Feuille de révisions n°5 - Programmation en C : manipulation de pointeurs

1 Pointeurs et mémoire

R. 5-1 Décrire précisément ’évolution de la mémoire (tas et pile) au cours de 'exécution des deux
programmes ci-dessous, en déduire quel affichage qu’ils produiront.

n n

1| charx s = "abc";
2| char** pp1 = &s;

1 int a, b; 3| charx pl = s;

.| int* aal = &a:
i ; 4| char c1 = s[0];
* = .
3 int* bb1 = &b; ! chars act = gers
4
6
5 S : E’+ 2 7 s = ”baba”;
6 - ’
s int* aa2 = &a: s | charx* pp2 = &s;
s | int* bb2 = &b: 9| char* p2 = s;

10| char c2 = s[1];

10| printf("a==b : %d\n",a==b); w| charx acz = &c2;

1u | printf("aal==bb1 : %d\n",aal==bb1);
12| printf("aal==aa2 : %d\n",aal==aa2);
13| printf("bb1==bb2 : %d\n",bb1==bb2);

1| printf("pl==p2 : %d\n",pl1==p2);
1| printf("ppl==pp2 : %d\n",ppl==pp2);
15| printf(“cl==c2 : %d\n",cl==c2);
16| printf("acl==ac2 : %d\n",acl==ac2);

Solution
affichages obtenus: 1 a==b : 0 1 pl ==p2 : 0
2| aal == bbl : @ 2 ppl == pp2 : 1
3/ aal == aa2 : 1 s/ cl ==c¢2 : 1
4| bb1 == bb2 : 1 4/ acl == ac2 : 0

A retenir Lorsqu’on modifie une variable on change sa valeur, pas 'endroit ou elle est enre-
gistrée de sorte que son adresse reste inchangée.

R. 5-2 On suppose que les déclarations ci-contre sont

faites dans le main d’un programme. Comment sont pla- ' i:: :123

cées ces variables dans la pile ? En particulier, si '’écart z int tal;1 [3]:

entre les adresses de a1 et a2 correspond a 4 octets, quel . int a3: ’

écart y a-t-il entre les adresses des autres variables ? o intx t;bZ:mal1oc(sizeof’(int)*3) .
Les adresses de tab1[@] et tab2[@] sont-elles compa- o int ad; ’
rables ? 7| int* tab3;

Résumer le comportement lors des différentes déclara- | 5+ a5;

tions de tableaux.

Solution

On donne ci-contre les adresses affichées (avec %d) pour chaque va-
riable lors d'une exécution. Les valeurs particuliéres ne sont pas perti-
nentes, mais les écarts entre les adresses sont informatifs.

Un int occupe 4 octets, donc I'écart entre al et a2 est de 4.

Trois int occupent 12 octets, donc I'écart entre a2 et tab1 est de 12.
Un int occupe 4 octets, donc I'écart entre tab1[0] et a3 est de 4.
Un pointeur occupe 8 octets, donc I'écart entre a3 et tab2 est de 8.
Un int occupe 4 octets, donc I'écart entre tab2 et a4 est de 4.

Un pointeur occupe 8 octets, donc I'écart entre a4 et tab3 est de 8.
Un int occupe 4 octets, donc I'écart entre tab3 et a5 est de 4.

Les adresses de tab1[@] et tab2[0] ne sont pas comparables. [’adresse
de tab1[@] est une adresse dans la pile car tab1 est un tableau sta-
tique, tandis que celle de tab2[0] est une adresse du tas, car ce tableau
a été alloué dynamiquement. En particulier 'adresse de tab2[0] n’est
pas corellée a 'adresse de tab2.

11

-

N

: 1210010220
: 1210010216
: 1210010200
: 1210010188
: 1210010172

tab1[0]:1210010204

tab1[1]1:1210010208

tab1[2]:1210010212
:1210010192
11210010176

tab1[0]:1210010204
tab2[0]:857621088

A retenir Les variables sont placées dans la pile dans 'ordre ou elles sont déclarées. Les
variables de type int occupent 4 octets. Les tableaux statiques, i.e. déclarés avec un taille
littérale, sont stockés dans la pile. Ainsi déclarer un tableau statique de type t et de taille
n est équivalent a n déclarations de variables de type t. Les pointeurs (vers n’importe quoi)
occupent 8 octets, ainsi les tableaux (non statiques) occupent 8 octets dans la pile peu importe
leur taille. Cette taille est fixée lorsque 'instruction malloc esr exécutée, on parle d’allocation
de mémoire dynamique, et n’impacte que I'espace alors réservé dans le tas.

. 5-3 Décrire I’évolution de la pile lors de I'exécution du programme ci-dessous.

1 int f(int a, int b){ s| int g(int* a, int*b){
2 // retourne ... 9 // retourne ...
3 int ¢ = a + b; 10 int tmp = *a;
4 int d = a - b; 1 *a = *b;
5 return c + d; 12 *b = tmp;
6| } 13 return tmp;
14 }

16

17

18

19

20

21

22

int main(){
int aa
int bb = 12;
int cc = f(bb,aa);
cc = g(&aa,&bb);
return 0;

7;

Solution

d= x d=5
c= X c=19 tmp = X
b=17 b="7 b=e
a=12 a=12 a=e
cc= X cc= X cc= X cc=24 cc=24
bb =12 bb =12 bb =12 bb =12 bb =12 <
aa =17 aa =17 aa =17 aa =17 aq =17 ~
1.21 1.4 1.7 1.22 1.11
tmp =7 tmp =7 tmp =7
b=e b=e b=e
a=e a=e a=e
cc =24 cc=24 cc=24 cc=24
bb =12 < bb =12 = bb="T = bb="7
aq =17 + aaq =12 < aa =12+ aa =12
1.13 1.14 1.15 1.23

R. 5-4 On considere le code ci-apres qui définit deux fonctions jumelles : I'une codée avec un while
et 'autre est son analogue avec une fonction auxiliaire récursive. Décrire I'évolution de la pile lors
de I'exécution de l'affectation int opp_w = oppose_while(-2). Méme question pour l'affectation
int opp_r = oppose_rec(-2). Synthétiser la différence de comportement entre les boucles while
et les fonctions récursives. Le méme comportement est-il observé en OCAML ?

1| int oppose_while(int n){ 1| int aux (int n, int res){
2 int res = 0; 2 if (n == @){ return res;}
3 int nn = n; 3 else{
4 while(nn > 0){ 4 if(n > 0){
5 nn = nn - 1; 5 return aux(n-1, res-1);
6 res = res - 1; 6 }
7 } 7 else{
8 while(nn < 0){ 8 return aux(n+1, res+1);
9 nn = nn + 1; 9 }
10 res = res + 1; 10 }
11 } 1|}
12 return res; 12
13|} 13| int oppose_rec(int n){
14 return aux(n,0);
15|}
Solution

nn = X nn=-—2 nn=—1 nn=20

res = x res=20 res=1 res =2

n=-2 n=-2 n=-2 n=-2

opp_w = X opp_w = X opp_w = X opp_w = X opp_w = 2
1.1 1.3 1.7.1 1.7.2 déf. de opp_w

n=20
res =2
n=-—1 n=-1
res=1 res=1
n=-2 n=-2 n=-2
res =20 res=20 res=20
n=-2 n=-2 n=-2 n=-2
opp_r = X opp_r = X opp_r = X opp_r = X opp_r =2
1.13 114 =111 1.8 =1.1.2 1.8 =11.3 déf. de opp_r

A retenir Lorsquune fonction est appelée, deés le début est reservé sur la pile I'espac
nécessaire pour stocker chacun des arguments et cahcune des variables locales a la fonction.
Ainsi, a chaque appel récursif de I'espace est reservé sur la pile pour copier les valeurs des
arguments dans ds nouvelles cases, tandis qu’avec une boucle while, les nouvelles valeurs des
variables a chaque tour de boucle viennent écraser les anciennes valeurs. Ainsi, en C, on peut
faire déborder la pile si on lance trop d’appels récursifs imbriqués. Le méme probléme peut
survenir en OCAML avec des foncions récursives non récursives terminales.

R. 5-5 Pour les deux définitions de type suivantes (poly1 et poly2), définir une fonction qui crée
une occurrence du polynéme aX? + bX + c a partir des coefficients a, b et c.

struct poly_s {

-

2 int n;
3 float* tab; //de taille n
4+ b

s | typedef struct poly_s polyl;
¢ | typedef struct poly_s* poly2;

Solution
1| polyl cree_poly_deg2(float a, float b, float c){
2 //cree une occurence du polynome aX"2+bX+c
3 polyl res;
4 res.n = 3;

5 res.tab = (float*) malloc (sizeof(float)*3);
6 res.tab[@] = c;

7 res.tab[1] = b;
8 res.tab[2] = a;
9 return res;

10| }

1| poly2 new_poly_deg2 (float a, float b, float c){
2 //cree une occurence du polynome aX*2+bX+c

3 poly2 res = malloc (sizeof(struct poly_s));

4 res->n = 3;

5 res->tab = (float*) malloc (sizeof(float)=*3);
6 res->tab[0] = c;

7 res->tab[1] = b;

8 res->tab[2] = a;

9 return res;

10| }

A retenir L’espace occupé par un objet de type t* est le méme quel que soit le type t, c’est
I'espace qu’occupe un pointeur. Pour remplir 'objet de type t au bout d’un tel pointeur, il
faut avoir réservé 'espace pour un objet de type t (par déclaration sur la pile ou par malloc
dans le tas selon les cas).

A retenir Pour retourner directement® une struct, on peut déclarer un objet de type cette
struct, le remplir et le retourner. En revanche si on veut retourner un pointeur vers une struct
qu’on a créée dans le corps de la fonction, celle-ci doit avoir été enregistrée dans le tas et
non dans la pile, sans quoi elle est écrasée lorsqu’on sort de la fonction. Il faut donc faire un
malloc.

a. i.e. pas a travers un pointeur

R. 5-6 On considére le code suivant. Décrire ’évolution de la mémoire au cours de son exécution,
en déduire le comportement observé (en particulier I'affichage). Méme question si on on remplace
la ligne 3 par la ligne 4 d’une part, et si on décommente la ligne 16 d’autre part.

9| printf(”"Adresses enregistrées par\n");
1| char* c1 = "mpsi”; | printf(”cl : %p / c2: %p\n",cl,c2);
2| char* c2 = "mpsi”; u | printf(”c3 : %p / c4: %p\n",c3,cd);
3| char c3[5]="mpsi"; 12| printf(”c5 : %p\n\n",cbh);
4| //char c3[4]="mpsi”; 13
s | char c4[5]; 14| printf(”"Chaine pointées par\n”);
6| strcpy(c4,cl);//de string.h 15| printf(“cl:%s/c2:%s\n",c1,c2);
7| char* c¢5 = (char*) 6| //c2[2]='2";
— malloc(5*sizeof(char)); 17| printf(”"c3:%s/c4:%s/c5:%s\n",c3,c4,c5);
s | strcpy(ch,c1);//de string.h 18| c3[2]="2";
19| printf(”c3:%s/c4:%s/c5:%s\n",c3,c4,ch);

Solution

On obtient par exemple .| Adresses enregistrées par

I'affichage ci-contre. 2| c1 : 0x557aafecf@04 / c2: 0x557aafecf004
3| c3 : Ox7fff115a7753 / c4: ox7fff115a774e
4| c5 : 0x557ab068b260

6| Chaine pointées par

7| cl:mpsi/c2:mpsi

8| c3:mpsi/c4:mpsi/c5:mpsi
9| c3:mp2i/c4:mpsi/c5:mpsi

— Les chaines explicitement déclarées aux lignes 1 et 2 sont stockées des la compilation

dans un méme endroit de la mémoire qu’on ne peut pas modifier. On le constate car les
valeurs de c1 et c2, les adresses qu’elles enregistrent sont les mémes.

— Les chalnes c3 et c4, si elles ne sont pas remplies de la méme maniere, sont déclarées de
la méme maniere : comme un tableau statique, un tableau dont la taille est une constante
littérale, et sont donc enregistrées dans la pile. On peut s’en convaincre en ajoutant la dé-
claration d’'un ou plusieurs entiers et en affichant leurs adresses. On voit que les adresses
se ressemblent ce qui confirme 'emplacement sur la pile. En observant les écarts entre
les adresses, on pourra remarquer que déclarer un objet char c[5] revient a déclarer
cing variables de type char qui sont alors empilées consécutivement sur la pile.

— La chaine c5 est quant a elle enregistrée dans le tas.

Si on remplace la ligne 3 par la ligne 4, i.e. si on oublie de réserver la place pour le caractere
de fin, I'affichage de c5 termine par des caractéres non maitrisés et non désirés.

Si on décommente la ligne 16, 'exécution de cette ligne déclenche une erreur de segmenta-
tion. En effet la chalne c1 a été réservée dans une zone mémoire protégée, on ne peut pas la
modifier (et heureusement sinon c2 serait modifiée par la méme occasion). Cette zone est pro-
tégée méme s’il y a un seul pointeur vers cette chaine, par exemple ici méme si on supprime c2.

A retenir Les objets de type char* définis par une chaine explicite sont gérés de maniére par-
ticuliere a la compilation. Lorsque plusieurs occurrences de la méme chaine sont déclarées,
la chaine est enregistrée une seule fois et on obtient alors plusieurs pointeurs vers la méme
zone mémoire. Les pointeurs obtenus peuvent étre modifiés (pour pointer vers autre chose)
mais la zone mémoire en question ne peut étre modifiée (afin de ne pas dégrader la chaine
vers laquelle pointe peut-étre un autre pointeur).

A retenir Pour une chaine de n caractéres il faut un tableau de n+1 char pour enregistrer
aussi le caractere de fin de chaine '\0'.

2 Différents types de listes chainées

R. 5-7 Définir une structure de cellule pour les listes simplement chainées d’éléments constitués
d’un entier seul. Définir ensuite un nouveau type pour de telles listes.

Solution

typedef struct celll_s celll;

2| struct celll_s {

3 int val;

4 celll* next; //adresse de la cellule suivante ou NULL pr la derniére

s}

-

7| typedef celllx liste_c1;
8| //adresse de la lere cellule ou NULL pr la liste vide

R. 5-8 Définir une structure de cellule pour les listes doublement chainées d’éléments constitués
d’un entier seul. Définir ensuite un nouveau type pour de telles listes, qui doivent pouvoir étre
parcourues depuis la téte ou depuis la queue.

Solution
Il ne faut pas seulement un pointeurs enregistrant 'adresse de la premiére cellule, mais aussi
un enregistrant la derniere. C’est pourquoi on définit ici aussi une structure pour les listes.

1| typedef struct cell2_s cell2;

struct cell2_s {

3 int val;

4 cell2x next; //adresse de la cellule suivante ou NULL pr la derniére
5 cell2x prev; //adresse de la cellule précedente ou NULL pr la lére

6 };

N

s| struct liste_c2_s {

9 cell2* debut; //adresse de la lere cellule ou NULL pr la liste vide
10 cell2* fin;

ul};

12| typedef struct liste_c2_s liste_c2;

13

R. 5-9 Définir une structure de cellule pour les listes simplement chainées d’éléments constitués
d’un entier et d’'une chaine de caracteres. Définir ensuite un nouveau type pour les listes chainées
de tels éléments.

Solution

typedef struct cell3_s cell3;

struct cell3_s {

3 int entier;

4 char* chaine;

5 cell3* next; //adresse de la cellule suivante ou NULL pr la derniere

6 };

-

N

s | typedef cell3* liste_c3;

9\ //adresse de la lere cellule ou NULL pr la liste vide

R. 5-10 Définir une structure de cellule pour les listes simplement chainées d’éléments constitués
d’un entier et d’'un tableau. On peut imaginer par exemple qu'un élément est un sommet muni du
tableau de ses voisins dans un graphe. Définir ensuite un nouveau type pour les listes chainées de

tels éléments.

Solution

typedef struct cell4_s cell4;

struct celld4_s {

3 int n;

4 int* tab; //tableau de taille n

5 cell4* next; //adresse de la cellule suivante ou NULL pr la derniere

6 };

—

N

s | typedef cell4* liste_c4;
9 //adresse de la lere cellule ou NULL pr la liste vide

Il faut penser a stocker dans chaque cellule un entier supplémentaire pour la taille du tableau.

3 Listes d’entiers simplement chainées

Dans les questions suivantes on travaille avec le type ci-dessous.

typedef struct s_cell cell;

2| struct s_cell {

3 int val ;

4 cell* next ; /* adresse de la cell. suivante ou NULL en fin de liste */

s}

-

7| /* adresse de la lere cellule ou NULL pr la liste vide */
typedef cell* liste_c;

®

R. 5-11 Définir une fonction qui crée une liste chalinée d’entiers réduite a une cellule. L'entier a

enregistrer dans cette cellule sera pris en parameétre.

Solution

1 cell* create_cell(int elem){

2 //retourne une liste réduite a une cellule contenant elem

3 //!! attention allocation de mémoire dynamique --> penser au free !!
4 cell* res = (cell*) malloc(sizeof(cell));

5 res->val = elem;

6 res->next = NULL;

7 return res;

R. 5-12 Définir une fonction qui affiche une liste chalnée d’entiers. Cette fonction doit pouvoir

s’exécuter sur une liste vide, et fournir alors un affichage adéquat.

Solution

10

11

12

13

14

void affiche_liste(liste_c 1){

//affiche la liste 1

if(1 == NULL){
printf(“La liste est vide.\n----\n");

}

else{
cell* p =1; // p joue le réle de curseur
while(p != NULL){

printf("%d --",p->val);
p = p—>next;
}
printf("\n----\n");
}

};

R. 5-13 Définir une fonction qui prend en parametre un entier n € N et qui renvoie une liste chainée
contenant les n premiers entiers naturels. L'itération de cette fonction devra étre réalisée avec une
boucle for.

10

11

12

13

Solution

liste_c cree_liste_premiers_entiers(int n) {
//hyp : n >= 0
//crée puis retourne une liste des n premiers entiers
//!! attention allocation de mémoire dynamique --> penser au free !!
if (n == @){return NULL;}
liste_c res = create_cell(Q);
cell * p = res;
for(int i = 1; i < n; i++){
p->next = create_cell(i);
p = p—>next;
}

return res;

R. 5-14 Définir une fonction qui libere 'espace mémoire alloué pour une liste chainée d’entiers.

Solution

void free_liste_c(liste_c 1){
//1ibére la mémoire occupée par les cells de 1
cell* p = 1;
while(p != NULL){
cell* temp = p->next;
free(p);
p = temp;
}
}

R. 5-15 Définir une fonction qui crée une liste chainée d’entiers a partir d’un tableau d’entiers.

Solution

1) liste_c create_from_tab_alt(int* tab, int 1g){

2 // hyp : tab est de taille Ig

3 // retourne une liste chainée contenant les éléments de tab

4 // 1l attention allocation dynamique de mémoire -> penser au free !!
5 cell* res = NULL;

6 for (int i = 1g-1; i >=0 ; i —-) {

7 cell* n = create_cell(tab[i]);
8 n->next = res;

9 res = n;

10 }

1 return res;

12 }

R. 5-16 Définir une fonction qui crée un tableau d’entiers a partir d’'une liste chainée d’entiers.
L'itération de cette fonction devra étre réalisée avec une boucle for.

Solution

On définit d’abord la fonction qui renvoie la longueur d’une liste afin de pouvoir réserver la
bonne taille d’espace mémoire.

int nb_elem(liste_c 1){

2 //hyp : 1 n'est pas NULL

3 //retourne le nombre d’élém de 1
4 cell* p = 1;

5 int res = 0;

6 while(p != NULL){

-

7 res = res + 1;
8 p = p->hext;
o}

10 return res;

11 }

Puis la création du tableau a partir d’une liste

1 int*x tab_from_liste(liste_c 1){

2 //hyp : 1 n'est pas NULL

3 // retourne un tableau contenant les éléments de 1

4 // 1l attention allocation dynamique de mémoire -> penser au free !!
5 int n = nb_elem(l);

6 int* tab = malloc(sizeof(int)#*n);

7 cell* p = 1;

8 for(int i = 0; i < n; i++){

9 tab[i] = p->val;
10 p = p->next;

11 }

12 return tab;

13 }

R. 5-17 Définir une fonction qui ajoute un a un les éléments d’une liste 11 dans une autre liste 12.
Les listes 11 et 12 ne doivent pas étre dégradées par cette procédure. On renverra la nouvelle liste,

dans laquelle les éléments de 11 apparaissent avant ceux de 12, en ordre inverse. Par exemple pour
11 la liste 1/2/3 et 12 la liste 4/5/6 le résultat attendu est la liste 3/2/1/4/5/6.

Solution

1| liste_c rev_append(liste_c 11, liste_c 12){

2 //ajoute un a un les éléments de 11 en tete de 12 et retourne
3 cell* p1 = 11; //curseur dans 11

4 cell* res = 12; //tete de 12 avec les élém ajoutés

5 while(p1 != NULL){

6 cell* new = create_cell(p1->val);
7 new->next = res;

8 res = new;

9 p1 = pl->next;

10 }

11 return res;

12 }

R. 5-18 Définir une fonction qui calcule le miroir d’une liste 11 sans la dégrader.

Solution
1) liste_c miroir(liste_c 11){
2 //crée le miroir de 11 sans dégrader 11
3 return rev_append(11,NULL);
4 }

R. 5-19 Définir une fonction qui crée une copie d’une liste 11 sans la dégrader.

Solution

1) liste_c copie(liste_c 11){

2 //crée une copie de 11 sans dégrader 11
3 liste_c temp = miroir(11);

4 liste_c res = miroir(temp);

5 free_liste_c(temp);

6 return res;

R. 5-20 Définir une fonction qui prend en parameétre une liste et un entier naturel % inférieur a la
taille de la liste, et qui supprime les éléments de cette liste au dela des k premiers. On veillera a
désallouer I'espace mémoire des cellules supprimées de la liste.

Solution
1] void tronque_liste(liste_c* pli1,int k){
2 //hyp : 0<= k <= la longueur de la liste *pll

3 // supprime les éléments de #*pll au dela du k-ieme
4 int cpt = 0;

5 liste_c*x p = pli;

6 //inv : & 1’adresse p est enregistrée 1'adresse de la (cpt+1)-ieme cell.
7 while(cpt < k){
8 p = &((*p)->next);

9 cpt ++;

10

11

12

13

14

15

16

17

18

19

} //ici cpt =k
cell* to_delete = *p; //adresse de la cellule a supprimer
*p = NULL; //on rompt le lien vers le k+leme élém
while(to_delete != NULL){
cell* temp = to_delete -> next;
//printf(”....on supprime 1'elem %d \n”, to_delete->val);
free(to_delete);
to_delete = temp;

R. 5-21 Définir une fonction qui prend en parametres une liste et un entier naturel %, et qui sup-
prime les éléments de cette liste au dela des k premiers, s’il y en a. On veillera a désallouer I'espace
mémoire des cellules supprimées de la liste.

Solution

10

11

12

13

14

15

16

17

18

19

20

21

void tronque_liste_robuste(liste_c* pl1,int k){
// hyp : 0<= k
// supprime les éléments de #*pll au dela du k-ieme
int cpt = 0;
liste_c* p = pli;
//inv : a 1'adresse p est enregistrée 1'adresse de la (cpt+1)-ieme cell.
while((cpt < k) && (*p != NULL)){
p = &((*p)->next);
cpt ++;
} //ici cpt =k
if(xp !'= NULL){
cell* to_delete = *p; //adresse de la cellule a supprimer
*p = NULL; //on rompt le lien vers le k+leme élém
while(to_delete != NULL){
cell* temp = to_delete -> next;
printf(”....on supprime 1'elem %d \n",to_delete->val);
free(to_delete);
to_delete = temp;

R. 5-22 Définir une fonction qui prend en parameétre une liste passée par référence et la transforme
en place en la liste miroir. Cette fonction ne devra pas allouer d’espace mémoire supplémentaire,
mais pourra en revanche faire usage de la pile d’appels.

Solution

liste_c aux(liste_c todo, liste_c res){
//renverse les liens de la liste todo, met a la suite res
//et renvoie la téte de cette nouvelle liste
if(todo == NULL){return res;}
else{
cell* reste = todo->next;

10

11

12

13

14

}

void miroir_en_place (liste_c* pl1){

}

todo->next = res;
return aux(reste, todo);

}

*pl1l = aux(#pl1l, NULL);

	fdr 5 : Programmation en C: manipulation de pointeurs
	Pointeurs et mémoire
	Différents types de listes chaînées
	Listes d'entiers simplement chaînées

