Chapitre 6 : Trois algorithmes sur les graphes

1 Arbres couvrants de poids minimum

Dans cette section, on travaille sur un graphe non orienté pondéré G = (S5, A, c) ou c € F(A,N). On
notera n = card(S) et m = card(A).

Vocabulaire 1.1

Dans les probléemes que I'on considere dans cette section, 'ensemble des sommets ne change pas,
et I'on cherche plutét un ensemble d’arétes A’ C A qui définit un arbre couvrant. On s’autorisera
donc a dire qu’un ensemble d’arétes A’ C A est connexe, acyclique, un arbre, un arbre couvrant
... pour dire que le graphe (S, A’) I'est.

Notation 1.2

Suivant la méme idée, si A’ C A, on notera ~ 4 la relation de connexité du graphe (S, A’). Ainsi
V(u,v) € S?,u ~4 v si et seulement si il existe une chaine d’arétes de A’ entre u et v.

1.1 Arbres

Rappel 1.3

Le graphe G est acyclique si G n’admet aucun cycle élémentaire de longueur supérieure ou égale
a3.

Le graphe G est connexe si pour tout couple de sommets il existe une chaine ayant ces deux
sommets comme extrémités.

Le graphe G est un arbre si et seulement si G est connexe et acyclique.

M Exercice de cours 1.4

Que dire d'un sous-graphe d'un graphe acyclique ?

Que dire d’un sur-graphe d'un graphe connexe?

Lemme 1.5

Soit B C A un sous-ensemble d’arétes.

Si (S, B) admet un cycle élémentaire v, et si e est une aréte de ,

alors B' < B\ {e} vérifie ~g=~p.

Autrement dit enlever une aréte sur un cycle ne change pas la connexité.

Démonstration : La preuve est un exercice de TD. O

Informatique - MPI Lycée Fermat - 2025/2026 1/12

Lemme 1.6

Soit B C A un sous-ensemble d’arétes.

Si (S, B) est acyclique et si x et y sont deux sommets de S tels que x g y,

alors (S, BU {z,y}) est acyclique.

Autrement dit ajouter une aréte entre deux sommets non reliés ne crée pas de cycle.

Démonstration : La preuve est un exercice de TD. O

Proposition 1.7

Les 5 propositions ci-dessous sont équivalentes.

* (G est connexe et acyclique

* G est connexe et |A| =|S|—1

* G est acyclique et |A| = |S| -1

e G est minimal parmi les sous-graphes connexes de K, *
* (G est maximal parmi les sous-graphes acycliques de K,

Démonstration : La preuve est un exercice de TD. O

1.2 Arbres couvrants

Définition 1.8
LOH dit d’un graphe G’ = (S’, A’) que c’est un arbre couvrant de G des lors que : S’ = S, A’ C A

et G est un arbre.

M Exercice de cours 1.9

On considere le graphe G ci-dessous.

Parmi les graphes ci-dessous (représentés en ==), lesquels sont des arbres couvrants de G 7 Justifier.

Proposition 1.10

Un graphe admet un arbre couvrant si et seulement s’il est connexe.

Démonstration : Si G admet un arbre couvrant A’, alors par définition d’un arbre, (S, A’) est connexe.
Deux sommets quelconques de G sont reliés par une chaine d’arétes de A’, et donc a fortiori par une chaine
d’arétes de A, et sont donc reliés dans G. Ainsi GG est connexe. Réciproquement si G est connexe, il suffit

&. K, est le graphe complet a n sommets.

Informatique - MPI Lycée Fermat - 2025/2026 2/12

d’enlever des arétes a A sur des cycles tant qu’il y en a . En effet, en posant B = A, on a ~g=~¢ par
définition. Tant que B admet un cycle, on choisit e une aréte de ce cycle, et on la supprime de B. D’apres
le lemme 1.5, on maintient ainsi ~p=~¢. Le nombre d’arétes de B est un variant qui assure que cette
procédure termine, et en sortie on obtient bien B un ensemble d’aréte acyclique, autant connexe que G,
soit un arbre couvrant de G. O

Définition 1.11
On dit d’un graphe G' = (5', A’) que c’est une forét couvrante de G dés lors que : S’ = S,

A" C A et G est acyclique et ~g=~ . Autrement dit, une forét couvrante d’un graphe G est un
sous-graphe de G acyclique qui a exactement les mémes composantes connexes que G.

M Exercice de cours 1.12

Démontrer que tout graphe admet une forét couvrante.

P Exercice de cours 1.13

Soit un graphe connexe G a n sommets et m arétes. Justifier que le nombre d'arbres couvrants de G est fini

en donnant, en fonction de n et m, une borne sur le nombre d'arbres couvrants.

1.3 Arbre couvrant et pondération

Définition 1.14
Si A" C A, le poids de A" est 31, year c(w,y), et parfois noté c(A’).
SiT = (5, A’) est un arbre, son poids, parfois noté ¢(T') est ¢(A’).
Autrement dit le poids d’un arbre est la somme des poids de ses arétes.

Exemple 1.15

% S o> N o>
Vibve N

Un graphe non orienté pondéré Un arbre couvrant de poids 12 Un arbre couvrant de poids
minimum (10)

Définition 1.16

Etant donné qu’il y a un nombre fini non nul d’arbres couvrants d’un graphe connexe, on peut
alors considérer le probléme d’optimisation suivant.

Entrée : Un graphe connexe non orienté pondéré G = (S, A, ¢)

ACPM : . . -
{Sorﬂe : Un arbre couvrant de poids minimum

Informatique - MPI Lycée Fermat - 2025/2026 3/12

P Exercice de cours 1.17

Considérons le probleme d'optimisation suivant.

Entrée : Un graphe connexe non orienté pondéré G = (S, A, ¢)
ECPM : . A p e
Sortie : Un ensemble d'arétes A’ C A tel que ~4=~ 4 minimisant ¢

Montrer que I'ensemble des arbres est dominant pour ECPM, i.e. qu'il existe toujours au moins une solution
optimale qui est un arbre.
Montrer de plus que dans le cas ou ¢ est a valeurs strictement positive cette dominance est stricte, c'est-a-dire

que toutes les solutions optimales sont des arbres.

1.4 Algorithme de Kruskal

Dans cette section on suppose que G est connexe et on cherche un arbre couvrant de poids mini-
mum de G. Une idée pour construire un tel arbre, est de partir d'un ensemble d’arétes vide, qui a le
mérite d’étre acyclique, et de I'enrichir en ajoutant des arétes pour qu’il gagne en connexité jusqu’a
atteindre celle de G, tout en maintenant son caractere acyclique. On regarde a chaque étape la par-
tition en composantes connexes associée a I’ensemble d’arétes. D’'une part cela permet de détecter
sil’on a atteint la connexité voulue (lorsqu’il y a une seule composante), et d’autre part cela permet
de détecter qu'une aréte n’est pas bonne a ajouter (si ces deux extrémités sont déja dans la méme
composante).

Exemple 1.18
Reprenons I'exemple ci-dessus, et mettons en regard des choix d’arétes et les partitions en composantes
connexes associées.

N o) C?_ 7?\ N
tel fe.

{c},

Lede L8] b L
GP— 7?\ ta el C?_ 7?\ {a g }

{c b}

40 NS it B V0 BN

AN
b

Le colit de l'arbre couvrant ainsi généré est alors la somme des colits des arétes sélectionnées a
chaque étape, ce qui suggere de considérer les arétes de plus petit cotit d’abord.
Ce qui donne l'algorithme glouton suivant.

{{a,e,c,b,d}}

Informatique - MPI Lycée Fermat - 2025/2026 4/12

Algorithme 1 : Algorithme de Kruskal (version 0)

Entrée : Un graphe connexe non orienté pondéré G = (S, A, ¢)
Sortie : Un arbre couvrant de poids minimum
(aj)jeqi,m) < une indexation des arétes par pondération croissante ;
B+ 0;
14 1;
tant que le graphe (S, B) n’est pas connexe faire

si le graphe (S, B U {a;}) est acyclique alors

‘ B+ BU {CI,Z},
14 1+1;

ST NS, T O UR R

[~}

retourner (S, B);

Exemple 1.19
L'exécution de l'algorithme sur 'exemple ci-dessus conduit aux choix représentés ci-dessous.

AR T TR

6

Kobdo b Do dlede
TN TN

6 6

&b b

P Exercice de cours 1.20

Exécuter I'algorithme de Kruskal sur les graphes ci-dessous.

Iﬂ“%‘ﬁ I*”Il};; .
L27+T5Z 19! L‘r’* 32 L27+E3
SN SLY AL

Théoréme 1.21

L’algorithme de Kruskal fournit un arbre couvrant de poids minimal.

Démonstration : Nous allons mener la preuve en trois temps : établir des propriétés invariantes de la boucle
tant que de l'algorithme, démontrer la terminaison de I'algorithme, conclure en utilisant les invariants et
la négation de la condition de boucle. Pour chaque j € [1,m], notons z; et y; les extrémités de I'aréte a;.

Invariants. Commencons par démontrer que les propriétés suivantes sont des invariants de la boucle tant
que l'algorithme de Kruskal.

I 1l existe un arbre couvrant de poids minimal de G contenant les arétes de B.
I, B est acyclique.

Iy Vj e [Li =1, x5 ~ y;.

I, i€ [[1,m+ 1]]

Initialisation. Avant les itérations, B = () et ¢ = 1. Ceci assure :

Informatique - MPI Lycée Fermat - 2025/2026 5/12

* la propriété I, en effet G étant connexe il admet un arbre couvrant de poids minimal, et donc un
arbre couvrant de poids minimal contenant les arétes de (};
* la propriété I, en effet le graphe () est trivialement acyclique;
* la propriété Is, en effet [1,i — 1] = 0;
* la propriété I, en effet i = 1.
Propagation de Uinvariant. Soit B® et i*’ les valeurs des variables B et i au début d’'une itération de
boucle, et B et 1%, les valeurs a la fin de cette méme itération.

Supposons que les propriétés I, I, I3 et I, sont vérifiées par B* et i**.
Montrons qu’elles le sont alors toujours par les valeurs B et %P,
Remarquons tout d’abord que i? = i*“ + 1. De plus, d’apres la condition de boucle, B’ n’est pas
connexe.
I, Montrons que " € [1,m + 1].
Par invariant Iy, i* € [1, m + 1], montrons en fait que i** # m + 1. Par 'absurde supposons que
i* = m + 1. Linvariant /3 assure alors Vj € [1,m], z; G Yio autrement dit les deux extrémités de

n’'importe quelle aréte de G sont reliées dans B’ (%). Montrons alors que B®¥ est connexe.
Soit (z,y) € S2. Par connexité de G, il existe une chaine de = a y dans GG, qu’on note comme suit.

€ :’)’03’713’725---5% =Y

De la remarque (%), on déduit que Vi € [0,p — 1], G, it et finalement par transitivité x =

0 L =Y Ainsi B® est connexe, ABSURDE.

On en déduit que i*” # m + 1 donc i®” € [1,m] donc i*? € [2,m + 1] et a fortiori i*P € [1,m + 1].

I3 Montrons que Vj € [1,:% — 1], z; 5 Vi
Soit j € [1,i?’ — 1]. Si j € [1,i*” — 1], puisque B* C B, la propriété I3 en début de tour assure
Tj o~ Y- Sij =i —1 =1, on distingue deux cas.

° Cas B = B U {ajw}, soit B = B* U {a;}. La chaine réduite a I'aréte a; assure x; ~ ;.
Bap

o Sinon B = B®. D’apres la condition du si, B*” U {a;a } soit B*” U {a;} n’est pas acyclique, or
B® est acyclique par invariant /. Ainsi, par contraposé du Lemme 1.6, z; G Vi
ap

I, Montrons que B est acyclique.
Si B = B% U {a;a }, Cest parce que B U {a;qv } est acyclique (d’apres la condition du si). Sinon
B = B qui est acyclique par invariant /5.

I; Montrons qu'’il existe un arbre couvrant de poids minimal de G contenant les arétes de BP.
Soit T C A un arbre couvrant de poids minimal de G contenant les arétes de B®’ (un tel arbre
existe par invariant I;).
Si B C T, on conclut en considérant le méme arbre.
Sinon B ¢ T, autrement dit on a sélectionné dans B une aréte lors du tour de boucle considéré,
ainsi B*? = B* Ll {aav }. De plus, d’apres la condition du si, B acyclique.
Notons {z,y} & aav, et posons alors U & T'Li{a;e }. Ainsi U est connexe et contient 3%, mais il n’est
pas acyclique. En effet, puisque T est un arbre, on peut considérer ¢ I'unique chaine élémentaire de
x a y dans T, et former un cycle élémentaire v en y ajoutant 'aréte a;av.

VYix—...—Yy — T
—_———— Qv
5

B étant acyclique, il existe une aréte de v qui n’est pas dans B°". Notons-la f et remarquons que
f # ajev car aar € B, Posons alors 7" < U \ {f}.

Du lemme 1.5, T” est encore connexe et contient toujours B%.

Montrons que 7" est de plus acyclique. En effet, 77 = (T'\ {f}) U{ajav } soit T' = (T'\ {f}) U{z, y}-
T\ {f} est acyclique en tant que sous-graphe acyclique de 7' (lui-méme un arbre). De plus f est

Informatique - MPI Lycée Fermat - 2025/2026 6/12

une aréte de I'unique chaine élémentaire dans 7" de z a y, donc = %7\ () y- D’apres le lemme 1.6,
on en déduit que 7" est acyclique. Ainsi 7" est un arbre contenant B%.

Montrons qu'’il est aussi de poids minimal en montrant qu’il est de poids moindre que 7.

Pour cela montrons finalement que le cofit de I'aréte f est moindre que celui de I'aréte a;av. Consi-
dérons les deux sommets u et v tels que f = {u,v} et 'entier k tel que f = a; et montrons que
k> i%.

Par l'absurde supposons que k£ < i?Y. Alors I'invariant I3 assure que u o U ainsi il existe une
chaine élémentaire v dans B reliant u a v. Puisque B*” C T', (est une chaine de 7'. La chaine /3
n’emprunte pas l'aréte f = {u, v} puisque celle-ci ne se trouve pas dans B*’ (car on a choisi f hors
de B?). Ainsi on a deux chaines élémentaires distinctes reliant v et v dans T : ’aréte f et la chalne
5. ABSURDE puisque T est un arbre.

Ainsi k£ > i%?, et puisque les arétes sont triées par poids croissant, c(ai) > c(a;av), assurant ainsi
que ¢(T") < ¢(T) et donc ¢(T") = ¢(T') par minimalité.

Finalement, 7’ est donc bien un arbre couvrant de poids minimal contenant B,

Variants. Montrons que la boucle tant que de I'algorithme de Kruskal termine. Considérons pour cela
I'expression numérique suivante des variables de la boucle tant que B et i.
V(B,i))Em+1—i
e Par Iy, i € [1,m+ 1] ainsi V(B, i) € N.
* Avec les notations introduites ci-avant, i*? = i%¥ 4 1, ainsi V (B, i) < V (B, i*).
Ainsi V (B, 1) est bien un variant de boucle a valeurs dans I'espace bien fondé (N, <), ce qui nous assure
la terminaison de la boucle Tant que.
Conclusion. Finalement, les valeurs des variables B et i en sortie de boucle sont telles que :

I, il existe un arbre couvrant de poids minimal de GG contenant les arétes de B
I> B est acyclique;

Ig Vj c ﬂl,i — 1]],xj fE Yjs

Iy iel,m+1];

Négation de la condition de boucle : B est connexe.

On en déduit donc que B est un arbre couvrant et qu’il est contenu dans un arbre couvrant de poids
minimal, il est donc lui aussi de poids minimal.

Maintenant que nous nous sommes convaincus que le choix glouton consistant a prendre a chaque
étape I'aréte de plus petit poids conduit bien a un arbre de poids minimal, il nous faut nous demander
comment nous allons implémenter les opérations “le graphe (S, B) est-il connexe? ” ou encore “le
graphe (S, B U {a;}) est-il acyclique ?”. La donnée, a chaque instant de I'algorithme, de 'ensemble
des composantes connexes du graphe G = (S, B) nous permet de répondre “aisément” a ces deux
questions. De plus nous remarquons que 1’évolution des composantes connexes du graphe (5, B), a
mesure que l'algorithme se déroule, peut étre exprimée a 'aide de fusions de partitions, depuis le
partitionnement trivial (dans lequel chaque élément est seul dans sa partie). En effet initialement
B = (), aussi la décomposition en composantes connexes du graphes (.5, B) est la décomposition en
des parties singletons. L'ajout d’une aréte a B a pour effet la fusion des composantes connexes des
sommets se trouvant aux deux extrémités de I'aréte en question. On se pose alors la question de
I'implémentation d’une structure de données qui permette la représentation de partitionnements,
sur lesquels il est possible de faire des opérations de fusion.

1.5 Union Find

Informatique - MPI Lycée Fermat - 2025/2026 7/12

Définition 1.22
On définit le type de données abstrait UnionFind comme contenant :
* un type elt des éléments manipulés;
* un type t représentant la structure;
* une fonction union de signature t x elt X elt — t;
* une fonction trouve de signature t X elt — elt;
* une fonction initialise de signature Ps(elem) — t.

La fonction union est telle que Y% € t,¥(x,y) € elt?, union(®,x,y) calcule le partitionnement
obtenu a partir de % en fusionnant les classes de x et y.

La fonction trouve de signature t x elt — elt est telle que VP € t,Vx € elt, find(P, x) calcule un
représentant de la classe de x dans la partie (, ainsi V% € t ¥ (x,y) € elf’, x est équivalent a y
dans elt® < find(P,x) = find(P,y).

La fonction initialise est telle que pour tout ensemble fini S d’éléments de elt, initialise(S) retourne
le partitionnement trivial dans lequel chaque élément de S est seul dans sa classe.

Remarque 1.23

On notera equiv de signature t x elt x elt — B, la fonction permettant de tester si deux éléments sont dans
la méme classe d’équivalence. Cette fonction peut-étre définie de la maniére suivante.

VP € t,Y(z,y) € elt x elt, equiv(®, z,y) 2 find(P,) = find(P, y)

Dans la suite on suppose que 'ensemble des éléments a représenter est un ensemble d’entiers de la
forme [0,n — 1].

Implémentation au moyen d’une structure arborescente. On met en place une structure de
forét. A chaque élément de S on adjoint un élément de S qui est son pére. Ainsi pour chaque
élément de S on peut aller visiter son pere, puis le pére de son pére, etc. . .. Afin d’assurer qu'un tel
processus termine, le pere d’un élément ne peut étre son descendant strict. Cependant le pere d’'un
élément peut-étre lui-méme, auquel cas on dit que cet élément est une racine. L'ensemble S étant
fini, le parcours de pére en pere depuis n'importe quel élément = conduit alors nécessairement a
un élément racine : c’est le représentant de la classe de x. Attention, les arbres manipulés n’ont
donc pas la structures inductive usuelle des arbres. Si un arbre est souvent défini comme un neceud
contenant deux fils qui sont eux-mémes des arbres, ici un noeud contient un pointeur vers son pere
seulement, il n’a pas acces a ses fils, qui peuvent d’ailleurs étre en nombre quelconque (0, 1, 2 ou plus
...). On choisit comme représentant canonique de chaque classe la racine de 'arbre représentant la
classe.

Exemple 1.24
L'illustration ci-dessous représente la partition de [0, 10] en 4 classes : {1,2,3,7}, {0,5}, {6} et {4,8,9,10}.

() () () ()

7 5 6 4
/N 1 RN
3 ? 0 8 9 10

1

Ainsi {1, 2, 3,7} admet 7 comme représentant canonique. De méme {0,5} (resp.{6}, resp.{4,8,9,10}) admet
5 (resp.6, resp.4) comme représentant canonique.

Informatique - MPI Lycée Fermat - 2025/2026 8/12

Une telle forét peut aisément étre représentée en machine par la donnée du pere de chaque élément,
stockée par exemple dans un tableau.

Exemple 1.25
On continue 'exemple précédent. La forét ci-dessus serait représentée en OCAML par le tableau [|5; 2; 7;
7; 4; 5; 6; 7; 4; 4; 4]|]

P Exercice de cours 1.26

Donner deux foréts distinctes représentant le partitionnement {{0, 3}, {1},{2,8,9},{4},{5,6,7}}.
Pour chacune de ces foréts donner un tableau OCAML représentant la forét en question.

Algorithmes find et union. L’algorithme find peut alors étre implémenté en se déplacant de pere
en pere, depuis I'élément dont on souhaite connaitre un représentant. Lorsqu’on atteint un élément
qui est son propre pere on s’arréte et on le retourne.

L’algorithme union de deux éléments = et y peut alors étre implémenté en cherchant a et b les
représentants respectifs de x et y (au moyen de deux appels a find), puis a changer le pointeur pére
de a vers b ou l'inverse.

Exemple 1.27

Ainsi dans 'exemple ci-dessus si 'on souhaite faire I'union de la classe de 1 et de la classe de 8 : on trouve le
représentant de 1 (C’est 7), on trouve le représentant de 8 (c’est 4), puis on change le pere de 7 pour que ce
soit 4 conduisant alors a la forét ci-dessous.

o— D

() ()
6 4
8/7/7 7\9\10
/N
S

1

Premiere amélioration : union par rang. Laremontée de pére en pére dans un arbre est d’autant
plus coliteuse (dans le pire cas) que les arbres sont hauts. Aussi dans 'exemple ci-avant, il est
particulierement malheureux d’avoir changer le pére de 7 en 4 plutot que le pere de 4 en 7. En effet
la profondeur du nceud le plus profond n’aurait pas augmentée dans le second cas (profondeur 2
pour 1) alors que dans le cas représenté ci-dessus on atteint une profondeur de 3 pour le nceud
1. En vue de manipuler des arbres les moins hauts possibles, on souhaite connaitre la hauteur des
arbres impliqués lors d’'une opération d’union. Pour cela, on conserve au niveau de chaque nceud
une majoration de la hauteur du sous-arbre qu’il engendre. Plus précisément, on appelle rang d'un
noeud = une majoration de la hauteur du sous-arbre enraciné en . C’est-a-dire 'arbre constitué des
élément qui admettent x comme ancétre. Dans 'exemple ci-avant, le nceud étiqueté par la valeur
4 admet 1 comme rang (mais aussi 42). Aussi lors de I'union on utilise I'information de rang pour
décider de mettre le nceud de rang inférieur “sous” le noeud de rang supérieur. En cas d’égalité on
choisit indifféremment, mais on n’oublie pas d’incrémenter le rang de la nouvelle racine.

Seconde amélioration : compression de chemins. Lorsqu’on fait une opération find(z) on par-
court les nceuds de x vers la racine de I'arbre contenant x. Cette opération a un coft algorithmique
qui est la longueur du chemin entre = et la racine de I'arbre, notons C' ce cof(it. Une fois qu'on a
trouvé le représentant de x (notons le r), on peut, pour un coflit de 'ordre de C, reparcourir le

Informatique - MPI Lycée Fermat - 2025/2026 9/12

chemin de z a r en mettant a jour le pointeur de pére vers r. C’est pour cette raison que le rang
n’est pas exactement la hauteur des arbres mais bien une sur-approximation : le compression de
chemin décroit la hauteur des arbres, sans changer les rangs.

Exemple 1.28
Considérons la structure Union-Find de I'exemple ci-dessus. Les rangs sont indiqués en rouge au dessus a
droite des noeuds.

g=
7
¢ N\
Lo

1

o—aD

Un appel a union(0, 8) conduit aux appels find(0) = 5 et find(8) = 4. Ces deux sommets sont de méme rang,
on choisit indifféremment lequel sera le représentant de la classe : 4. On obtient la structure suivante.

0 Qo QQ
I

72
£
T

1 0

Un appel a union(0, 6) conduit aux appels find(0) = 4 et find(6) = 6. Le noeud 6 est de rang inférieur, il est
donc placé “sous” le nceud 4. Lors de I'appel find(0), on profite d’avoir trouver la racine (4) pour raccourcir
les chemins vers la racine. On obtient la structure suivante. Remarquer que le rang de 4 est strictement
sur-approximant de la profondeur de l'arbre.

0,

N,

7 4
SN, N
3 2 8 9 10 51 0 6

o

1

Finalement un appel a union(3,4) conduit aux appels find(3) = 7 et find(4) = 4. Ces deux nceuds sont de
méme rang. On choisit indifféremment de placer 4 “sous” 7. On obtient la structure suivante.

Informatique - MPI Lycée Fermat - 2025/2026 10/12

P Exercice de cours 1.29

Donner I"évolution de la forét sous-jacente a la structure UnionFind initialisée sur I'ensemble {1,2,3,4,5,6,7,8,9},
sur laquelle on effectue la suite d'opérations ci-dessous. On pensera a appliquer les deux améliorations ci-dessus
(union par rang et compression de chemins). En cas d’ambiguité (lors d'une fusion de deux sommets de méme
rang) on choisira comme racine celle de plus petit numéro.

1. union(1,3); 4. union(5,1); 7. union(8,9);
2. union(5,7); 5. union(7,5); 8. union(4,8);
3. union(7,5); 6. union(4,6); 9. union(6,3);

Conclusion. On se convainc que la structure UnionFind présentée ci-avant admet les invariants
suivants :

* Le rang du pére d'un noeud est toujours strictement supérieur au rang dudit nceud.

* Un nceud de rang p est la racine d’un arbre contenant au moins 2” nceud.

De ces invariants, on déduit que si une opération find cofite p € N, c’est que le rang de la racine
ainsi obtenue est au moins p et donc I'arbre de taille au moins 2”. Ou en prenant le raisonnement
dans l'autre sens : dans un arbre contenant au plus n € N nceuds, il n’est pas possible de faire une
opération find colitant strictement plus de log,(n) itérations. Finalement les opérations union et find
de la structure proposée ci-avant induisent dans le pire cas des complexités logarithmiques en le
nombre d’éléments stockés dans la structure.

M Exercice de cours 1.30

Etant donnée une structure UnionFind initialisée 3 n éléments, on manipule cette structure en effectuant
uniquement des opérations d'union sur des éléments qui ne sont pas déja dans la méme classe.

Donner des bornes sur le nombre de telles opérations qu'il est possible d'appliquer avant que la structure ne
représente le partitionnement dans lequel tous les éléments sont dans la méme classe.

B Exercice de cours 1.31

Soit n € N, on considére une structure UnionFind initialisée avec les éléments de S = {1,2,3,...,2"}.
Donner une suite de 2™ — 1 fusions conduisant a un partitionnement dans lequel une des racines est la racine

d'un arbre de hauteur n.

1.6 Retour a I’algorithme de Kruskal

Donnons donc la forme finale de I'algorithme de Kruskal.

Informatique - MPI Lycée Fermat - 2025/2026 11/12

Algorithme 2 : Algorithme de Kruskal, version suivante
Entrée : Un graphe connexe non orienté pondéré G = (S, A, ¢)
Sortie : Un arbre couvrant de poids minimum
1 (a;)icp,m] < une indexation des arétes par pondération croissante. ;
2 B+« (;
3 P < initialise(S);
414+ 1;
5 tant que card(%®) > 1 faire
6
7
8
9

{2, y} + ai;

si —equiv(®, x,y) alors
P < union(P, x,y);

10 1+ 1+1;

11 retourner (S, B);

Etude de complexité. Notons (C7.)nen €t (Ci)nen des majorants de la complexité algorith-
mique des opérations union et find appelés sur des structures contenant n éléments.

Notons de plus (Cliaise)nen Un majorant de la complexité algorithmique de 'opération initialise
appelé sur un ensemble de n éléments.

La complexité algorithmique de I'algorithmique de Kruskal sur un graphe contenant n sommets et

m arétes est alors majorée par :
ligne 1 Un tri des m arétes, induisant un cotit de ©(mlog(m)).

ligne 3 Initialisation de la structure UnionFind, induisant un cofit de C!

initialise*
ligne 5 Une boucle tant que effectuant au plus m itérations, la branche alors du si se trouvant
dans le corps de la boucle est emprunté au plus n — 1 fois.

ligne 7 Deux calculs de représentants dans &, contenant n éléments : 2C{’
ligne 8 Un calcul d’'union dans %, contenant n éléments : C?

union
Soit un bilan a :
@(m log(m) + C'iﬁitialise + mC{iLnd +n o)

union

En mettant en place la structure UnionFind a base de foréts présentée ci-avant, il est possible de faire
descendre la complexité algorithmique en ©(mlog(m) + n + mlog(n) + nlog(n)) = O(mlog(n))*.

M Exercice de cours 1.32

Considérons I'implémentation naive suivante du type de données abstrait UnionFind : le partitionnement est
représenté en mémoire par une liste de listes (le partitionnement {{1,2},{3,4}, {5} } est représenté par la liste
[[1; 21; [3; 41; [511), les opérations initialise, union et find sont implémentés au moyen de manipulations
de listes.

Quelles sont alors les complexités algorithmiques des fonctions initialise, union et find ? Quel est I'impact sur
la complexité algorithmique de I'algorithme de Kruskal ?

&. On rappelle que n — 1 < m < n? donc O(log(m)) = O(log(n))

Informatique - MPI Lycée Fermat - 2025/2026 12/12

	Arbres couvrants de poids minimum
	Arbres
	Arbres couvrants
	Arbre couvrant et pondération
	Algorithme de Kruskal
	Union Find
	Retour à l'algorithme de Kruskal

