
Chapitre 6 : Trois algorithmes sur les graphes

1 Arbres couvrants de poids minimum
Dans cette section, on travaille sur un graphe non orienté pondéré G = (S, A, c) où c ∈ F(A, N). On
notera n = card(S) et m = card(A).
Vocabulaire 1.1
Dans les problèmes que l’on considère dans cette section, l’ensemble des sommets ne change pas,
et l’on cherche plutôt un ensemble d’arêtes A′ ⊆ A qui définit un arbre couvrant. On s’autorisera
donc à dire qu’un ensemble d’arêtes A′ ⊆ A est connexe, acyclique, un arbre, un arbre couvrant
. . . pour dire que le graphe (S, A′) l’est.

Notation 1.2
Suivant la même idée, si A′ ⊆ A, on notera ∼A′ la relation de connexité du graphe (S, A′). Ainsi
∀(u, v) ∈ S2, u ∼A′ v si et seulement si il existe une chaîne d’arêtes de A′ entre u et v.

1.1 Arbres

Rappel 1.3
Le graphe G est acyclique si G n’admet aucun cycle élémentaire de longueur supérieure ou égale
à 3.
Le graphe G est connexe si pour tout couple de sommets il existe une chaîne ayant ces deux
sommets comme extrémités.
Le graphe G est un arbre si et seulement si G est connexe et acyclique.

Exercice de cours 1.4
Que dire d’un sous-graphe d’un graphe acyclique ?
Que dire d’un sur-graphe d’un graphe connexe ?

Lemme 1.5
Soit B ⊆ A un sous-ensemble d’arêtes.
Si (S, B) admet un cycle élémentaire γ, et si e est une arête de γ,
alors B′ déf= B \ {e} vérifie ∼B=∼B′.
Autrement dit enlever une arête sur un cycle ne change pas la connexité.

Démonstration : La preuve est un exercice de TD. �

Informatique - MPI Lycée Fermat - 2025/2026 1/27

Lemme 1.6
Soit B ⊆ A un sous-ensemble d’arêtes.
Si (S, B) est acyclique et si x et y sont deux sommets de S tels que x 6∼B y,
alors (S, B ∪ {x, y}) est acyclique.
Autrement dit ajouter une arête entre deux sommets non reliés ne crée pas de cycle.

Démonstration : La preuve est un exercice de TD. �

Proposition 1.7
Les 5 propositions ci-dessous sont équivalentes.
• G est connexe et acyclique
• G est connexe et |A| = |S| − 1
• G est acyclique et |A| = |S| − 1
• G est minimal parmi les sous-graphes connexes de Kn

♣

• G est maximal parmi les sous-graphes acycliques de Kn

Démonstration : La preuve est un exercice de TD. �

1.2 Arbres couvrants

Définition 1.8
On dit d’un graphe G′ = (S ′, A′) que c’est un arbre couvrant de G dès lors que : S ′ = S, A′ ⊆ A
et G′ est un arbre.

Exercice de cours 1.9
On considère le graphe G ci-dessous.

Parmi les graphes ci-dessous (représentés en), lesquels sont des arbres couvrants de G ? Justifier.

Proposition 1.10
Un graphe admet un arbre couvrant si et seulement s’il est connexe.

Démonstration : Si G admet un arbre couvrant A′, alors par définition d’un arbre, (S, A′) est connexe.
Deux sommets quelconques de G sont reliés par une chaîne d’arêtes de A′, et donc a fortiori par une chaîne
d’arêtes de A, et sont donc reliés dans G. Ainsi G est connexe. Réciproquement si G est connexe, il suffit

♣. Kn est le graphe complet à n sommets.

Informatique - MPI Lycée Fermat - 2025/2026 2/27

d’enlever des arêtes à A sur des cycles tant qu’il y en a . En effet, en posant B = A, on a ∼B=∼G par
définition. Tant que B admet un cycle, on choisit e une arête de ce cycle, et on la supprime de B. D’après
le lemme 1.5, on maintient ainsi ∼B=∼G. Le nombre d’arêtes de B est un variant qui assure que cette
procédure termine, et en sortie on obtient bien B un ensemble d’arête acyclique, autant connexe que G,
soit un arbre couvrant de G. �

Définition 1.11
On dit d’un graphe G′ = (S ′, A′) que c’est une forêt couvrante de G dès lors que : S ′ = S,
A′ ⊆ A et G′ est acyclique et ∼G=∼G′. Autrement dit, une forêt couvrante d’un graphe G est un
sous-graphe de G acyclique qui a exactement les mêmes composantes connexes que G.

Exercice de cours 1.12
Démontrer que tout graphe admet une forêt couvrante.

Exercice de cours 1.13
Soit un graphe connexe G à n sommets et m arêtes. Justifier que le nombre d’arbres couvrants de G est fini

en donnant, en fonction de n et m, une borne sur le nombre d’arbres couvrants.

1.3 Arbre couvrant et pondération

Définition 1.14
Si A′ ⊆ A, le poids de A′ est ∑

{x,y}∈A′ c(x, y), et parfois noté c(A′).
Si T = (S ′, A′) est un arbre, son poids, parfois noté c(T) est c(A′).
Autrement dit le poids d’un arbre est la somme des poids de ses arêtes.

Exemple 1.15

a

b c d

e1

6

6 2

425

Un graphe non orienté pondéré

a

b c d

e

6

6 2

425

1

Un arbre couvrant de poids 12

a

b c d

e1

5 2 46

6

25

2

1

Un arbre couvrant de poids
minimum (10)

Définition 1.16

Étant donné qu’il y a un nombre fini non nul d’arbres couvrants d’un graphe connexe, on peut
alors considérer le problème d’optimisation suivant.

acpm :
{
Entrée : Un graphe connexe non orienté pondéré G = (S, A, c)
Sortie : Un arbre couvrant de poids minimum .

Informatique - MPI Lycée Fermat - 2025/2026 3/27

Exercice de cours 1.17
Considérons le problème d’optimisation suivant.

ecpm :
{

Entrée : Un graphe connexe non orienté pondéré G = (S, A, c)
Sortie : Un ensemble d’arêtes A′ ⊆ A tel que ∼A=∼A′ minimisant c

.

Montrer que l’ensemble des arbres est dominant pour ecpm, i.e. qu’il existe toujours au moins une solution
optimale qui est un arbre.
Montrer de plus que dans le cas où c est à valeurs strictement positive cette dominance est stricte, c’est-à-dire
que toutes les solutions optimales sont des arbres.

1.4 Algorithme de Kruskal
Dans cette section on suppose que G est connexe et on cherche un arbre couvrant de poids mini-
mum de G. Une idée pour construire un tel arbre, est de partir d’un ensemble d’arêtes vide, qui a le
mérite d’être acyclique, et de l’enrichir en ajoutant des arêtes pour qu’il gagne en connexité jusqu’à
atteindre celle de G, tout en maintenant son caractère acyclique. On regarde à chaque étape la par-
tition en composantes connexes associée à l’ensemble d’arêtes. D’une part cela permet de détecter
si l’on a atteint la connexité voulue (lorsqu’il y a une seule composante), et d’autre part cela permet
de détecter qu’une arête n’est pas bonne à ajouter (si ces deux extrémités sont déjà dans la même
composante).

Exemple 1.18
Reprenons l’exemple ci-dessus, et mettons en regard des choix d’arêtes et les partitions en composantes
connexes associées.

a

b c d

e1

6

6 2

425



{a},
{e},
{c},
{b},
{d}



a

b c d

e1

6

6 2

425


{a, e},
{c},
{b},
{d}



a

b c d

e1

6

6 2

425


{a, e},
{c, b},
{d}


a

b c d

e1

6

6 2

425

{
{a, e},
{c, b, d}

}

a

b c d

e1

6

6 2

425 {{a, e, c, b, d}}

Le coût de l’arbre couvrant ainsi généré est alors la somme des coûts des arêtes sélectionnées à
chaque étape, ce qui suggère de considérer les arêtes de plus petit coût d’abord.
Ce qui donne l’algorithme glouton suivant.

Informatique - MPI Lycée Fermat - 2025/2026 4/27

Algorithme 1 : Algorithme de Kruskal (version 0)
Entrée : Un graphe connexe non orienté pondéré G = (S, A, c)
Sortie : Un arbre couvrant de poids minimum

1 (aj)j∈J1,mK ← une indexation des arêtes par pondération croissante ;
2 B ← ∅ ;
3 i← 1 ;
4 tant que le graphe (S, B) n’est pas connexe faire
5 si le graphe (S, B ∪ {ai}) est acyclique alors
6 B ← B ∪ {ai} ;
7 i← i + 1 ;
8 retourner (S, B) ;

Exemple 1.19
L’exécution de l’algorithme sur l’exemple ci-dessus conduit aux choix représentés ci-dessous.

a

b c d

e1

6

6 2

425

a

b c d

e1

6

6 2

425

a

b c d

e1

6

6 2

425

a

b c d

e1

6

6

2

2

45

a

b c d

e1

5 2 46

6

25

2

1

Exercice de cours 1.20
Exécuter l’algorithme de Kruskal sur les graphes ci-dessous.

2

3

4

2

4

2 3

12 5

4 3
1

1
4

4 2

1

5

1

1

1

1

5 5

35 2

4 5
3

2
4

5 2

3

1

2

2

1

1

2 3

12 3

2 1
2

1
2

3 3

1

Théorème 1.21
L’algorithme de Kruskal fournit un arbre couvrant de poids minimal.

Démonstration : Nous allons mener la preuve en trois temps : établir des propriétés invariantes de la boucle
tant que de l’algorithme, démontrer la terminaison de l’algorithme, conclure en utilisant les invariants et
la négation de la condition de boucle. Pour chaque j ∈ J1, mK, notons xj et yj les extrémités de l’arête aj .
Invariants. Commençons par démontrer que les propriétés suivantes sont des invariants de la boucle tant
que l’algorithme de Kruskal.
I1 Il existe un arbre couvrant de poids minimal de G contenant les arêtes de B.
I2 B est acyclique.
I3 ∀j ∈ J1, i− 1K, xj ∼

B
yj .

I4 i ∈ J1, m + 1K.

Initialisation. Avant les itérations, B = ∅ et i = 1. Ceci assure :

Informatique - MPI Lycée Fermat - 2025/2026 5/27

• la propriété I1, en effet G étant connexe il admet un arbre couvrant de poids minimal, et donc un
arbre couvrant de poids minimal contenant les arêtes de ∅ ;

• la propriété I2, en effet le graphe ∅ est trivialement acyclique ;
• la propriété I3, en effet J1, i− 1K = ∅ ;
• la propriété I4, en effet i = 1.

Propagation de l’invariant. Soit Bav et iav les valeurs des variables B et i au début d’une itération de
boucle, et Bap et iap, les valeurs à la fin de cette même itération.
Supposons que les propriétés I1, I2, I3 et I4 sont vérifiées par Bav et iav.
Montrons qu’elles le sont alors toujours par les valeurs Bap et iap.
Remarquons tout d’abord que iap = iav + 1. De plus, d’après la condition de boucle, Bav n’est pas
connexe.

I4 Montrons que iap ∈ J1, m + 1K.
Par invariant I4, iav ∈ J1, m + 1K, montrons en fait que iav 6= m + 1. Par l’absurde supposons que
iav = m + 1. L’invariant I3 assure alors ∀j ∈ J1, mK, xj ∼

Bav
yj , autrement dit les deux extrémités de

n’importe quelle arête de G sont reliées dans Bav (F). Montrons alors que Bav est connexe.
Soit (x, y) ∈ S2. Par connexité de G, il existe une chaîne de x à y dans G, qu’on note comme suit.

x = γ0 —
G

γ1 —
G

γ2 —
G

. . .—
G

γp = y

De la remarque (F), on déduit que ∀i ∈ J0, p − 1K, γi ∼
Bav

γi+1 et finalement par transitivité x =
γ0 ∼

Bav
γp = y. Ainsi Bav est connexe, Absurde.

On en déduit que iav 6= m + 1 donc iav ∈ J1, mK donc iap ∈ J2, m + 1K et a fortiori iap ∈ J1, m + 1K.

I3 Montrons que ∀j ∈ J1, iap − 1K, xj ∼
Bap

yj .
Soit j ∈ J1, iap − 1K. Si j ∈ J1, iav − 1K, puisque Bav ⊆ Bap, la propriété I3 en début de tour assure
xj ∼

Bap
yj . Si j = iap − 1 = iav, on distingue deux cas.

◦ Cas Bap = Bav ∪ {aiav}, soit Bap = Bav ∪ {aj}. La chaîne réduite à l’arête aj assure xj ∼
Bap

yj .
◦ Sinon Bap = Bav. D’après la condition du si, Bav ∪ {aiav} soit Bav ∪ {aj} n’est pas acyclique, or

Bav est acyclique par invariant I2. Ainsi, par contraposé du Lemme 1.6, xj ∼
Bap

yj .

I2 Montrons que Bap est acyclique.
Si Bap = Bav ∪ {aiav}, c’est parce que Bav ∪ {aiav} est acyclique (d’après la condition du si). Sinon
Bap = Bav qui est acyclique par invariant I2.

I1 Montrons qu’il existe un arbre couvrant de poids minimal de G contenant les arêtes de Bap.
Soit T ⊆ A un arbre couvrant de poids minimal de G contenant les arêtes de Bav (un tel arbre
existe par invariant I1).
Si Bap ⊆ T , on conclut en considérant le même arbre.
Sinon Bap 6⊆ T , autrement dit on a sélectionné dans B une arête lors du tour de boucle considéré,
ainsi Bap = Bav t {aiav}. De plus, d’après la condition du si, Bap acyclique.
Notons {x, y} déf= aiav , et posons alors U

déf= Tt{aiav}. Ainsi U est connexe et contient Bap, mais il n’est
pas acyclique. En effet, puisque T est un arbre, on peut considérer δ l’unique chaîne élémentaire de
x à y dans T , et former un cycle élémentaire γ en y ajoutant l’arête aiav .

γ : x— . . .— y︸ ︷︷ ︸
δ

—
aiav

x

Bap étant acyclique, il existe une arête de γ qui n’est pas dans Bap. Notons-la f et remarquons que
f 6= aiav car aiav ∈ Bap. Posons alors T ′ déf= U \ {f}.
Du lemme 1.5, T ′ est encore connexe et contient toujours Bap.
Montrons que T ′ est de plus acyclique. En effet, T ′ = (T \ {f})∪{aiav} soit T ′ = (T \ {f})∪{x, y}.
T \ {f} est acyclique en tant que sous-graphe acyclique de T (lui-même un arbre). De plus f est

Informatique - MPI Lycée Fermat - 2025/2026 6/27

une arête de l’unique chaîne élémentaire dans T de x à y, donc x 6∼(T \{f}) y. D’après le lemme 1.6,
on en déduit que T ′ est acyclique. Ainsi T ′ est un arbre contenant Bap.
Montrons qu’il est aussi de poids minimal en montrant qu’il est de poids moindre que T .
Pour cela montrons finalement que le coût de l’arête f est moindre que celui de l’arête aiav . Consi-
dérons les deux sommets u et v tels que f = {u, v} et l’entier k tel que f = ak et montrons que
k > iav.
Par l’absurde supposons que k < iav. Alors l’invariant I3 assure que u ∼

Bav
v, ainsi il existe une

chaîne élémentaire γ dans Bav reliant u à v. Puisque Bav ⊆ T , β est une chaîne de T . La chaîne β
n’emprunte pas l’arête f = {u, v} puisque celle-ci ne se trouve pas dans Bav (car on a choisi f hors
de Bap). Ainsi on a deux chaînes élémentaires distinctes reliant u et v dans T : l’arête f et la chaîne
β. Absurde puisque T est un arbre.
Ainsi k > iav, et puisque les arêtes sont triées par poids croissant, c(ak) > c(aiav), assurant ainsi
que c(T ′) 6 c(T) et donc c(T ′) = c(T) par minimalité.
Finalement, T′ est donc bien un arbre couvrant de poids minimal contenant Bap.

Variants. Montrons que la boucle tant que de l’algorithme de Kruskal termine. Considérons pour cela
l’expression numérique suivante des variables de la boucle tant que B et i.

V (B, i) déf= m + 1− i

• Par I4, i ∈ J1, m + 1K ainsi V (B, i) ∈ N.
• Avec les notations introduites ci-avant, iap = iav + 1, ainsi V (Bap, iap) < V (Bav, iav).
Ainsi V (B, i) est bien un variant de boucle à valeurs dans l’espace bien fondé (N,6), ce qui nous assure
la terminaison de la boucle Tant que.

Conclusion. Finalement, les valeurs des variables B et i en sortie de boucle sont telles que :
I1 il existe un arbre couvrant de poids minimal de G contenant les arêtes de B ;
I2 B est acyclique ;
I3 ∀j ∈ J1, i− 1K, xj ∼

B
yj ;

I4 i ∈ J1, m + 1K ;
Négation de la condition de boucle : B est connexe.
On en déduit donc que B est un arbre couvrant et qu’il est contenu dans un arbre couvrant de poids
minimal, il est donc lui aussi de poids minimal.

�

Maintenant que nous nous sommes convaincus que le choix glouton consistant à prendre à chaque
étape l’arête de plus petit poids conduit bien à un arbre de poidsminimal, il nous faut nous demander
comment nous allons implémenter les opérations “le graphe (S, B) est-il connexe? ” ou encore “le
graphe (S, B ∪ {ai}) est-il acyclique?”. La donnée, à chaque instant de l’algorithme, de l’ensemble
des composantes connexes du graphe G = (S, B) nous permet de répondre “aisément” à ces deux
questions. De plus nous remarquons que l’évolution des composantes connexes du graphe (S, B), à
mesure que l’algorithme se déroule, peut être exprimée à l’aide de fusions de partitions, depuis le
partitionnement trivial (dans lequel chaque élément est seul dans sa partie). En effet initialement
B = ∅, aussi la décomposition en composantes connexes du graphes (S, B) est la décomposition en
des parties singletons. L’ajout d’une arête à B a pour effet la fusion des composantes connexes des
sommets se trouvant aux deux extrémités de l’arête en question. On se pose alors la question de
l’implémentation d’une structure de données qui permette la représentation de partitionnements,
sur lesquels il est possible de faire des opérations de fusion.

1.5 Union Find

Informatique - MPI Lycée Fermat - 2025/2026 7/27

Définition 1.22
On définit le type de données abstrait UnionFind comme contenant :

• un type elt des éléments manipulés ;
• un type t représentant la structure ;
• une fonction union de signature t× elt× elt→ t ;
• une fonction trouve de signature t× elt→ elt ;
• une fonction initialise de signature Pf (elem)→ t.

La fonction union est telle que ∀P ∈ t,∀(x, y) ∈ elt2, union(P, x, y) calcule le partitionnement
obtenu à partir de P en fusionnant les classes de x et y.
La fonction trouve de signature t × elt → elt est telle que ∀P ∈ t,∀x ∈ elt, find(P, x) calcule un
représentant de la classe de x dans la partie P, ainsi ∀P ∈ t, ∀(x, y) ∈ elt2, x est équivalent à y
dans elt2 ⇔ find(P, x) = find(P, y).
La fonction initialise est telle que pour tout ensemble fini S d’éléments de elt, initialise(S) retourne
le partitionnement trivial dans lequel chaque élément de S est seul dans sa classe.

Remarque 1.23
On notera equiv de signature t× elt× elt→ B, la fonction permettant de tester si deux éléments sont dans
la même classe d’équivalence. Cette fonction peut-être définie de la manière suivante.

∀P ∈ t, ∀(x, y) ∈ elt× elt, equiv(P, x, y) déf= find(P, x) ?= find(P, y)

Dans la suite on suppose que l’ensemble des éléments à représenter est un ensemble d’entiers de la
forme J0, n− 1K.

Implémentation au moyen d’une structure arborescente. On met en place une structure de
forêt. À chaque élément de S on adjoint un élément de S qui est son père. Ainsi pour chaque
élément de S on peut aller visiter son père, puis le père de son père, etc. . .. Afin d’assurer qu’un tel
processus termine, le père d’un élément ne peut être son descendant strict. Cependant le père d’un
élément peut-être lui-même, auquel cas on dit que cet élément est une racine. L’ensemble S étant
fini, le parcours de père en père depuis n’importe quel élément x conduit alors nécessairement à
un élément racine : c’est le représentant de la classe de x. Attention, les arbres manipulés n’ont
donc pas la structures inductive usuelle des arbres. Si un arbre est souvent défini comme un nœud
contenant deux fils qui sont eux-mêmes des arbres, ici un nœud contient un pointeur vers son père
seulement, il n’a pas accès à ses fils, qui peuvent d’ailleurs être en nombre quelconque (0, 1, 2 ou plus
…). On choisit comme représentant canonique de chaque classe la racine de l’arbre représentant la
classe.

Exemple 1.24
L’illustration ci-dessous représente la partition de J0, 10K en 4 classes : {1, 2, 3, 7}, {0, 5}, {6} et {4, 8, 9, 10}.

7

3 2

1

5

0

6 4

8 9 10

Ainsi {1, 2, 3, 7} admet 7 comme représentant canonique. De même {0, 5} (resp.{6}, resp.{4, 8, 9, 10}) admet
5 (resp.6, resp.4) comme représentant canonique.

Informatique - MPI Lycée Fermat - 2025/2026 8/27

Une telle forêt peut aisément être représentée en machine par la donnée du père de chaque élément,
stockée par exemple dans un tableau.

Exemple 1.25
On continue l’exemple précédent. La forêt ci-dessus serait représentée en OCaml par le tableau [|5; 2; 7;
7; 4; 5; 6; 7; 4; 4; 4|]

Exercice de cours 1.26
Donner deux forêts distinctes représentant le partitionnement {{0, 3}, {1}, {2, 8, 9}, {4}, {5, 6, 7}}.
Pour chacune de ces forêts donner un tableau OCaml représentant la forêt en question.

Algorithmes find et union. L’algorithme find peut alors être implémenté en se déplaçant de père
en père, depuis l’élément dont on souhaite connaître un représentant. Lorsqu’on atteint un élément
qui est son propre père on s’arrête et on le retourne.
L’algorithme union de deux éléments x et y peut alors être implémenté en cherchant a et b les
représentants respectifs de x et y (au moyen de deux appels à find), puis à changer le pointeur père
de a vers b ou l’inverse.

Exemple 1.27
Ainsi dans l’exemple ci-dessus si l’on souhaite faire l’union de la classe de 1 et de la classe de 8 : on trouve le
représentant de 1 (c’est 7), on trouve le représentant de 8 (c’est 4), puis on change le père de 7 pour que ce
soit 4 conduisant alors à la forêt ci-dessous.

5

0

6 4

8 7

3 2

1

9 10

Première amélioration : union par rang. La remontée de père en père dans un arbre est d’autant
plus coûteuse (dans le pire cas) que les arbres sont hauts. Aussi dans l’exemple ci-avant, il est
particulièrement malheureux d’avoir changer le père de 7 en 4 plutôt que le père de 4 en 7. En effet
la profondeur du nœud le plus profond n’aurait pas augmentée dans le second cas (profondeur 2
pour 1) alors que dans le cas représenté ci-dessus on atteint une profondeur de 3 pour le nœud
1. En vue de manipuler des arbres les moins hauts possibles, on souhaite connaître la hauteur des
arbres impliqués lors d’une opération d’union. Pour cela, on conserve au niveau de chaque nœud
une majoration de la hauteur du sous-arbre qu’il engendre. Plus précisément, on appelle rang d’un
nœud x une majoration de la hauteur du sous-arbre enraciné en x. C’est-à-dire l’arbre constitué des
élément qui admettent x comme ancêtre. Dans l’exemple ci-avant, le nœud étiqueté par la valeur
4 admet 1 comme rang (mais aussi 42). Aussi lors de l’union on utilise l’information de rang pour
décider de mettre le nœud de rang inférieur “sous” le nœud de rang supérieur. En cas d’égalité on
choisit indifféremment, mais on n’oublie pas d’incrémenter le rang de la nouvelle racine.

Seconde amélioration : compression de chemins. Lorsqu’on fait une opération find(x) on par-
court les nœuds de x vers la racine de l’arbre contenant x. Cette opération a un coût algorithmique
qui est la longueur du chemin entre x et la racine de l’arbre, notons C ce coût. Une fois qu’on a
trouvé le représentant de x (notons le r), on peut, pour un coût de l’ordre de C, reparcourir le

Informatique - MPI Lycée Fermat - 2025/2026 9/27

chemin de x à r en mettant à jour le pointeur de père vers r. C’est pour cette raison que le rang
n’est pas exactement la hauteur des arbres mais bien une sur-approximation : le compression de
chemin décroît la hauteur des arbres, sans changer les rangs.

Exemple 1.28
Considérons la structure Union-Find de l’exemple ci-dessus. Les rangs sont indiqués en rouge au dessus à
droite des nœuds.

7
2

3
0

2
1

1
0

5
1

0
0

6
0

4
1

8
0

9
0

10
0

Un appel à union(0, 8) conduit aux appels find(0) = 5 et find(8) = 4. Ces deux sommets sont de même rang,
on choisit indifféremment lequel sera le représentant de la classe : 4. On obtient la structure suivante.

7
2

3
0

2
1

1
0

6
0

4
2

8
0

9
0

10
0

5
1

0
0

Un appel à union(0, 6) conduit aux appels find(0) = 4 et find(6) = 6. Le nœud 6 est de rang inférieur, il est
donc placé “sous” le nœud 4. Lors de l’appel find(0), on profite d’avoir trouver la racine (4) pour raccourcir
les chemins vers la racine. On obtient la structure suivante. Remarquer que le rang de 4 est strictement
sur-approximant de la profondeur de l’arbre.

7
2

3
0

2
1

1
0

4
2

8
0

9
0

10
0

5
1

0
0

6
0

Finalement un appel à union(3, 4) conduit aux appels find(3) = 7 et find(4) = 4. Ces deux nœuds sont de
même rang. On choisit indifféremment de placer 4 “sous” 7. On obtient la structure suivante.

7
3

4
2

8
0

9
0

10
0

5
1

0
0

6
0

3
0

2
1

1
0

Informatique - MPI Lycée Fermat - 2025/2026 10/27

Exercice de cours 1.29
Donner l’évolution de la forêt sous-jacente à la structure UnionFind initialisée sur l’ensemble {1, 2, 3, 4, 5, 6, 7, 8, 9},
sur laquelle on effectue la suite d’opérations ci-dessous. On pensera à appliquer les deux améliorations ci-dessus
(union par rang et compression de chemins). En cas d’ambiguïté (lors d’une fusion de deux sommets de même
rang) on choisira comme racine celle de plus petit numéro.

1. union(1, 3) ;
2. union(5, 7) ;
3. union(7, 5) ;

4. union(5, 1) ;
5. union(7, 5) ;
6. union(4, 6) ;

7. union(8, 9) ;
8. union(4, 8) ;
9. union(6, 3) ;

Conclusion. On se convainc que la structure UnionFind présentée ci-avant admet les invariants
suivants :
• Le rang du père d’un nœud est toujours strictement supérieur au rang dudit nœud.
• Un arbre dont la racine est de rang p contient au moins 2p nœuds.
De ces invariants, on déduit que si une opération find coûte p ∈ N, c’est que le rang de la racine
ainsi obtenue est au moins p et donc l’arbre de taille au moins 2p. Ou en prenant le raisonnement
dans l’autre sens : dans un arbre contenant au plus n ∈ N nœuds, il n’est pas possible de faire une
opération find coûtant strictement plus de log2(n) itérations. Finalement les opérations union et find
de la structure proposée ci-avant induisent dans le pire cas des complexités logarithmiques en le
nombre d’éléments stockés dans la structure.

Exercice de cours 1.30
Étant donnée une structure UnionFind initialisée à n éléments, on manipule cette structure en effectuant
uniquement des opérations d’union sur des éléments qui ne sont pas déjà dans la même classe.
Donner des bornes sur le nombre de telles opérations qu’il est possible d’appliquer avant que la structure ne
représente le partitionnement dans lequel tous les éléments sont dans la même classe.

Exercice de cours 1.31
Soit n ∈ N, on considère une structure UnionFind initialisée avec les éléments de S = {1, 2, 3, . . . , 2n}.
Donner une suite de 2n − 1 fusions conduisant à un partitionnement dans lequel une des racines est la racine
d’un arbre de hauteur n.

1.6 Retour à l’algorithme de Kruskal
Donnons la forme finale de l’algorithme de Kruskal.

Informatique - MPI Lycée Fermat - 2025/2026 11/27

Algorithme 2 : Algorithme de Kruskal, version avec UnionFind
Entrée : Un graphe connexe non orienté pondéré G = (S, A, c)
Sortie : Un arbre couvrant de poids minimum

1 (ai)i∈J1,mK ← une indexation des arêtes par pondération croissante. ;
2 B ← ∅ ;
3 P← initialiseUnionFinf(S) ;
4 i← 1 ;
5 tant que card(P) > 1 faire
6 {x, y} ← ai ;
7 si find(P, x) 6= find(P, y) alors
8 P← union(P, x, y) ;
9 B ← B ∪ {ai} ;

10 i← i + 1 ;
11 retourner (S, B) ;

Étude de complexité. Notons (Cn
union)n∈N et (Cn

find)n∈N des majorants de la complexité algorith-
mique des opérations union et find appelés sur des structures contenant n éléments.
Notons de plus (Cn

initialise)n∈N un majorant de la complexité algorithmique de l’opération initialise
appelé sur un ensemble de n éléments.
La complexité algorithmique de l’algorithmique de Kruskal sur un graphe contenant n sommets et
m arêtes est alors majorée par :
ligne 1 Un tri des m arêtes, induisant un coût de O(m log(m)).
ligne 3 Initialisation de la structure UnionFind, induisant un coût de Cn

initialise.
ligne 5 Une boucle tant que effectuant au plus m itérations, la branche alors du si se trouvant

dans le corps de la boucle est emprunté au plus n− 1 fois.
ligne 7 Deux calculs de représentants dans P, contenant n éléments : 2Cn

find
ligne 8 Un calcul d’union dans P, contenant n éléments : Cn

union

Soit un bilan à :
O(m log(m) + Cn

initialise + mCn
find + nCn

union).
En mettant en place la structure UnionFind à base de forêts présentée ci-avant, il est possible de faire
descendre la complexité algorithmique en O(m log(m) + n + m log(n) + n log(n)) = O(m log(n))♣.

Exercice de cours 1.32
Considérons l’implémentation naïve suivante du type de données abstrait UnionFind : le partitionnement est
représenté en mémoire par une liste de listes (le partitionnement {{1, 2}, {3, 4}, {5}} est représenté par la liste
[[1; 2]; [3; 4]; [5]]), les opérations initialise, union et find sont implémentés au moyen de manipulations
de listes.
Quelles sont alors les complexités algorithmiques des fonctions initialise, union et find ? Quel est l’impact sur
la complexité algorithmique de l’algorithme de Kruskal ?

2 Algorithme de Kosaraju
L’algorithme de Kosaraju est un algorithme permettant le calcul des composantes fortement connexes
(notées CFC) d’un graphe orienté. Dans toute cette section, on travaille sur un graphe orienté
G = (S, A), on notera n = card(S) et m = card(A).

♣. On rappelle que n− 1 6 m 6 n2 donc O(log(m)) = O(log(n))

Informatique - MPI Lycée Fermat - 2025/2026 12/27

Notation 2.1

Pour (u, v)∈S2, on note u
∗→ v (resp.u ∗→ v) s’il existe un chemin (resp.un chemin de longueur

k) menant de u à v dans G. On note u ∼ v si et seulement si u
∗→ v et u

∗→ v.

2.1 Tri préfixe (rappels)

Rappel 2.2
Soit T = (Ti)i∈J1,nK une permutation des sommets de G.
On définit le rang d’un sommet u dans la permutation T , noté rgT (u), comme étant le plus petit
indice d’un élément dans la même CFC que u.

rgT (u) déf= min{i ∈ J1, nK | Ti ∼G u}

On dit que T est un tri préfixe de G dès lors que ∀(u, v) ∈ S2, (u, v) ∈ A⇒ rgT (u) 6 rgT (v).

Exercice de cours 2.3
Rappeler comment on calcule un tri préfixe d’un graphe, et avec quelle complexité.

Définition 2.4
Pour (u, v)∈S2 deux sommets du graphe :
• u est descendant (resp.ascendant) de v si et seulement si v

∗→ u (resp.u ∗→ v) ;
• u est descendant propre (resp. ascendant propre) de v si et seulement si v

∗→ u et u��
∗→v

(resp.u ∗→ v et v��
∗→u).

Exercice de cours 2.5
Soit (u, v)∈S2. Soit T un tri préfixe de G.
• Si u ∼ v, que peut-on dire de rgT (u) et rgT (v) ? Peut-on savoir qui de u et v apparaît en premier dans T ?
• Si u est descendant propre de v que peut-on dire de rgT (u) et rgT (v) ? Peut-on savoir qui de u et v apparaît

en premier dans T ?

2.2 Graphe transposé et CFC

Définition 2.6
On appelle graphe transposé de G le graphe Gt = (S, B) où B = {(v, u) | (u, v)∈A}.
Autrement dit c’est le graphe obtenu en retournant tous les arcs.

Remarque 2.7
Le nom vient de la représentation matricielle : la matrice d’adjacence du graphe transposé est la transposée
de la matrice d’adjacence du graphe initial.

Exercice de cours 2.8
Donner le pseudo-code d’un algorithme de calcul du graphe transposé en complexité linéaire, pour une repré-
sentation par matrice d’adjacence, puis pour une représentation par table de listes d’adjacence.

Informatique - MPI Lycée Fermat - 2025/2026 13/27

Proposition 2.9

• La relation ∼ définie par la mutuelle accessibilité dans G est la même que celle définie de
même dans Gt. Par conséquent les CFC de G sont les mêmes que celles de Gt.

• Le graphe réduit du transposé est le transposé du graphe réduit, i.e. Ĝt = Ĝt.
Autrement dit le passage au quotient selon ∼ et le retournement des arcs commutent.

G Ĝ

Gt Ĝt = Ĝt

•t

•t

/∼G /∼Gt

Exercice de cours 2.10
Démontrer le second point de la proposition 2.9.

Remarque 2.11
Soit (u, v)∈S2.
u est ascendant (propre) de v dans G si et seulement si u est descendant (propre) de v dans Gt.
u est descendant (propre) de v dans G si et seulement si u est ascendant (propre) de v dans Gt.

Vocabulaire 2.12
Soit T une permutation des sommets. Soit L un parcours de Gt.
On dit que les points de régénération sont choisis prioritairement selon T si les points de
régénération de L apparaissent dans le même ordre dans T et dans L.
De manière équivalente, pour tout r∈ J1, nK tel que Lr est point de régénération de L, Lr = Ti0

avec i0 = min {i∈J1, nK |Ti 6∈ {Lj | j∈J1, rJ}}.

Lemme 2.13
Soit T une permutation des sommets de G. Soit L un parcours de G. Si les points de régénération
de L sont choisis prioritairement selon T , alors pour tout Lr point de régénération de L, pour
tout i > r, rgT (Lr) 6 rgT (Li).

Démonstration : Par l’absurde, on suppose qu’il existe i > r tel que rgT (Li) < rgT (Lr). On peut alors
considérer v le premier sommet dans T tel que v ∼ Li, v apparaît à l’indice rgT (Li) dans T donc avant
Lr. Étant donné que Li n’est pas visité au moment où Lr est choisi comme point de régénération, et que
v

∗→ Li, v n’a pas non plus été visité à ce moment là ♣ et donc v aurait dû être choisi. �

Proposition 2.14
Soit T un tri préfixe de G. Soit L un parcours de Gt.
Si les points de régénération de L sont choisis prioritairement selon T , alors la partition associée
à L est la décomposition en CFC de Gt et G.

Démonstration : Puisque G et Gt ont les mêmes CFC, on ne précisera donc pas toujours de quelles CFC on
parle. On sait déjà que deux sommets de la même CFC sont nécessairement dans la même partie selon L
(voir chapitre sur les parcours). Il reste à montrer que deux sommets dans la même partie selon L sont

♣. par des arguments de bordure non vide déjà développés dans le chapitre sur les parcours

Informatique - MPI Lycée Fermat - 2025/2026 14/27

nécessairement de la même CFC, autrement dit qu’ils sont mutuellement accessibles l’un depuis l’autre. On
reprend les notations de la définition du partitionnement associé à un parcours :

- K le nombre de points de régénération de L ;
- (rk)k∈J1,KK∈J1, nKK les indices de ces points de régénération, en ordre strictement croissant ;
- rK+1 = n+1 ;
- ∀k∈J1, KK, Ck = {Lj | j∈Jrk, rk+1J}.

Par l’absurde supposons qu’il existe (u, v) ∈ S2 appartenant à la même partie Ck et tels que u 6∼ v. Puisque
L est un parcours de Gt, on sait que u et v sont tous les deux accessibles depuis Lrk

dans Gt (par des
arguments de bordure non vide déjà développés dans le chapitre sur les parcours).

On en déduit que, dansGt,Lrk
n’est pas accessible depuis u ou pas accessible depuis v (sinon en concaténant

les chemins on aurait u ∼ v). Quitte à échanger u et v, on suppose que Lrk
n’est pas accessible depuis u

dans Gt. Ainsi u est un descendant propre de Lrk
dans Gt, autrement dit u est un ascendant propre de Lrk

dans G. Puisque T est un tri préfixe de G on en déduit rgT (u) < rgT (Lrk
).

Par ailleurs, en appliquant 2.13 à T et L (respectivement permutation des sommets et parcours du graphe
Gt) : rgT (Lrk

) 6 rgT (u).
Absurde. On en déduit que deux sommets appartenant à une même partie selon L sont nécessairement
dans la même CFC. �

Remarque 2.15
Attention il faut bien passer au graphe transposé et le parcourir en choisissant les points de régénération
selon un tri préfixe, rester sur le même graphe avec le miroir d’un tri préfixe ne suffit pas.

Démonstration : On considère le graphe G ci-dessous à gauche (on donne ci-dessous à droite Gt son graphe
transposé). Notons T = [a, b, c, d], ainsi T est un tri préfixe de G, et

←−
T = [d, c, b, a] son miroir.

a b c

d
G

a b c

d
Gt

Si on fait un parcours du grapheG en choisissant les points de régénération
selon

←−
T = [d, c, b, a], on obtient le parcours [d, a, b, c], et donc la partition{

{a, b, c, d}
}
. Or ce n’est pas la décomposition en CFC puisque a et c par

exemple sont dans la même partie, alors que c 6 ∗→ a. En effet, dans G on
peut aller de b à c mais pas de c à b, mais on ne s’en rend pas compte ici
car on visite b avant c ….

a b c

d
G

Si on fait un parcours du graphe Gt en choisissant les points de régéné-
ration selon le tri préfixe T = [a, b, c, d], on obtient

{
{a, d, b}, {c}

}
. Cette

décomposition est bien la décomposition en CFC. En effet ici, le fait qu’on
ne puisse pas aller de c à b dans G, qui se traduit par l’impossibilité d’al-
ler de b à c dans Gt, a forcé le parcours à prendre un nouveau point de
régénération entre b et c.

a b c

d
Gt

�

2.3 Algorithme de Kosaraju
D’après la propriété précédente on peut décomposer un graphe orienté en CFC avec n’importe quel
parcours pourvu qu’on choisisse les points de régénération (y compris le premier point du parcours)

Informatique - MPI Lycée Fermat - 2025/2026 15/27

selon un tri préfixe. De plus on a vu précédemment qu’on peut construire un tri préfixe par un par-
cours en profondeur. L’algorithme de Kosaraju propose donc d’appliquer deux fois la même routine
de parcours en profondeur : la première fois sur le graphe G avec des points de régénérations arbi-
traires afin d’obtenir T un tri préfixe de G, la seconde fois sur le graphe Gt en choisissant les points
de régénération selon l’ordre établi par T . La partition associée à ce second parcours fournit alors
la décomposition en CFC.

Algorithme 2 : Algorithme de Kosaraju
Entrée : Un graphe orienté G = (S, A)
Sortie : La décomposition de G en CFC

1 On calcule L un tri préfixe de G ;
2 On parcourt Gt, suivant l’ordre induit par L ;
3 On retourne le partitionnement associé à ce parcours ;

Exercice de cours 2.16
Appliquer l’algorithme de Kosaraju aux graphes ci-dessous.

a b

c

d e

f g

a b c

d e f

g h i

Proposition 2.17

La complexité♣de l’algorithme de Kosaraju est en O(n + m).

Démonstration : On représente les graphes par tables de listes d’adjacence, ainsi les deux parcours sont en
O(n + m). Le calcul de Gt se fait aussi en O(n + m) (Cf. exercice de cours 2.8). �

Exercice de cours 2.18
On décide d’améliorer l’algorithme de Kosaraju en profitant du premier parcours pour tester si le graphe est,
ou non, sans circuit. Expliquer en quoi cette information est pertinente.

2.4 Application à 2-Sat
Cette section établit un corollaire de l’existence de l’algorithme de Kosaraju, et plus généralement
de l’existence d’un algorithme de complexité polynomiale permettant le calcul des composantes
fortement connexes d’un graphe orienté. On rappelle que le problème de décision 2-Sat est défini
comme suit.

2-Sat :
{
Entrée : Une formule H∈Fp(Q) donnée comme conjonction de 2-clauses
Sortie : H est-elle satisfiable?

Corollaire 2.19
2-Sat ∈ P.

Démonstration : Soit Q un ensemble de variables propositionnelles. Soit H = (l1,1 ∨ l1,2) ∧ . . . ∧ (lt,1 ∨ lt,2)
une instance de 2-Sat. Dans la suite de cette preuve, lorsque l, est un littéral, on note lc le littéral opposé.
On remarque que lorsqu’un littéral li,1 est interprété à F, li,2 doit nécessairement être interprété à V pour
que H soit satisfaite (car la clause (li,1 ∨ li,2) doit en particulier l’être).

♣. Sous réserve que l’ensemble des sommets du graphe considéré soit de la forme J1, nK

Informatique - MPI Lycée Fermat - 2025/2026 16/27

Ainsi si lci,1 est interprété à V, li,2 doit aussi être interprété à V. De même lci,2 est interprété à V, li,1 doit
aussi être interprété à V.
On traduit cette dépendance au moyen d’un graphe orienté sur les littéraux. Plus précisément, on construit
le graphe GH de la manière suivante :
• l’ensemble de ses sommets est l’ensemble des littéraux sur Q, i.e. S = Q ∪ {¬p | p ∈ Q} ;
• l’ensemble de ses arcs est A = {(l c

i,1, li,2) | i ∈ J1, tK} ∪ {(l c
i,2, li,1) | i ∈ J1, mK}.

Exemple 2.20
Par exemple la formule (x ∨ ¬y) ∧ (¬y ∨ z) ∧ (y ∨ ¬z) ∧ (y ∨ z), le graphe associé est le suivant.

x y z

¬x ¬y ¬z

Le graphe GH est construit de manière à assurer le lemme suivant.
Lemme 2.21

Soit (u, v)∈S2. Si u
∗→ v dans GH et si ρ est un modèle de H ♣tel que JuKρ = V alors JvKρ = V.

Démonstration : On le montre par récurrence sur la longueur du chemin menant d’un sommet à l’autre.
• Soit (u, v)∈S2 tels que u

0→ v. Dans ce cas u = v, donc JuKρ = JvKρ = V.
Ainsi la propriété est vraie au rang 0.

• Soit k∈N. Supposons la propriété est vraie au rang k. Soit (u, v)∈S2 tels que u
k+1→ v. Soit ρ soit un

modèle de H tel que JuKρ = V. Puisque u
k+1→ v, il existe w∈S tel que u

k→ w et w
1→ v. Comme u

k→ w
et JuKρ = V, on a aussi JwKρ = V par hypothèse de récurrence. De plus comme (w, v) ∈ A, wc ∨ v ou
v ∨wc est une clause de H, et donc satisfaite par ρ. Ainsi JwcKρ + JvKρ = V, or JwcKρ = JwKρ = V = F,
on en déduit que JvKρ = V. La propriété est donc vraie au rang k + 1.

�

Proposition 2.22
H est satisfiable si et seulement si aucune CFC de GH ne contient à la fois une variable et sa négation.

Démonstration :
⇒ Si H est satisfiable, on dispose alors d’un environnement propositionnel ρ ∈ BQ tel que JHKρ = V.

Supposons par l’absurde qu’il existe une CFC du graphe GH contenant les littéraux x et ¬x.
Par définition d’une CFC, x

∗→ ¬x et ¬x
∗→ x.

• Si ρ(x) = V alors JxKρ = V. Puisque x
∗→ ¬x, on déduit du lemme 2.21 que J¬xKρ = V soit

ρ(x) = F.
• Si ρ(x) = F alors J¬xKρ = V. Puisque ¬x

∗→ x, on déduit du lemme 2.21 que JxKρ = V soit
ρ(x) = V.

Les deux cas étant absurdes, aucune CFC de GH ne contient une variable et sa négation.

⇐ Réciproquement supposons qu’aucune CFC de GH ne contient une variable et sa négation.
Montrons que H est alors satisfiable en exhibant un modèle.
Notons (C1, C2, . . . , Cs) un tri topologique du graphe réduit de GH . On peut définir l’environnement
ρ : Q → B par ρ(x) = V si et seulement si i < j où (i, j) ∈ J1, sK2 sont tels que ¬x ∈ Ci et x ∈ Cj .
Ainsi pour toute variable x∈Q, si JxKρ = V alors x est dans une CFC d’indice strictement supérieur à
la CFC contenant ¬x. Étant donné qu’aucune variable n’apparaît dans la même CFC que sa négation,
si JxKρ = F alors x est dans une CFC d’indice strictement inférieur à la CFC contenant ¬x. Autrement

♣. Cela signifie que ρ est un environnement propositionnel tel que JHKρ = V

Informatique - MPI Lycée Fermat - 2025/2026 17/27

dit, si J¬xKρ = V alors ¬x est dans une CFC d’indice strictement supérieur à la CFC contenant x.
Ainsi pour tout littéral l, si JlKρ = V alors lc est dans une CFC d’indice strictement inférieur à la CFC
contenant l.
Supposons alors par l’absurde qu’il existe une clause li,1∨ li,2 de H telle que Jli,1∨ li,2Kρ = F. Notons
alors :

- k1 l’indice de la CFC de li,1 ;
- k′

1 l’indice de la CFC de lci,1 ;
- k2 l’indice de la CFC de li,2 ;
- k′

2 l’indice de la CFC de lci,2.
Puisque Jli,1∨ li,2Kρ = F, Jli,1Kρ = F et Jli,2Kρ = F, soit Jlci,1Kρ = V et Jlci,2Kρ = V, donc par construction
de ρ :
• li,1 = (lci,1)c est dans une CFC d’indice strictement inférieur à la CFC contenant lci,1, soit k1 < k′

1 ;
• li,2 = (lci,2)c est dans une CFC d’indice strictement inférieur à la CFC contenant lci,2, soit k2 < k′

2.
Pourtant, puisque li,1∨ li,2 est une clause de H, le graphe GH contient l’arc (lci,1, li,2) et l’arc (lci,2, li,1),
qui impliquent respectivement que k′

1 6 k2 et k′
2 6 k1. Mises bout à bout ces quatre inégalités

donnent : k1 < k′
1 6 k2 < k′

2 6 a. Absurde Finalement toute clause li,1 ∨ li,2 de H est satisfaite par
ρ, donc ρ est bien modèle de H et H satisfiable.

�

L’algorithme suivant résout donc 2-Sat et il est de complexité polynomiale.

Algorithme 3 : Satisfiabilité d’une 2-CNF
Entrée : Une 2-CNF H
Sortie : H est-elle satisfiable?

1 Construire le graphe GH associé à la formule H ;
2 Calculer les CFC de GH ;
3 Tester si aucune variable et sa négation ne sont dans la même CFC ;

�

Exercice de cours 2.23
Justifier plus précisément pourquoi cet algorithme est de complexité polynomiale.

Remarque 2.24
On remarque que la preuve précédente fournit en fait un algorithme permettant non seulement de tester
si une 2-CNF est satisfiable, mais aussi d’en construire un modèle.

Exercice de cours 2.25
Construire un modèle de la formule de l’exemple 2.4 en suivant la construction de la preuve précédente (i.e.
donner d’abord les CFC du graphe, puis donner un tri topologique du graphe réduit avant de donner fixer la
valeur de vérité pour chaque variable).

Exercice de cours 2.26
Donner un modèle de (¬y ∨ x) ∧ (y ∨ ¬z) ∧ (y ∨ ¬z) ∧ (y ∨ z) ∧ (¬y ∨ z).

Remarque 2.27
On remarque que la résolution d’une instance H de 2-Sat dépend seulement de l’ensemble des paires de
littéraux apparaissant dans la formule. En effet si on change l’ordre des clauses, leur multiplicité ou l’ordre
de deux littéraux au sein d’une clause, on e change pas le graphe GH associé à la formule H, ainsi on ne
change pas la manière de décider si H est satisfiable (ni celle, le cas échéant, de trouver un modèle de H).

Informatique - MPI Lycée Fermat - 2025/2026 18/27

Exercice de cours 2.28
Appliquer l’algorithme précédent aux deux instances 2-Sat suivantes (représentées ici par l’ensemble de leurs
clauses) Γ1 = {¬p ∨ q,¬q ∨ r,¬q ∨ s,¬s ∨ ¬r} et Γ2 = Γ1 ∪ {p ∨ q}.

3 Couplage dans un graphe biparti

3.1 Introduction

Considérons le problème suivant. On a des plantes et des pots, et on sait quelle
plante rentre dans quel pot. On cherche à placer un maximum de plantes (ou à
utiliser un maximum de pot, ce qui revient dans les deux cas à former un maxi-
mum d’appariement plante-pot) sachant qu’une plante ne pourra être placée
que dans un seul pot, et chaque pot ne pourra contenir qu’une plante, bouture
et permaculture étant remises à plus tard. On peut alors modéliser les données
du problème par un graphe non orienté biparti comme le graphe ci-contre.

a

b

c

d

1

2

3

4
Graphe plante-pot

Rappel 3.1
Un graphe non orienté G = (S, A) est dit biparti lorsqu’il existe une partition {S1, S2} de S telle
que pour toute arête {x, y}∈A, (x∈S1 et y∈S2) ou (x∈S2 et y∈S1).

Exercice de cours 3.2
Démontrer que dans un graphe biparti les cycles ne peuvent être de longueur impaire.

Exemple 3.3
Le graphe ci-dessus est biparti avec S1 = {a, b, c, d} et S2 = {1, 2, 3, 4}.

Remarque 3.4
Il peut exister plusieurs partitions justifiant qu’un graphe G est biparti.

Notation 3.5
Lorsqu’on écrit que G = (S1 t S2, A) est biparti, on sous-entend qu’il s’agit du graphe G = (S, A)
avec S = S1 ∪ S2 et qu’il est biparti pour {S1, S2}, autrement dit que les arêtes de A ont une
extrémité dans S1 et l’autre dans S2.

Définition 3.6
Soit G = (S, A) un graphe non orienté. Soit C ⊆ A un sous-ensemble d’arêtes.
On dit que C est un couplage de G si et seulement si ∀(e, e′) ∈ C2, e ∩ e′ 6= ∅ ⇒ e = e′.
Autrement ditC est un couplage si deux arêtes distinctes deC n’ont aucune extrémité en commun.

Exemple 3.7

Exercice de cours 3.8
Si C est un couplage et C ′ ⊆ C, que peut-on dire de C ′ ?

Informatique - MPI Lycée Fermat - 2025/2026 19/27

a

b

c

d

1

2

3

4
Couplage du graphe plante-pot

a

b

c

d

1

2

3

4
Non-couplage du graphe plante-pot

Exercice de cours 3.9
Donner un majorant du nombre d’arêtes dans un couplage d’un graphe à n sommets.
Donner un majorant du nombre d’arêtes dans un couplage d’un graphe biparti G = (S1 t S2, A) en fonction
de n1 = |S1| et n2 = |S2|.

Représentation machine Les arêtes d’un couplage définissant un graphe dont les sommets sont
de degré 0 ou 1, on peut le représenter en machine par un tableau indexé par les sommets qui
associe à chaque sommet son voisin s’il en a un, et une valeur par défaut sinon.
Définition 3.10
Soit G = (S, A) un graphe non orienté. Soit C ⊆ A un couplage de G.
Le couplage C est ditmaximal s’il n’existe pas de couplage de G strictement plus grand pour ⊆.
Autrement dit C est maximal si et seulement si ∀C ′ ⊆ A, C ′ couplage de G et C ⊆ C ′ ⇒ C = C ′.
Le couplage C est ditmaximum s’il est de cardinal maximal parmi les couplages de G. Autrement
dit C est maximum si et seulement si ∀C ′ ⊆ A, C ′ couplage de G ⇒ |C| > |C ′|.

Exemple 3.11

a

b

c

d

1

2

3

4
Couplage �

ni maximum ni maximal

a

b

c

d

1

2

3

4
Couplage F

maximal non maximum

a

b

c

d

1

2

3

4
Couplage ♦

maximal et maximum

Remarque 3.12
Un couplage maximum est nécessairement maximal. En effet, s’il existait un couplage C ′ strictement plus
grand pour ⊆ qu’un couplage maximum C, on aurait card(C ′) > card(C), Absurde.

Remarque 3.13
L’ensemble vide est un toujours un couplage, de plus l’ensemble des couplages est inclus dans P(A) qui est
fini, ainsi l’ensemble des couplages est un ensemble fini non vide ce que justifie qu’il existe nécessairement
un couplage maximum, et donc a fortiori il existe un couplage maximal.

Informatique - MPI Lycée Fermat - 2025/2026 20/27

Exercice de cours 3.14
Donner un couplage maximal, non maximum et un couplage maximum du graphe biparti ci-dessous.

Exercice de cours 3.15
Soit C un couplage d’un graphe G = (S, A). Démontrer que C est maximal si et seulement si on ne peut y
ajouter la moindre arête, i.e. ∀e∈A\C, C ∪ {a} n’est pas un couplage.

Remarque 3.16
L’algorithme glouton qui construit un couplage par ajouts successifs (i.e. qui sélectionne à chaque étape
une arête dont aucune extrémité n’est couverte par le couplage courant) conduit à un couplage maximal,
mais pas nécessairement maximum (Cf. exercice de cours 3.14). Ainsi cet algorithme peut être vu comme
un algorithme de recherche locale qui reste parfois bloqué sur un maximum local (un couplage maximal
est maximum dans son voisinage défini par la relation ⊆). Pour sortir d’un tel maximum local, il faut alors
envisager une autre opération que l’ajout d’arête. Il faut en fait accepter d’enlever certaines arêtes pour en
remettre plus, c’est ce que fait l’opération d’inversion le long d’un chemin que l’on introduit à la section
suivante.

3.2 Chemin augmentant

Définition 3.17
Soit un graphe G = (S, A) un graphe non orienté. Soit C un couplage de G.
• On dit d’un sommet x∈S qu’il est libre pour C s’il n’est l’extrémité d’aucune arête du couplage,

i.e. ∀{y, z}∈C, x 6= y et x 6= z.
• On dit qu’une chaîne c = (γ0, γ1, . . . , γ2p+1) de longueur impaire qu’elle est augmentante
♣pour C si :

- γ0 et γ2p+1 sont libres pour C ;
- pour tout i∈J0, pK, {γ2i, γ2i+1}∈A \ C ;
- pour tout i∈J0, p− 1K, {γ2i+1, γ2i+2}∈C ;
- c est élémentaire, i.e. ∀(i, j)∈J0, 2p + 1K2, γi = γj ⇒ i = j.

Autrement dit une chaîne augmentante est une chaîne élémentairede longueur impaire, alternant
les arêtes de C et de A \ C dont les deux extremités sont deux sommets libres.

Exemple 3.18
Dans le couplage � ci-dessus, (d, 4) est un chemin augmentant.
Dans le couplage F ci-dessus, (c, 2, a, 1) est un chemin augmentant.

♣. Par abus on parlera par la suite de chemin augmentant bien qu’il s’agisse d’une chaîne.

Informatique - MPI Lycée Fermat - 2025/2026 21/27

Exercice de cours 3.19
Dans le graphe biparti ci-dessous donner un chemin augmentant de longueur 1, de longueur 3 et un de longueur
5 pour le couplage .

Lemme 3.20
Soit G = (S, A) un graphe non orienté. Soit C un couplage de G.
Si γ = (γ0, γ1, . . . , γ2p+1) un chemin augmentant pour C,
alors l’ensemble C ′ défini ci-dessous est un couplage de G de cardinal |C|+ 1.

C ′ = C \ {{γ2i+1, γ2i+2} | i∈J0, p− 1K} ∪ {{γ2i, γ2i+1} | i∈J0, pK}

Démonstration : Par construction de C ′, |C ′| = |C| − p + (p + 1), soit |C ′| = |C|+ 1. Reste à justifier que C ′

est bien un couplage.

γ0 γ1 γ2 γ3 γ4 γ5 γ6 γ2p γ2p+1

γ0 γ1 γ2 γ3 γ4 γ5 γ6 γ2p γ2p+1

Les sommets hors de γ ayant les mêmes arêtes incidentes dans C et dans C ′ (soit une au plus puisque C
est un couplage), il nous suffit d’inspecter les sommets de γ et de justifier que chacun d’eux est l’extrémité
d’au plus une arête de C ′.
• γ0 est libre pour C, donc les seules arêtes de C ′ susceptibles de lui être incidentes sont celles qu’on a

ajoutées, soit celles de la forme {γ2i, γ2i+1}. Les sommets de C étant deux à deux distincts, la seule arête
de cette forme incidente à γ0 est {γ0, γ1}.

• γ2p+1 est libre pour C, et de même la seule arête de C ′ qui lui est incidente est {γ2p, γ2p+1}.
• Pour k ∈ J1, 2pK, γi est l’extrémité d’exactement une arête de C, (à savoir {γk−1, γk} si k est pair et
{γk, γk+1} sinon), or celle-ci est supprimée dans C ′ et une seule autre arête d’extrémité γk est ajoutée
dans C ′ (à savoir {γk, γk+1} si k est pair et {γk−1, γk} sinon), donc γk est l’extrémité d’exactement une
arête de C ′.

�

Vocabulaire 3.21
Dans le cadre de ce cours, on dira que C ′ est le couplage obtenu à partir de C par inversion le
long de γ.

Proposition 3.22
Soit G = (S, A) un graphe non orienté. Soit C un couplage de G.
Si C est maximum alors il n’admet pas de chemin augmentant.

Démonstration : C’est un corollaire du lemme précédent. Si C admet un chemin augmentant γ, alors le
couplage C ′ obtenu en inversant C le long de γ est de cardinal |C| + 1, et donc C n’est pas de cardinal
maximum. On conclut par contraposée. �

Informatique - MPI Lycée Fermat - 2025/2026 22/27

Proposition 3.23
Soit G = (S, A) un graphe non orienté. Soit C un couplage de G.
Si C n’admet pas de chemin augmentant, alors C est un couplage maximum.

Démonstration : On le montre par contraposée. Soit M un couplage de G non maximum. Montrons qu’il
admet un chemin augmentant. Considérons pour cela M? un couplage maximum.
Nous illustrons la preuve sur le graphe biparti ci-dessous où le couplage M est l’ensemble et le couplage
M? est l’ensemble .

Posons alors :
• D1 = M \M?, ainsi D1 ⊆M ;
• D2 = M? \M , ainsi D2 ⊆ A \M ;

• D = D1 tD2, ainsi D = M∆M? ;
• GD = (S, D).

Dans la suite nous ne représentons plus que les arêtes de D. Nous représentons D1 par la couleur de M ()
et D2 par la couleur de M? (), nous obtenons alors le graphe ci-dessous.

On peut alors faire plusieurs remarques.
(a) D1 (resp. D2) est un couplage en tant que sous-ensemble du couplage M (resp.M?). Ainsi un sommet

GD est l’extrémité d’au plus une arête de D1 et au plus une de D2, et donc est en particulier de degré
au plus 2.

(b) La remarque précédente assure aussi que les chaînes de D alternent nécessairement arête de D1 ⊆M
et de D2 ⊆ A \M .

(c) Puisque M? est maximummais pas M , card(M) < card(M?) et par conséquent card(D1) < card(D2).
En effet card(D1) = card(M)− card(M ∩M?) < card(M?)− card(M ∩M?) = card(D2).

(d) Notons (Ck)k∈J1,KK les composantes connexes de GD et (Ak)k∈J1,KK leurs ensembles d’arêtes. Ainsi
les Ak forment une partition de D, or D a strictement plus d’arêtes de D2 que de D1, donc il existe
k0∈J1, KK tel que card(Ak0 ∩D2) > card(Ak0 ∩D1). (En effet, si ce n’était pas le cas, on a aurait ∀k∈
J1, KK, card(Ak ∩D2) 6 card(Ak ∩D1) et en sommant ces inégalités on aurait card(D2) 6 card(D1),
Absurde.)

Dans notre exemple il y a K = 6 composantes connexes, et pour la numérotation donnée ci-dessous c’est la
composante C3 qui a trois arêtes de D2 et seulement deux D1.

C1 C2 C3

C4

C5 C6

On s’intéresse alors à (Ck0 , Ak0). En tant que sous-graphe de GD, ce graphe n’a que des sommets de degré
0, 1 ou 2 (d’après (a)), et comme il est connexe, ce ne peut être qu’un cycle de longueur paire ou une chaîne,

Informatique - MPI Lycée Fermat - 2025/2026 23/27

qui de plus alterne les arêtes de D1 et D2 (d’après (b)). On en déduit qu’il y au plus 1 de différence entre
le nombre d’arêtes de D1 et de D2 dans ce graphe, et sachant que card(Ak0 ∩D2) > card(Ak0 ∩D1) on en
déduit que card(Ak0 ∩D2) = card(Ak0 ∩D1) + 1. En particulier cela assure que card(Ak) est impaire, ce
qui exclut le cas du cycle. Ainsi (Ck0 , Ak0) est une chaîne de longueur impaire qui alterne arête de D1 ⊆M
et de D2 ⊆ A \M .

Posons q = card(Ak0). Le cas du cycle étant exclu, on a card(Ck0) = card(Ak0) + 1 = q + 1. Numérotons
alors (γi)i∈J0,qK les sommets de Ck0 de sorte que Ak0 = {{γi, γi+1} | i ∈ J0, qJ}. (les γi sont deux à deux
distincts par cardinalité). Ainsi pour montrer que γ est une chaîne augmentante pour M pour il ne reste
qu’à vérifier que γ0 et γq sont libres pour M .

• Si γ0 est non libre pour M , il existe x ∈ S tel que {γ0, x} ∈ M . Puisque {γ0, γ1} ∈ D2, d’une part
{γ0, γ1} 6∈ M , et comme {γ0, x} ∈M on en déduit x 6= γ1, d’autre part {γ0, γ1} ∈M? et comme M?

est un couplage, {γ0, x} /∈ M?. Ainsi {γ0, x} ∈M \M? = D1 ⊆ D. Donc x est un voisin de γ0 dans
GD, différent de γ1, or γ0 est de degré 1 dans GD en tant qu’extremité de la chaîne qu’est (Ck0 , Ak0).
Absurde. Ainsi γ0 est libre pour C.

• On montre de même que γq est libre pour M .
Finalement (γ0, γ1, . . . , γq) est un chemin augmentant pour M . �

Remarque 3.24
La proposition ci-dessus donne une condition suffisante pour qu’un couplage soit maximum, mais aussi,
dans le cas où le couplage n’est pas maximum, une procédure effective pour construire un couplage de
cardinal supérieur à partir d’un chemin augmentant, celle qui permet de passer de C à C ′ dans la pro-
priété 3.23.

Exercice de cours 3.25
On considère le graphe biparti ci-dessous, sur lequel on a représenté un couplage maximum : .

Donner les étapes obtenues en partant du couplage vide C, et en itérant le processus suivant :
• on découvre un chemin augmentant en suivant la démonstration précédente en utilisant le couplage

maximum ;
• on inverse ce chemin dans C, et on recommence.
On s’arrête lorsqu’il n’existe plus de chemin augmentant.

On déduit alors de cette proposition une méthode de recherche locale pour trouver un couplage
maximum :
• partir de C l’ensemble vide qui est un couplage trivial ;
• chercher un chemin augmentant pour C, et si on trouve un tel chemin γ, inverser C le long de γ

pour gagner en cardinalité ;
• si on ne trouve pas de chemin augmentant pour C, c’est que C est un couplage maximal.
La démonstration ci-dessus ne donne pas un algorithme pour trouver un chemin augmentant, en
effet la construction suppose connu un couplage maximum, alors que c’est ce que l’on essaie de
calculer.
Dans la section suivante on détaille comment est menée la recherche de chemin augmentant dans
le cas particulier d’un graphe biparti♣.

♣. En effet tout ce qu’on a fait jusqu’ici vaut pour n’importe quel graphe non orienté

Informatique - MPI Lycée Fermat - 2025/2026 24/27

3.3 Algorithme pour les graphes bipartis

3.3.1 Trouver un chemin augmentant dans un graphe biparti

Étant donné un couplage C d’un graphe biparti non orienté G = (S1 t S2, A), on souhaite ramener
la recherche de chemin augmentant pour C à un problème d’accessibilité. Pour cela on construit
un graphe orienté à partir de G, en :
• ajoutant aux sommets une source s prédécesseur de tous les sommets de S1 libres pour C ;
• ajoutant un puits p successeur de tous les sommets de S2 libres pour C ;
• en orientant les arêtes hors de C de S1 vers S2, et celles de C de S2 vers S1.
Avant de formaliser cette construction, on l’illustre avec l’exemple ci-dessous.

Exemple 3.26

a

b

c

d

1

2

3

4
Graphe G et un couplage C

s p

a

b

c

d

1

2

3

4
Le graphe augmenté GC

Proposition 3.27
Soit G = (S1 t S2, A) un graphe biparti. Soit C un couplage de G.
On construit le graphe orienté GC = (S1 t S2 t {s, p}♣, Ã) où :

Ã = {(v, u) | {u, v} ∈ A ∩ C et u ∈ S1 et v ∈ S2}
∪ {(u, v) | {u, v} ∈ A \ C et u ∈ S1 et v ∈ S2}
∪ {(s, u) | u ∈ S1 libre pour C}
∪ {(v, p) | v ∈ S2 libre pour C}

Alors C admet un chemin augmentant si et seulement si GC admet un chemin de s à p. De plus
on a un algorithme permettant de construire un chemin augmentant pour C à partir d’un chemin
dans GC (et réciproquement).

Démonstration : Soit γ = (γ0, γ1, . . . , γ2k+1) un chemin augmentant dans G. Puisque γ est de longueur
impaire, on a nécessairement γ0 ∈ S1 ou γ2k+1 ∈ S1. Quitte à prendre la chaîne dans l’autre sens, on peut
supposer que γ0 ∈ S1 (et donc que γ2k+1 ∈ S2). Alors par définition d’un chemin augmentant :
- γ0 et γ2k+1 sont des sommets libres pour C, donc (s, γ0)∈Ã et (γ2k+1, p)∈Ã ;
- pour tout i∈J0, pK, {γ2i, γ2i+1}∈A\C, et puisque 2i est pair, γ2i∈S1 donc (γ2i, γ2i+1)∈Ã ;
- pour tout i∈J0, p−1K, {γ2i+1, γ2i+2}∈A∩C, et puisque 2i+1 est impair, γ2i+1∈S2 donc (γ2i+1, γ2i+2)∈Ã.
Ainsi (s, γ0, γ1, . . . , γ2k+1, p) est un chemin de s à p dans GC .

Réciproquement, si (s, γ0, γ1, . . . , γ2k+1, p) est un chemin de s à p dans GC , il suffit de remarquer que
(γ0, γ1, . . . , γ2k+1) est un chemin augmentant de G. �

♣. On suppose que s et p n’apparaissent pas dans S1 ∪ S2

Informatique - MPI Lycée Fermat - 2025/2026 25/27

Finalement le problème de la découverte d’un chemin augmentant dans G se ramène au problème
de la découverte d’un chemin dans un graphe orienté, ce que l’on sait déjà faire, avec une complexité
en O(n + m) où n est le nombre de sommets du graphe et m le nombre d’arcs du graphe. On note
dans la suite Trouve_chemin_augmentant un tel algorithme, prenant en arguments un graphe biparti
et un couplage et retournant un chemin augmentant si celui-ci existe, None sinon.

Exercice de cours 3.28
Donner le pseudo-code de l’algorithme Trouve_chemin_augmentant.

Complexité On suppose que le graphe biparti G = (S1 t S2, A) est décrit par une table de liste
d’adjacence indexée par S1 = J0, n1J et par n2, et que C est décrit par un tableau de voisin indexé par
S2. Le calcul de GC se fait alors en O(n + m) (où n et m sont respectivement le nombre de sommets
et d’arêtes de G). En effet, étant donné un sommet, on teste en O(1) s’il est libre pour C, donc les
arcs issus de s (resp. aboutissants en p) sont calculés en O(n1) = O(n) (resp.O(n2) = O(n)). De
plus, étant donné un sommet u∈S1 on parcourt en O(1 + deg(u)) ses voisins v, et pour chacun on
teste en O(1) si l’arête {u, v} est dans C. Dans le cas où {u, v} ∈C, on ajoute à GC l’arc (v, u), et
dans le cas contraire l’arc (u, v). Ainsi les arcs de GC sont calculés en O(n + m).
On en déduit que l’algorithme Trouve_chemin_augmentant est en O(n + m) puisque qu’en plus de
la construction de GC , cet algorithme ne fait qu’un parcours de GC , qui a n + 2 sommets et moins
de m + 2n arcs.

3.3.2 Résoudre le problème de couplage maximum dans un graphe biparti

Algorithme 3 : CouplageMaximum
Entrée : Un graphe biparti G = (S1 t S2, A)
Sortie : Un couplage maximum de G

1 C ← ∅ ;
2 tant que Trouve_chemin_augmentant(G, C) 6= None faire
3 Notons γ le chemin augmentant ainsi trouvé ;
4 On inverse C le long du chemin augmentant γ ;
5 retourner C ;

On donne ci-dessous le déroulé pas à pas de cet algorithme appliqué au graphe donné en exemple
introductif à la page 19.

Informatique - MPI Lycée Fermat - 2025/2026 26/27

a

b

c

d

1

2

3

4
Découverte d’un

chemin augmentant
partant de a

a

b

c

d

1

2

3

4
Inversion le long du

chemin (a, 2).

a

b

c

d

1

2

3

4
Découverte d’un

chemin augmentant
partant de b

a

b

c

d

1

2

3

4
Inversion le long du

chemin (b, 1).

a

b

c

d

1

2

3

4
Découverte d’un

chemin augmentant
partant de c

a

b

c

d

1

2

3

4
Inversion le long du

chemin
(c, 2, a, 1, b, 3).

a

b

c

d

1

2

3

4
Découverte d’un

chemin augmentant
partant de d

a

b

c

d

1

2

3

4
Inversion le long du

chemin (d, 4).

Exercice de cours 3.29
Appliquer l’algorithme CouplageMaximum sur le graphe biparti ci-dessous.

Correction. La correction de l’algorithme est assurée par les propriétés précédentes, et par la
négation de la condition de boucle : s’il n’existe plus de chemin augmentant, le couplage est de
cardinal maximum.

Complexité L’algorithme CouplageMaximum est en O(n(n + m)), car le couplage maximum est de
cardinal au plus n

2 (Cf. exercice de cours 3.9), ce qui assure qu’il y a au plus de l’ordre de n itérations,
et chaque itération conduit à un appel à Trouve_chemin_augmentant dont on a montré qu’il est en
O(n + m).

Informatique - MPI Lycée Fermat - 2025/2026 27/27

	Arbres couvrants de poids minimum
	Arbres
	Arbres couvrants
	Arbre couvrant et pondération
	Algorithme de Kruskal
	Union Find
	Retour à l'algorithme de Kruskal

	Algorithme de Kosaraju
	Tri préfixe (rappels)
	Graphe transposé et CFC
	Algorithme de Kosaraju
	Application à 2-Sat

	Couplage dans un graphe biparti
	Introduction
	Chemin augmentant
	Algorithme pour les graphes bipartis
	Trouver un chemin augmentant dans un graphe biparti
	Résoudre le problème de couplage maximum dans un graphe biparti

