
Chapitre 6 : Trois algorithmes sur les graphes

1 Arbres couvrants de poids minimum
Dans cette section, on travaille sur un graphe non orienté pondéré G = (S, A, c) où c ∈ F(A, N). On
notera n = card(S) et m = card(A).
Vocabulaire 1.1
Dans les problèmes que l’on considère dans cette section, l’ensemble des sommets ne change pas,
et l’on cherche plutôt un ensemble d’arêtes A′ ⊆ A qui définit un arbre couvrant. On s’autorisera
donc à dire qu’un ensemble d’arêtes A′ ⊆ A est connexe, acyclique, un arbre, un arbre couvrant
. . . pour dire que le graphe (S, A′) l’est.

Notation 1.2
Suivant la même idée, si A′ ⊆ A, on notera ∼A′ la relation de connexité du graphe (S, A′). Ainsi
∀(u, v) ∈ S2, u ∼A′ v si et seulement si il existe une chaîne d’arêtes de A′ entre u et v.

1.1 Arbres

Rappel 1.3
Le graphe G est acyclique si G n’admet aucun cycle élémentaire de longueur supérieure ou égale
à 3.
Le graphe G est connexe si pour tout couple de sommets il existe une chaîne ayant ces deux
sommets comme extrémités.
Le graphe G est un arbre si et seulement si G est connexe et acyclique.

Exercice de cours 1.4
Que dire d’un sous-graphe d’un graphe acyclique ?
Que dire d’un sur-graphe d’un graphe connexe ?

Lemme 1.5
Soit B ⊆ A un sous-ensemble d’arêtes.
Si (S, B) admet un cycle élémentaire γ, et si e est une arête de γ,
alors B′ déf= B \ {e} vérifie ∼B=∼B′.
Autrement dit enlever une arête sur un cycle ne change pas la connexité.

Démonstration : La preuve est un exercice de TD. �
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Lemme 1.6
Soit B ⊆ A un sous-ensemble d’arêtes.
Si (S, B) est acyclique et si x et y sont deux sommets de S tels que x 6∼B y,
alors (S, B ∪ {x, y}) est acyclique.
Autrement dit ajouter une arête entre deux sommets non reliés ne crée pas de cycle.

Démonstration : La preuve est un exercice de TD. �

Proposition 1.7
Les 5 propositions ci-dessous sont équivalentes.
• G est connexe et acyclique
• G est connexe et |A| = |S| − 1
• G est acyclique et |A| = |S| − 1
• G est minimal parmi les sous-graphes connexes de Kn

♣

• G est maximal parmi les sous-graphes acycliques de Kn

Démonstration : La preuve est un exercice de TD. �

1.2 Arbres couvrants

Définition 1.8
On dit d’un graphe G′ = (S ′, A′) que c’est un arbre couvrant de G dès lors que : S ′ = S, A′ ⊆ A
et G′ est un arbre.

Exercice de cours 1.9
On considère le graphe G ci-dessous.

Parmi les graphes ci-dessous (représentés en ), lesquels sont des arbres couvrants de G ? Justifier.

Proposition 1.10
Un graphe admet un arbre couvrant si et seulement s’il est connexe.

Démonstration : Si G admet un arbre couvrant A′, alors par définition d’un arbre, (S, A′) est connexe.
Deux sommets quelconques de G sont reliés par une chaîne d’arêtes de A′, et donc a fortiori par une chaîne
d’arêtes de A, et sont donc reliés dans G. Ainsi G est connexe. Réciproquement si G est connexe, il suffit

♣. Kn est le graphe complet à n sommets.
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d’enlever des arêtes à A sur des cycles tant qu’il y en a . En effet, en posant B = A, on a ∼B=∼G par
définition. Tant que B admet un cycle, on choisit e une arête de ce cycle, et on la supprime de B. D’après
le lemme 1.5, on maintient ainsi ∼B=∼G. Le nombre d’arêtes de B est un variant qui assure que cette
procédure termine, et en sortie on obtient bien B un ensemble d’arête acyclique, autant connexe que G,
soit un arbre couvrant de G. �

Définition 1.11
On dit d’un graphe G′ = (S ′, A′) que c’est une forêt couvrante de G dès lors que : S ′ = S,
A′ ⊆ A et G′ est acyclique et ∼G=∼G′. Autrement dit, une forêt couvrante d’un graphe G est un
sous-graphe de G acyclique qui a exactement les mêmes composantes connexes que G.

Exercice de cours 1.12
Démontrer que tout graphe admet une forêt couvrante.

Exercice de cours 1.13
Soit un graphe connexe G à n sommets et m arêtes. Justifier que le nombre d’arbres couvrants de G est fini

en donnant, en fonction de n et m, une borne sur le nombre d’arbres couvrants.

1.3 Arbre couvrant et pondération

Définition 1.14
Si A′ ⊆ A, le poids de A′ est ∑

{x,y}∈A′ c(x, y), et parfois noté c(A′).
Si T = (S ′, A′) est un arbre, son poids, parfois noté c(T ) est c(A′).
Autrement dit le poids d’un arbre est la somme des poids de ses arêtes.

Exemple 1.15

a

b c d

e1

6

6 2

425

Un graphe non orienté pondéré

a

b c d

e

6

6 2

425

1

Un arbre couvrant de poids 12

a

b c d

e1

5 2 46

6

25

2

1

Un arbre couvrant de poids
minimum (10)

Définition 1.16

Étant donné qu’il y a un nombre fini non nul d’arbres couvrants d’un graphe connexe, on peut
alors considérer le problème d’optimisation suivant.

acpm :
{
Entrée : Un graphe connexe non orienté pondéré G = (S, A, c)
Sortie : Un arbre couvrant de poids minimum .
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Exercice de cours 1.17
Considérons le problème d’optimisation suivant.

ecpm :
{

Entrée : Un graphe connexe non orienté pondéré G = (S, A, c)
Sortie : Un ensemble d’arêtes A′ ⊆ A tel que ∼A=∼A′ minimisant c

.

Montrer que l’ensemble des arbres est dominant pour ecpm, i.e. qu’il existe toujours au moins une solution
optimale qui est un arbre.
Montrer de plus que dans le cas où c est à valeurs strictement positive cette dominance est stricte, c’est-à-dire
que toutes les solutions optimales sont des arbres.

1.4 Algorithme de Kruskal
Dans cette section on suppose que G est connexe et on cherche un arbre couvrant de poids mini-
mum de G. Une idée pour construire un tel arbre, est de partir d’un ensemble d’arêtes vide, qui a le
mérite d’être acyclique, et de l’enrichir en ajoutant des arêtes pour qu’il gagne en connexité jusqu’à
atteindre celle de G, tout en maintenant son caractère acyclique. On regarde à chaque étape la par-
tition en composantes connexes associée à l’ensemble d’arêtes. D’une part cela permet de détecter
si l’on a atteint la connexité voulue (lorsqu’il y a une seule composante), et d’autre part cela permet
de détecter qu’une arête n’est pas bonne à ajouter (si ces deux extrémités sont déjà dans la même
composante).

Exemple 1.18
Reprenons l’exemple ci-dessus, et mettons en regard des choix d’arêtes et les partitions en composantes
connexes associées.

a

b c d

e1

6

6 2

425



{a},
{e},
{c},
{b},
{d}



a

b c d

e1

6

6 2

425


{a, e},
{c},
{b},
{d}



a

b c d

e1

6

6 2

425


{a, e},
{c, b},
{d}


a

b c d

e1

6

6 2

425

{
{a, e},
{c, b, d}

}

a

b c d

e1

6

6 2

425 {{a, e, c, b, d}}

Le coût de l’arbre couvrant ainsi généré est alors la somme des coûts des arêtes sélectionnées à
chaque étape, ce qui suggère de considérer les arêtes de plus petit coût d’abord.
Ce qui donne l’algorithme glouton suivant.
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Algorithme 1 : Algorithme de Kruskal (version 0)
Entrée : Un graphe connexe non orienté pondéré G = (S, A, c)
Sortie : Un arbre couvrant de poids minimum

1 (aj)j∈J1,mK ← une indexation des arêtes par pondération croissante ;
2 B ← ∅ ;
3 i← 1 ;
4 tant que le graphe (S, B) n’est pas connexe faire
5 si le graphe (S, B ∪ {ai}) est acyclique alors
6 B ← B ∪ {ai} ;
7 i← i + 1 ;
8 retourner (S, B) ;

Exemple 1.19
L’exécution de l’algorithme sur l’exemple ci-dessus conduit aux choix représentés ci-dessous.

a

b c d

e1

6

6 2
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a

b c d

e1

6

6 2
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a

b c d

e1

6

6 2
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a

b c d

e1

6

6

2

2
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a

b c d

e1

5 2 46

6

25

2

1

Exercice de cours 1.20
Exécuter l’algorithme de Kruskal sur les graphes ci-dessous.

2

3

4

2

4

2 3

12 5

4 3
1

1
4

4 2

1

5

1

1

1

1

5 5

35 2

4 5
3

2
4

5 2

3

1

2

2

1

1

2 3

12 3

2 1
2

1
2

3 3

1

Théorème 1.21
L’algorithme de Kruskal fournit un arbre couvrant de poids minimal.

Démonstration : Nous allons mener la preuve en trois temps : établir des propriétés invariantes de la boucle
tant que de l’algorithme, démontrer la terminaison de l’algorithme, conclure en utilisant les invariants et
la négation de la condition de boucle. Pour chaque j ∈ J1, mK, notons xj et yj les extrémités de l’arête aj .
Invariants. Commençons par démontrer que les propriétés suivantes sont des invariants de la boucle tant
que l’algorithme de Kruskal.
I1 Il existe un arbre couvrant de poids minimal de G contenant les arêtes de B.
I2 B est acyclique.
I3 ∀j ∈ J1, i− 1K, xj ∼

B
yj .

I4 i ∈ J1, m + 1K.

Initialisation. Avant les itérations, B = ∅ et i = 1. Ceci assure :
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• la propriété I1, en effet G étant connexe il admet un arbre couvrant de poids minimal, et donc un
arbre couvrant de poids minimal contenant les arêtes de ∅ ;

• la propriété I2, en effet le graphe ∅ est trivialement acyclique ;
• la propriété I3, en effet J1, i− 1K = ∅ ;
• la propriété I4, en effet i = 1.

Propagation de l’invariant. Soit Bav et iav les valeurs des variables B et i au début d’une itération de
boucle, et Bap et iap, les valeurs à la fin de cette même itération.
Supposons que les propriétés I1, I2, I3 et I4 sont vérifiées par Bav et iav.
Montrons qu’elles le sont alors toujours par les valeurs Bap et iap.
Remarquons tout d’abord que iap = iav + 1. De plus, d’après la condition de boucle, Bav n’est pas
connexe.

I4 Montrons que iap ∈ J1, m + 1K.
Par invariant I4, iav ∈ J1, m + 1K, montrons en fait que iav 6= m + 1. Par l’absurde supposons que
iav = m + 1. L’invariant I3 assure alors ∀j ∈ J1, mK, xj ∼

Bav
yj , autrement dit les deux extrémités de

n’importe quelle arête de G sont reliées dans Bav (F). Montrons alors que Bav est connexe.
Soit (x, y) ∈ S2. Par connexité de G, il existe une chaîne de x à y dans G, qu’on note comme suit.

x = γ0 —
G

γ1 —
G

γ2 —
G

. . .—
G

γp = y

De la remarque (F), on déduit que ∀i ∈ J0, p − 1K, γi ∼
Bav

γi+1 et finalement par transitivité x =
γ0 ∼

Bav
γp = y. Ainsi Bav est connexe, Absurde.

On en déduit que iav 6= m + 1 donc iav ∈ J1, mK donc iap ∈ J2, m + 1K et a fortiori iap ∈ J1, m + 1K.

I3 Montrons que ∀j ∈ J1, iap − 1K, xj ∼
Bap

yj .
Soit j ∈ J1, iap − 1K. Si j ∈ J1, iav − 1K, puisque Bav ⊆ Bap, la propriété I3 en début de tour assure
xj ∼

Bap
yj . Si j = iap − 1 = iav, on distingue deux cas.

◦ Cas Bap = Bav ∪ {aiav}, soit Bap = Bav ∪ {aj}. La chaîne réduite à l’arête aj assure xj ∼
Bap

yj .
◦ Sinon Bap = Bav. D’après la condition du si, Bav ∪ {aiav} soit Bav ∪ {aj} n’est pas acyclique, or

Bav est acyclique par invariant I2. Ainsi, par contraposé du Lemme 1.6, xj ∼
Bap

yj .

I2 Montrons que Bap est acyclique.
Si Bap = Bav ∪ {aiav}, c’est parce que Bav ∪ {aiav} est acyclique (d’après la condition du si). Sinon
Bap = Bav qui est acyclique par invariant I2.

I1 Montrons qu’il existe un arbre couvrant de poids minimal de G contenant les arêtes de Bap.
Soit T ⊆ A un arbre couvrant de poids minimal de G contenant les arêtes de Bav (un tel arbre
existe par invariant I1).
Si Bap ⊆ T , on conclut en considérant le même arbre.
Sinon Bap 6⊆ T , autrement dit on a sélectionné dans B une arête lors du tour de boucle considéré,
ainsi Bap = Bav t {aiav}. De plus, d’après la condition du si, Bap acyclique.
Notons {x, y} déf= aiav , et posons alors U

déf= Tt{aiav}. Ainsi U est connexe et contient Bap, mais il n’est
pas acyclique. En effet, puisque T est un arbre, on peut considérer δ l’unique chaîne élémentaire de
x à y dans T , et former un cycle élémentaire γ en y ajoutant l’arête aiav .

γ : x— . . .— y︸ ︷︷ ︸
δ

—
aiav

x

Bap étant acyclique, il existe une arête de γ qui n’est pas dans Bap. Notons-la f et remarquons que
f 6= aiav car aiav ∈ Bap. Posons alors T ′ déf= U \ {f}.
Du lemme 1.5, T ′ est encore connexe et contient toujours Bap.
Montrons que T ′ est de plus acyclique. En effet, T ′ = (T \ {f})∪{aiav} soit T ′ = (T \ {f})∪{x, y}.
T \ {f} est acyclique en tant que sous-graphe acyclique de T (lui-même un arbre). De plus f est
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une arête de l’unique chaîne élémentaire dans T de x à y, donc x 6∼(T \{f}) y. D’après le lemme 1.6,
on en déduit que T ′ est acyclique. Ainsi T ′ est un arbre contenant Bap.
Montrons qu’il est aussi de poids minimal en montrant qu’il est de poids moindre que T .
Pour cela montrons finalement que le coût de l’arête f est moindre que celui de l’arête aiav . Consi-
dérons les deux sommets u et v tels que f = {u, v} et l’entier k tel que f = ak et montrons que
k > iav.
Par l’absurde supposons que k < iav. Alors l’invariant I3 assure que u ∼

Bav
v, ainsi il existe une

chaîne élémentaire γ dans Bav reliant u à v. Puisque Bav ⊆ T , β est une chaîne de T . La chaîne β
n’emprunte pas l’arête f = {u, v} puisque celle-ci ne se trouve pas dans Bav (car on a choisi f hors
de Bap). Ainsi on a deux chaînes élémentaires distinctes reliant u et v dans T : l’arête f et la chaîne
β. Absurde puisque T est un arbre.
Ainsi k > iav, et puisque les arêtes sont triées par poids croissant, c(ak) > c(aiav ), assurant ainsi
que c(T ′) 6 c(T ) et donc c(T ′) = c(T ) par minimalité.
Finalement, T′ est donc bien un arbre couvrant de poids minimal contenant Bap.

Variants. Montrons que la boucle tant que de l’algorithme de Kruskal termine. Considérons pour cela
l’expression numérique suivante des variables de la boucle tant que B et i.

V (B, i) déf= m + 1− i

• Par I4, i ∈ J1, m + 1K ainsi V (B, i) ∈ N.
• Avec les notations introduites ci-avant, iap = iav + 1, ainsi V (Bap, iap) < V (Bav, iav).
Ainsi V (B, i) est bien un variant de boucle à valeurs dans l’espace bien fondé (N,6), ce qui nous assure
la terminaison de la boucle Tant que.

Conclusion. Finalement, les valeurs des variables B et i en sortie de boucle sont telles que :
I1 il existe un arbre couvrant de poids minimal de G contenant les arêtes de B ;
I2 B est acyclique ;
I3 ∀j ∈ J1, i− 1K, xj ∼

B
yj ;

I4 i ∈ J1, m + 1K ;
Négation de la condition de boucle : B est connexe.
On en déduit donc que B est un arbre couvrant et qu’il est contenu dans un arbre couvrant de poids
minimal, il est donc lui aussi de poids minimal.

�

Maintenant que nous nous sommes convaincus que le choix glouton consistant à prendre à chaque
étape l’arête de plus petit poids conduit bien à un arbre de poidsminimal, il nous faut nous demander
comment nous allons implémenter les opérations “le graphe (S, B) est-il connexe? ” ou encore “le
graphe (S, B ∪ {ai}) est-il acyclique?”. La donnée, à chaque instant de l’algorithme, de l’ensemble
des composantes connexes du graphe G = (S, B) nous permet de répondre “aisément” à ces deux
questions. De plus nous remarquons que l’évolution des composantes connexes du graphe (S, B), à
mesure que l’algorithme se déroule, peut être exprimée à l’aide de fusions de partitions, depuis le
partitionnement trivial (dans lequel chaque élément est seul dans sa partie). En effet initialement
B = ∅, aussi la décomposition en composantes connexes du graphes (S, B) est la décomposition en
des parties singletons. L’ajout d’une arête à B a pour effet la fusion des composantes connexes des
sommets se trouvant aux deux extrémités de l’arête en question. On se pose alors la question de
l’implémentation d’une structure de données qui permette la représentation de partitionnements,
sur lesquels il est possible de faire des opérations de fusion.

1.5 Union Find
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Définition 1.22
On définit le type de données abstrait UnionFind comme contenant :

• un type elt des éléments manipulés ;
• un type t représentant la structure ;
• une fonction union de signature t× elt× elt→ t ;
• une fonction trouve de signature t× elt→ elt ;
• une fonction initialise de signature Pf (elem)→ t.

La fonction union est telle que ∀P ∈ t,∀(x, y) ∈ elt2, union(P, x, y) calcule le partitionnement
obtenu à partir de P en fusionnant les classes de x et y.
La fonction trouve de signature t × elt → elt est telle que ∀P ∈ t,∀x ∈ elt, find(P, x) calcule un
représentant de la classe de x dans la partie P, ainsi ∀P ∈ t, ∀(x, y) ∈ elt2, x est équivalent à y
dans elt2 ⇔ find(P, x) = find(P, y).
La fonction initialise est telle que pour tout ensemble fini S d’éléments de elt, initialise(S) retourne
le partitionnement trivial dans lequel chaque élément de S est seul dans sa classe.

Remarque 1.23
On notera equiv de signature t× elt× elt→ B, la fonction permettant de tester si deux éléments sont dans
la même classe d’équivalence. Cette fonction peut-être définie de la manière suivante.

∀P ∈ t, ∀(x, y) ∈ elt× elt, equiv(P, x, y) déf= find(P, x) ?= find(P, y)

Dans la suite on suppose que l’ensemble des éléments à représenter est un ensemble d’entiers de la
forme J0, n− 1K.

Implémentation au moyen d’une structure arborescente. On met en place une structure de
forêt. À chaque élément de S on adjoint un élément de S qui est son père. Ainsi pour chaque
élément de S on peut aller visiter son père, puis le père de son père, etc. . .. Afin d’assurer qu’un tel
processus termine, le père d’un élément ne peut être son descendant strict. Cependant le père d’un
élément peut-être lui-même, auquel cas on dit que cet élément est une racine. L’ensemble S étant
fini, le parcours de père en père depuis n’importe quel élément x conduit alors nécessairement à
un élément racine : c’est le représentant de la classe de x. Attention, les arbres manipulés n’ont
donc pas la structures inductive usuelle des arbres. Si un arbre est souvent défini comme un nœud
contenant deux fils qui sont eux-mêmes des arbres, ici un nœud contient un pointeur vers son père
seulement, il n’a pas accès à ses fils, qui peuvent d’ailleurs être en nombre quelconque (0, 1, 2 ou plus
…). On choisit comme représentant canonique de chaque classe la racine de l’arbre représentant la
classe.

Exemple 1.24
L’illustration ci-dessous représente la partition de J0, 10K en 4 classes : {1, 2, 3, 7}, {0, 5}, {6} et {4, 8, 9, 10}.

7

3 2

1

5

0

6 4

8 9 10

Ainsi {1, 2, 3, 7} admet 7 comme représentant canonique. De même {0, 5} (resp.{6}, resp.{4, 8, 9, 10}) admet
5 (resp.6, resp.4) comme représentant canonique.

Informatique - MPI Lycée Fermat - 2025/2026 8/12



Une telle forêt peut aisément être représentée en machine par la donnée du père de chaque élément,
stockée par exemple dans un tableau.

Exemple 1.25
On continue l’exemple précédent. La forêt ci-dessus serait représentée en OCaml par le tableau [|5; 2; 7;
7; 4; 5; 6; 7; 4; 4; 4|]

Exercice de cours 1.26
Donner deux forêts distinctes représentant le partitionnement {{0, 3}, {1}, {2, 8, 9}, {4}, {5, 6, 7}}.
Pour chacune de ces forêts donner un tableau OCaml représentant la forêt en question.

Algorithmes find et union. L’algorithme find peut alors être implémenté en se déplaçant de père
en père, depuis l’élément dont on souhaite connaître un représentant. Lorsqu’on atteint un élément
qui est son propre père on s’arrête et on le retourne.
L’algorithme union de deux éléments x et y peut alors être implémenté en cherchant a et b les
représentants respectifs de x et y (au moyen de deux appels à find), puis à changer le pointeur père
de a vers b ou l’inverse.

Exemple 1.27
Ainsi dans l’exemple ci-dessus si l’on souhaite faire l’union de la classe de 1 et de la classe de 8 : on trouve le
représentant de 1 (c’est 7), on trouve le représentant de 8 (c’est 4), puis on change le père de 7 pour que ce
soit 4 conduisant alors à la forêt ci-dessous.

5

0

6 4

8 7

3 2

1

9 10

Première amélioration : union par rang. La remontée de père en père dans un arbre est d’autant
plus coûteuse (dans le pire cas) que les arbres sont hauts. Aussi dans l’exemple ci-avant, il est
particulièrement malheureux d’avoir changer le père de 7 en 4 plutôt que le père de 4 en 7. En effet
la profondeur du nœud le plus profond n’aurait pas augmentée dans le second cas (profondeur 2
pour 1) alors que dans le cas représenté ci-dessus on atteint une profondeur de 3 pour le nœud
1. En vue de manipuler des arbres les moins hauts possibles, on souhaite connaître la hauteur des
arbres impliqués lors d’une opération d’union. Pour cela, on conserve au niveau de chaque nœud
une majoration de la hauteur du sous-arbre qu’il engendre. Plus précisément, on appelle rang d’un
nœud x une majoration de la hauteur du sous-arbre enraciné en x. C’est-à-dire l’arbre constitué des
élément qui admettent x comme ancêtre. Dans l’exemple ci-avant, le nœud étiqueté par la valeur
4 admet 1 comme rang (mais aussi 42). Aussi lors de l’union on utilise l’information de rang pour
décider de mettre le nœud de rang inférieur “sous” le nœud de rang supérieur. En cas d’égalité on
choisit indifféremment, mais on n’oublie pas d’incrémenter le rang de la nouvelle racine.

Seconde amélioration : compression de chemins. Lorsqu’on fait une opération find(x) on par-
court les nœuds de x vers la racine de l’arbre contenant x. Cette opération a un coût algorithmique
qui est la longueur du chemin entre x et la racine de l’arbre, notons C ce coût. Une fois qu’on a
trouvé le représentant de x (notons le r), on peut, pour un coût de l’ordre de C, reparcourir le
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chemin de x à r en mettant à jour le pointeur de père vers r. C’est pour cette raison que le rang
n’est pas exactement la hauteur des arbres mais bien une sur-approximation : le compression de
chemin décroît la hauteur des arbres, sans changer les rangs.

Exemple 1.28
Considérons la structure Union-Find de l’exemple ci-dessus. Les rangs sont indiqués en rouge au dessus à
droite des nœuds.
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Un appel à union(0, 8) conduit aux appels find(0) = 5 et find(8) = 4. Ces deux sommets sont de même rang,
on choisit indifféremment lequel sera le représentant de la classe : 4. On obtient la structure suivante.
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Un appel à union(0, 6) conduit aux appels find(0) = 4 et find(6) = 6. Le nœud 6 est de rang inférieur, il est
donc placé “sous” le nœud 4. Lors de l’appel find(0), on profite d’avoir trouver la racine (4) pour raccourcir
les chemins vers la racine. On obtient la structure suivante. Remarquer que le rang de 4 est strictement
sur-approximant de la profondeur de l’arbre.
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Finalement un appel à union(3, 4) conduit aux appels find(3) = 7 et find(4) = 4. Ces deux nœuds sont de
même rang. On choisit indifféremment de placer 4 “sous” 7. On obtient la structure suivante.
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Exercice de cours 1.29
Donner l’évolution de la forêt sous-jacente à la structure UnionFind initialisée sur l’ensemble {1, 2, 3, 4, 5, 6, 7, 8, 9},
sur laquelle on effectue la suite d’opérations ci-dessous. On pensera à appliquer les deux améliorations ci-dessus
(union par rang et compression de chemins). En cas d’ambiguïté (lors d’une fusion de deux sommets de même
rang) on choisira comme racine celle de plus petit numéro.

1. union(1, 3) ;
2. union(5, 7) ;
3. union(7, 5) ;

4. union(5, 1) ;
5. union(7, 5) ;
6. union(4, 6) ;

7. union(8, 9) ;
8. union(4, 8) ;
9. union(6, 3) ;

Conclusion. On se convainc que la structure UnionFind présentée ci-avant admet les invariants
suivants :
• Le rang du père d’un nœud est toujours strictement supérieur au rang dudit nœud.
• Un nœud de rang p est la racine d’un arbre contenant au moins 2p nœud.
De ces invariants, on déduit que si une opération find coûte p ∈ N, c’est que le rang de la racine
ainsi obtenue est au moins p et donc l’arbre de taille au moins 2p. Ou en prenant le raisonnement
dans l’autre sens : dans un arbre contenant au plus n ∈ N nœuds, il n’est pas possible de faire une
opération find coûtant strictement plus de log2(n) itérations. Finalement les opérations union et find
de la structure proposée ci-avant induisent dans le pire cas des complexités logarithmiques en le
nombre d’éléments stockés dans la structure.

Exercice de cours 1.30
Étant donnée une structure UnionFind initialisée à n éléments, on manipule cette structure en effectuant
uniquement des opérations d’union sur des éléments qui ne sont pas déjà dans la même classe.
Donner des bornes sur le nombre de telles opérations qu’il est possible d’appliquer avant que la structure ne
représente le partitionnement dans lequel tous les éléments sont dans la même classe.

Exercice de cours 1.31
Soit n ∈ N, on considère une structure UnionFind initialisée avec les éléments de S = {1, 2, 3, . . . , 2n}.
Donner une suite de 2n − 1 fusions conduisant à un partitionnement dans lequel une des racines est la racine
d’un arbre de hauteur n.

1.6 Retour à l’algorithme de Kruskal
Donnons donc la forme finale de l’algorithme de Kruskal.
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Algorithme 2 : Algorithme de Kruskal, version suivante
Entrée : Un graphe connexe non orienté pondéré G = (S, A, c)
Sortie : Un arbre couvrant de poids minimum

1 (ai)i∈J1,mK ← une indexation des arêtes par pondération croissante. ;
2 B ← ∅ ;
3 P← initialise(S) ;
4 i← 1 ;
5 tant que card(P) > 1 faire
6 {x, y} ← ai ;
7 si ¬equiv(P, x, y) alors
8 P← union(P, x, y) ;
9 B ← B ∪ {ai} ;

10 i← i + 1 ;
11 retourner (S, B) ;

Étude de complexité. Notons (Cn
union)n∈N et (Cn

find)n∈N des majorants de la complexité algorith-
mique des opérations union et find appelés sur des structures contenant n éléments.
Notons de plus (Cn

initialise)n∈N un majorant de la complexité algorithmique de l’opération initialise
appelé sur un ensemble de n éléments.
La complexité algorithmique de l’algorithmique de Kruskal sur un graphe contenant n sommets et
m arêtes est alors majorée par :
ligne 1 Un tri des m arêtes, induisant un coût de O(m log(m)).
ligne 3 Initialisation de la structure UnionFind, induisant un coût de Cn

initialise.
ligne 5 Une boucle tant que effectuant au plus m itérations, la branche alors du si se trouvant

dans le corps de la boucle est emprunté au plus n− 1 fois.
ligne 7 Deux calculs de représentants dans P, contenant n éléments : 2Cn

find
ligne 8 Un calcul d’union dans P, contenant n éléments : Cn

union

Soit un bilan à :
O(m log(m) + Cn

initialise + mCn
find + nCn

union).

En mettant en place la structure UnionFind à base de forêts présentée ci-avant, il est possible de faire
descendre la complexité algorithmique en O(m log(m) + n + m log(n) + n log(n)) = O(m log(n))♣.

Exercice de cours 1.32
Considérons l’implémentation naïve suivante du type de données abstrait UnionFind : le partitionnement est
représenté en mémoire par une liste de listes (le partitionnement {{1, 2}, {3, 4}, {5}} est représenté par la liste
[[1; 2]; [3; 4]; [5]]), les opérations initialise, union et find sont implémentés au moyen de manipulations
de listes.
Quelles sont alors les complexités algorithmiques des fonctions initialise, union et find ? Quel est l’impact sur
la complexité algorithmique de l’algorithme de Kruskal ?

♣. On rappelle que n− 1 6 m 6 n2 donc O(log(m)) = O(log(n))
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