques

Exercice 1 : Problemes de partitions

On décrit en francgais 4 problemes de décisions NP-complets classiques.

SuBseTSuM Etant donnés n entiers wy, ws, ..., w,, et un entier W, on se demande si on peut
sélectionner une partie des w; dont la somme est exactement V.

ParTITION Etantdonnésn entiers wy,ws,. .., w,, on se demande s’il est possible de les partitionner
en deux ensembles de méme somme *.

Knapsack Etant donnés n objets de poids p1, ps, . . ., p, et de valeurs vy, vs, . . ., v, ainsi qu'un poids
maximal P et une valeur objectif K, on se demande s’il est possible de trouver un sous-
ensemble d’objets dont la somme des valeurs est au moins K, sans dépasser le poids P.

BinPackiNG Etant donnés n objets de taille ¢4, t5, . . ., t,, C la capacité des boites, et K un nombre
maximum de boites, on se demande s’il est possible de ranger les n objets dans au plus K
boites en respectant la contrainte de capacité.

Q. 1 Proposer une définition formelle des quatre problemes de décision décrits ci-avant.

Solution

Entrée : Un entier n € N, une suite finie (w;);cp1,,; €N", un entier W

SUBSETSUM Sortie : Existe-t-il [ C [1,n] tel que > ;c;w; = W?

Entrée : Un entier n € N, une suite finie (w;);cp1,,j €N"
Sortie : Existe-t-il I C [[1,n] tel que X;c; wi = > g w; ?

Entrée : Un entier n €N, deux suites finies (p;)icpi,,) €EN" €t (v;)icqi,n) €N,
un entier P€N et un seuil K €N
Sortie : Existe-t-il / C [1,n] telque Y ;c;pi < Pet Yy ;e v = K?

KNAPSACK

PARTITION : {

Entrée : Un entier n€N, (¢;)icpi,n) €N™, C €N* et un seuil K €N
BINPACKING : '

Sortie : Existe-t-il p : [1,n] — [1, K] telle que Vi€ [1, K], ¥ e qip t; < C?

&. On note que cette somme est alors nécessairement la moitié de la somme totale des w;.
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Q. 2 On dit de maniere informelle qu'un probléme Q est un cas particulier d’un autre probleme
R, ou que R est une généralisation de Q, lorsque Q se réduit “trés simplement”* au probléme
R. C’est par exemple le cas lorsque la fonction de réduction est I'identité. Montrer que :
a. le probléeme SUBSETSUM est un cas particulier du probleme KNAPSACK,
b. le probleme PARTITION est un cas particulier du probleme KNAPSACK,
c. le probleme PARTITION est un cas particulier du probléme BINPACKING.

Solution
a. Soit w = (w;);ep,n) € Nn une instance du probléeme SUBSETSUM.
Une entrée du probléme KNAPsACK est constituée de deux suites finies de méme taille et
deux entiers. On définit a partir de w ’entrée de KNAPSACK suivante.

déf

P1,P2y...3sPp = W1,Wa,...,Wp,
deéf
V1,02,...,Unp = W1,W2,...,Wn,
déf
K=W
déf
P=W

On remarque alors que :

(p,v, K,P) € KNapsack® < 31 C [1,n],Y z; < Pet > v; 2 K

i€l il
S3IAC[L,n],d wi<Wet > w, =W
i€l icl
<3 CL,n],d w=W
i€l

< w € SUBSETSUM ™

Le probleme SuBseTSuM est donc un cas particulier du probleme KNAPSACK.
De plus cette réduction est clairement calculable en temps polynomial.

b. Soit w = (w;)icqi,»,) € Nn une instance du probléme PARTITION. On pose S = >, w;.
Une entrée du probléeme KNaPSACK est constituée de deux suites finies de méme taille et
deux entiers. On définit a partir de w 'entrée de KNAPsAcK suivante.

déf
P1,P2,- -3 Pn = W1, W2, ...,W,

déf
V1,02, ..., Up = W1, W3, ..., Wy,

p o £S5 si S est paire
| —1 sinon

K£S

On remarque alors que :
- Si S est impaire, nécessairement w est une instance négative de PARTITION, et
(p,v, K, P) est une instance négative de KNAPsAcK car la contrainte de poids avec
P = —1 est insatisfiable vu que les p; sont positifs.

&. et donc en particulier en temps polynomial
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- Sinon, i.e. si S est paire,ona K = P = %S, d’ou les équivalences suivantes.

(p,v, K, P) € KNaPsack® < 31 C [1,n],> 2, < Pet Y v > K

iel iel
1 1
& d1 C ﬂl,n]],Zwi < =Set Zwi > -8
iel 2 i€l 2
1
&3 C,n],d w==S
il 2
S 3AC[Ln],) w=> w
iel il

& w € PARTITION™

Dans tous les cas on a (p,v, K, P) € KNAPSACK'T < w € PARTITIONT, donc le probléme
PARTITION est un cas particulier du probléme KNaAPSACK.
De plus cette réduction est clairement calculable en temps polynomial.

c. Soit w = (w;)iep,n) € Nn une instance du probleme PARTITION. On pose S = Y7, w;.
Une entrée du probleme BINPACKING est constituée de deux entiers C' et K et d'une suite
finie (¢;) d’entiers. On définit a partir de w I'entrée de BINPACKING suivante.

déf

li,ta, .oty = Wi, Wa, ..o Wy
i 1
C=-8
2
K =2

On remarque alors que S = Y- e, 15

(t,C, k) € BINPAcKING T & Jp € [L, K[ vi e [1,K], Y #<C

jep~t (i)
1
& 3Jp e {12 i e [1,2], > t < 59
J€p~1(i)
1 1
SIAICL,n],Y t;<zSet > t; < =S
, , 2
jel j¢I
1 1
(:)EIIQ[[l,n]],th:fSet Zt]‘:*S
; 2 , 2
Jel J¢l
@EIIQ[[l,n]],ZQzZQ
Jel J¢l

< w € PARTITION™

Le probléme PARTITION est donc un cas particulier du probleme KNaPSACK.
De plus cette réduction est clairement calculable en temps polynomial.

Q. 3 Montrer que SUBSETSUM =< p PARTITION.

Solution
Soit ((wi)ie[[lm]}a W) une entrée de SUBSETSUM. On pose S = > | w;.
Un entrée du probleme PARTITION est une suite finie d’entiers. On définit a partir de w 'entrée
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de PARTITION suivante.

/ / / / (Léf
Wy, Way .oy Wy, Wy g = Wi, Wa, . .., Wy

Y ni
;o

;o
Wyyg =S +w

n+2
On remarque alors que > w; = 45, ainsi I C [1,n + 2] est une solution de cette instance de
i=1
PARTITION si 3. = Y. = 2S. En particulier on a :
i€l igl
-sint+1¢ Tetn+2¢ I alors Y, w; > 35 > 25, donc I n’est pas solution.
-sin+leletn+2e [alors) ,.;w, >35S > 2S5, donc I n’est pas solution.
Finalement :

((w;)ieqin), W) € SUBSETSUM < 31’ C [1,n+2], > w}= > w,

iel’ i¢r

&3 Cl,n+2],) w =25
iel’

S3AI'C1,n+2],> wi=2Set(n+1ecl'etn+2¢I)
iel’

ou  w;=25et(n+lel'etn+2¢I)
iel’
&3 CL,n],Y w=25-2S+W =W
iel
oud w;=25-5S-W=8-W
iel
&3 CL,n],d wi=W

iel

Finalement le probléme SUBSETSUM se réduit au probléme PARTITION et la réduction est clai-
rement polynomiale.
On peut aussi définir 'instance suivante :

/ / déf

/ !/
wl,w27...,wn7,wn+2:w17w2,...,wn

;o
wn—‘rl_S

1o def
Wy = 2W

n+2
Danscecas Y w,=S+S+2W =2(S+W), pour I C [1,n+2] une solution de cette instance
i=1

on a nécessairement (n+1,n+2) € I x I ou (n+1,n+2) € I¢ x I. Cette affirmation permet
de mener les mémes équivalences que plus haut et de conclure de méme.

Q.4 On souhaite démontrer que les 4 problemes SUBSETSUM, PARTITION, KNAPSACK et BINPa-
ckING sont NP-difficiles. Quelle réduction polynomiale permettrait d’obtenir ce résultat ?

On ne demande pas de construire cette réduction car c’est l'objet de la question suivante.
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Solution

Il suffit d’exhiber une réduction polynomiale d’'un probleme qu’on sait étre NP-difficile a Sus-

SETSUM par exemple de 3-SAT a SUBSETSUM, la NP-difficulté de PARTITION, KNAPSACK et BIN-

PAckING s’en déduiront vue les réductions préalablement démontrées (et résumées ci-dessous).
KNAPSACK BINPACKING

1l.a 1.b 1.c

SUBSETSUM PARTITION

Réduction polynomiale de 3-SAT a SuBserSum. On fixe une entrée du probleme 3-SAT re-
présentée par une famille de m 3-clauses (c;);c[o,n[ sur I'ensemble des variables propositionnelles
Q = {x1,29,...,2,}. Pour i € [1,n] et j € [0,m], on note x; € ¢, le fait que le littéral x; apparaisse
dans la clause ¢;, et on note —x; € ¢; le fait que le littéral —z; apparaisse dans la clause c;. On
considere les entiers (a;)ic[1,n] €t (bi)icp1,») définis comme suit.
m—1
a; = 10" 4 > " 10,107

=0
m—1
by =10""" 4+ N1 e 107
=0
Q. 5 Pour l'instance de 3-SAT suivante : (x; V —xe V xy) A (—z1 V23V —xg) A (22 VX3V —1y), dONner
lesyyaleurs de : ° m; o (a)iefin; © (b)icpim]-
Afin de rendre apparent le role joué par les chiffres des nombres (a;)icpi,n) €t (b;)ic[i,n], OD

s’efforcera de représenter les nombres comme des tableaux de chiffres et de bien séparer les
m chiffres de poids faibles, des n chiffres de poids forts.

Solution

n=4,m=3,

e aq; =0/0[0]1]0]0[1]: 7 est dans la clause c;, pas dans les autres.
 q,=10[0]1]0]1]0]0]: 4, est dans la clause c;, pas dans les autres.
o g3 =|0[1]0[0]1]1]0]; 4, est dans les clauses ¢, et c3, pas dans c¢;.

e q,=11]0]0]0]0]0]0]: 2, est dans la clause c;.

e b, =010]0[1]0[1]0]; —z, est dans la clause c,, pas dans les autres.
by =1010[1]0]0]0[1]: —z, est dans la clause ¢;, pas dans les autres.
e by =1011]0/0]0]0]0]: ~z, n’est dans aucune clause.

o b, =11[0]0]0]1[1]0]; —y, est dans les clauses c, et c3, pas dans ;.

Dans la suite de cet exercice, pour (k,j) € N? nous noterons la notation [k]; le j-éme chiffre de &,
de sorte que pour tout k € N, k = > F[k];107.

Q. 6 Démontrer que le calcul de > ; a; + > ; b; ne conduit pas a une retenue.

Solution

* Soit j € [0, m—1], par définition des (a;) et (b;) : [a;]; = ls,ec, €t [bi]; = 1-¢,ec;- OF, pour tout
J € [0,m — 1] la clause ¢; contient exactement 3 littéraux, ainsi Y1 ,[a;]; + >0 [bi]; = 3.
Finalement les m chiffres de poids faibles de la somme }_" , a; + >I, b; ne conduisent pas
a une retenue.

e Soit j € [m,m + n — 1], par définition des (a;) et (b;) : [a;]; = Om—141i; = [bs];, ainsi
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>oiqlail; + 20 [bi]; = 2. Finalement les n chiffres de poids forts de la somme .7 ; a; +
>, b; ne conduisent pas a une retenue.

Q. 7 Montrer que sl existe p € B? qui est un modele de toutes les clauses (c;);jefo.m-1], alors
il existe deux sous-ensembles A et B partitionnant [1,n] tels que > ;c 4 a; + > ;cp b; est un
entier dont 'écriture en base 10 est de la forme w,, n 1Wmin_2... WyWp,_1...wwWH avec
Vi e [0,m[,w; € {1,2,3} et Vi € [1,n], wy_14; = 1.

Solution
Soit p € B" un modele de toutes les clauses (¢;);cpo,m-1]- On pose A = {i € [1,n] | p(z;) = V}
et B={i € [1,n] | p(x;) = F}. Montrons que de tels ensembles conviennent.

* AUB=11,n]

e Soitj € [0,m—1], [Xr4 i+ p bil; = Yicalail;+>ieplbi]; < 3 dela question précédente.
Par ailleurs p est un modele des clauses (c;) c[o,m—1] ainsi il existe une variable proposition-
nelle z; de ¢; telle que z; € ¢; et p(x;) = V ou —z; € ¢; et p(x;) = F. Dans le premier cas
[a;]; = 1 eti € A, dans le second [b;]; = 1 eti € B, dou 3 ;calai]; + Yieplbi]; = 1.

* Soit j € [m,m+n—1], [Cicsai + Zicpbily = Cicalal; + Xienlbil; = Yiea Om-14i5 +
>ieB Om—1+ij = Lica + Licp = 1.

Q. 8 Proposer deux familles d’entiers (d;);cfo,m[ €t (€:)ic[o,m[ telles qu’il existe un modele de toutes

les clauses (c;);cfo,m—1] Si et seulement s'il existe une suite extraite de (ay,as, ..., an, by, bo,
S bn,doydy, ... dy 1, €0, €1, . .., €,_1) dont la somme des termes vaut I'entier dont I'écriture
décimale est 11...133...3.
—_—— ——
n m
Solution

D’apreés la question précédente, les sommes “bien choisies” de a; et b; conduisent a des chiffres
de poids faibles de valeurs dans {1, 2,3}. Ainsi afin de permettre “d’atteindre” des chiffres 3
on fournit des entiers d; = 10’ pour j € [0,m — 1] et ¢; = d;. Dans notre exemple :
e d, =0l0]0]0]ol0]|1]
e ¢, =0[0l0]0]0[0]1]
* d, =[0[0l0]0]o[1]0]
« e, =0/0]0]0J0[1]0]
e dy=10l0]0]0]1]0]0]
e 3 =0/0]0]0[1]0]0]
Remarquons tout d’abord que le résultat de la question 6 est toujours vérifié malgré I'ajout
des (d;) et (&;).
Montrons alors les deux sens de I'’équivalence demandée.
= Soit p un modele de chacune des clauses (c;) jco,m—1]- Soit A et B tels que définis dans la
question précédente. Notons alors S = >_,c 4 a;,+>_;c5 b;. D’apres la question précédente :

pour tout j € [0,m — 1], [S], € [1, 3] et pour tout j € [m, m +n — 1], [S]; = 1. Soit alors
D={je[0,m—1] | [S]; € {1,2}} et E = {j € [0,m — 1] | [S]; = 1}. Finalement en
notant 7’ = Y ;caa; + > iepbi + >icp di + X icp€i -

- pour tout j € [0,m — 1], [T]; = [S]; + 1s,eq1,2) + Ls;=1 = 3;

- pour tout j € [m,m +n — 1], [T]; = [S]; = 1.

D’ou le résultat avancé.
< Soient A, B, D, E des sous-ensembles de [[1, n] (pour A et B) et [1,m] (pour D et E) tels

que T E S aai+Yienbi+ Siepdi+Yiepei =11...133...3. Soit j € [m,m+n—1],

n m
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par construction des (¢;) et (d;) : [T]; = Yicalail; + Xienlbil; = lica + Liep = 1. Ainsi
AU B = [1,n]. Soit alors I'environnement propositionnel p défini pour tout i € [1,7]
par p(z;) = V si et seulement si ¢ € A. Soit alors j € [0,m — 1], par construction
Yiepldil; + Xicrle]; < 2, ainsi Y qlail; + X ieplbil; = 1, par disjonction de cas :
- Siil existe ; € A tel que [q;]; = 1 alors z; € ¢;, et par définition de p, p(z;) =V,
ainsi [¢;]” = V.
- Siil existe ¢ € B tel que [q;]; = 1 alors —z; € ¢;, et par définition de p, p(z;) = F,
ainsi [c;]” = V.
Finalement [¢;]” =V, et ceci étant vrai pour tout j € [0, m — 1] on en déduit que p est
un modele de toutes les clauses (c;) c[o,m—1]-

Q. 9 Conclure quant a la NP-difficulté des problemes.

Solution

La fonction f associant, a une instance (c¢;)icni,m) de 3-SAT, la famille d’entiers
((ai)icqn], (di)icpn], (€i)iep,m], (di)icp,m]) est calculable en temps polynomial. Par ailleurs la
question précédente nous assure que pour toute instance (¢;)ici,m) de 3-SAT : (¢;)icpi,m] €
3-SAT" & f((ci)ieprm)) € SUBSETSUM . Ainsi SUBSETSUM est np-difficile car 3-SAT Test.
D’apres les réductions résumée a la Q. 4, les problemes PARTITION, KNAPSACK et BINPACKING
le sont aussi.

Q. 10 Montrer que ces probléemes sont NP-complets.

Solution

Il nous reste a justifier que ces problemes sont bien dans la classe NP. On le justifie en

donnant pour chaque probleme I’ensemble des certificats et un probleme de vérification qui

conviennent.

* SuBseTSUM. On choisit 'ensemble des certificats C = |J C,, ou C,, = P([1,n]). Les éléments
de C, admettent une représentation de taille polynomiale en n. On choisit alors le probleme
de vérification :

V& _ JEntrée : I € C, un entier n € N, une suite finie (w;);cp1,,; € N”, un entier W
" | Sortie : >, w; =W?

VERIF € P.

e ParTITION. On choisit 'ensemble des certificats C = JC,, ou C, = P([1, n]). Les éléments
de C,, admettent une représentation de taille polynomiale en n. On choisit alors le probleme
de vérification :

Entrée : ] € C, un entier n € N, une suite finie (w;);cpn) € N”

VERIF : .
{Sortle P e Wi =Yg wi?

VERIF € P.

e Knapsack. On choisit 'ensemble des certificats C = |JC,, ou C,, = P([1,n]). Les éléments
de C,, admettent une représentation de taille polynomiale en n. On choisit alors le probleme
de vérification :

Entrée : | € C, un entier n € N, deux suites finies (p;)icpi,,) € N" et
VERIF : (vi)iep,n) € N™, un entier P € N et un seuil K € N
Sortie : Y ,c;pi < Petdy v, > K?

VERIF € P.
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* BINPACKING. On choisit ’ensemble des certificats C = |JC,, ot C,, = [1, n]I'"]. Les éléments
de C,, admettent une représentation de taille polynomiale en n. On choisit alors le probleme
de vérification :

K eN

Entrée : ¢ € C, un entier n € N, ()i, € N*, C € N* et un seuil
VERIF :
Sortie :Vi e [[1, K]], Zjego’l({i}) t; <C?

VERIF € P.
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