Chapitre 6 : Trois algorithmes sur les graphes

1 Arbres couvrants de poids minimum

Dans cette section, on travaille sur un graphe non orienté pondéré G = (S5, A, c) ou c € F(A,N). On
notera n = card(S) et m = card(A).

Vocabulaire 1.1

Dans les probléemes que I'on considere dans cette section, 'ensemble des sommets ne change pas,
et I'on cherche plutét un ensemble d’arétes A’ C A qui définit un arbre couvrant. On s’autorisera
donc a dire qu’un ensemble d’arétes A’ C A est connexe, acyclique, un arbre, un arbre couvrant
... pour dire que le graphe (S, A’) I'est.

Notation 1.2

Suivant la méme idée, si A’ C A, on notera ~ 4 la relation de connexité du graphe (S, A’). Ainsi
V(u,v) € S?,u ~4 v si et seulement si il existe une chaine d’arétes de A’ entre u et v.

1.1 Arbres

Rappel 1.3

Le graphe G est acyclique si G n’admet aucun cycle élémentaire de longueur supérieure ou égale
a3.

Le graphe G est connexe si pour tout couple de sommets il existe une chaine ayant ces deux
sommets comme extrémités.

Le graphe G est un arbre si et seulement si G est connexe et acyclique.

M Exercice de cours 1.4

Que dire d'un sous-graphe d'un graphe acyclique ?

Que dire d’un sur-graphe d'un graphe connexe?

Lemme 1.5

Soit B C A un sous-ensemble d’arétes.

Si (S, B) admet un cycle élémentaire v, et si e est une aréte de ,

alors B' < B\ {e} vérifie ~g=~p.

Autrement dit enlever une aréte sur un cycle ne change pas la connexité.

Démonstration : La preuve est un exercice de TD. O

Informatique - MPI Lycée Fermat - 2025/2026 1/27

Lemme 1.6

Soit B C A un sous-ensemble d’arétes.

Si (S, B) est acyclique et si x et y sont deux sommets de S tels que x g y,

alors (S, BU {z,y}) est acyclique.

Autrement dit ajouter une aréte entre deux sommets non reliés ne crée pas de cycle.

Démonstration : La preuve est un exercice de TD. O

Proposition 1.7

Les 5 propositions ci-dessous sont équivalentes.

* (G est connexe et acyclique

* G est connexe et |A| =|S|—1

* G est acyclique et |A| = |S| -1

e G est minimal parmi les sous-graphes connexes de K, *
* (G est maximal parmi les sous-graphes acycliques de K,

Démonstration : La preuve est un exercice de TD. O

1.2 Arbres couvrants

Définition 1.8
LOH dit d’un graphe G’ = (S’, A’) que c’est un arbre couvrant de G des lors que : S’ = S, A’ C A

et G est un arbre.

M Exercice de cours 1.9

On considere le graphe G ci-dessous.

Parmi les graphes ci-dessous (représentés en ==), lesquels sont des arbres couvrants de G 7 Justifier.

Proposition 1.10

Un graphe admet un arbre couvrant si et seulement s’il est connexe.

Démonstration : Si G admet un arbre couvrant A’, alors par définition d’un arbre, (S, A’) est connexe.
Deux sommets quelconques de G sont reliés par une chaine d’arétes de A’, et donc a fortiori par une chaine
d’arétes de A, et sont donc reliés dans G. Ainsi GG est connexe. Réciproquement si G est connexe, il suffit

&. K, est le graphe complet a n sommets.

Informatique - MPI Lycée Fermat - 2025/2026 2/27

d’enlever des arétes a A sur des cycles tant qu’il y en a . En effet, en posant B = A, on a ~g=~¢ par
définition. Tant que B admet un cycle, on choisit e une aréte de ce cycle, et on la supprime de B. D’apres
le lemme 1.5, on maintient ainsi ~p=~¢. Le nombre d’arétes de B est un variant qui assure que cette
procédure termine, et en sortie on obtient bien B un ensemble d’aréte acyclique, autant connexe que G,
soit un arbre couvrant de G. O

Définition 1.11
On dit d’un graphe G' = (5', A’) que c’est une forét couvrante de G dés lors que : S’ = S,

A" C A et G est acyclique et ~g=~ . Autrement dit, une forét couvrante d’un graphe G est un
sous-graphe de G acyclique qui a exactement les mémes composantes connexes que G.

M Exercice de cours 1.12

Démontrer que tout graphe admet une forét couvrante.

P Exercice de cours 1.13

Soit un graphe connexe G a n sommets et m arétes. Justifier que le nombre d'arbres couvrants de G est fini

en donnant, en fonction de n et m, une borne sur le nombre d'arbres couvrants.

1.3 Arbre couvrant et pondération

Définition 1.14
Si A" C A, le poids de A" est 31, year c(w,y), et parfois noté c(A’).
SiT = (5, A’) est un arbre, son poids, parfois noté ¢(T') est ¢(A’).
Autrement dit le poids d’un arbre est la somme des poids de ses arétes.

Exemple 1.15

% S o> N o>
Vibve N

Un graphe non orienté pondéré Un arbre couvrant de poids 12 Un arbre couvrant de poids
minimum (10)

Définition 1.16

Etant donné qu’il y a un nombre fini non nul d’arbres couvrants d’un graphe connexe, on peut
alors considérer le probléme d’optimisation suivant.

Entrée : Un graphe connexe non orienté pondéré G = (S, A, ¢)

ACPM : . . -
{Sorﬂe : Un arbre couvrant de poids minimum

Informatique - MPI Lycée Fermat - 2025/2026 3/27

P Exercice de cours 1.17

Considérons le probleme d'optimisation suivant.

Entrée : Un graphe connexe non orienté pondéré G = (S, A, ¢)
ECPM : . A p e
Sortie : Un ensemble d'arétes A’ C A tel que ~4=~ 4 minimisant ¢

Montrer que I'ensemble des arbres est dominant pour ECPM, i.e. qu'il existe toujours au moins une solution
optimale qui est un arbre.
Montrer de plus que dans le cas ou ¢ est a valeurs strictement positive cette dominance est stricte, c'est-a-dire

que toutes les solutions optimales sont des arbres.

1.4 Algorithme de Kruskal

Dans cette section on suppose que G est connexe et on cherche un arbre couvrant de poids mini-
mum de G. Une idée pour construire un tel arbre, est de partir d'un ensemble d’arétes vide, qui a le
mérite d’étre acyclique, et de I'enrichir en ajoutant des arétes pour qu’il gagne en connexité jusqu’a
atteindre celle de G, tout en maintenant son caractere acyclique. On regarde a chaque étape la par-
tition en composantes connexes associée a I’ensemble d’arétes. D’'une part cela permet de détecter
sil’on a atteint la connexité voulue (lorsqu’il y a une seule composante), et d’autre part cela permet
de détecter qu'une aréte n’est pas bonne a ajouter (si ces deux extrémités sont déja dans la méme
composante).

Exemple 1.18
Reprenons I'exemple ci-dessus, et mettons en regard des choix d’arétes et les partitions en composantes
connexes associées.

N o) C?_ 7?\ N
tel fe.

{c},

Lede L8] b L
GP— 7?\ ta el C?_ 7?\ {a g }

{c b}

40 NS it B V0 BN

AN
b

Le colit de l'arbre couvrant ainsi généré est alors la somme des colits des arétes sélectionnées a
chaque étape, ce qui suggere de considérer les arétes de plus petit cotit d’abord.
Ce qui donne l'algorithme glouton suivant.

{{a,e,c,b,d}}

Informatique - MPI Lycée Fermat - 2025/2026 4/27

Algorithme 1 : Algorithme de Kruskal (version 0)

Entrée : Un graphe connexe non orienté pondéré G = (S, A, ¢)
Sortie : Un arbre couvrant de poids minimum
(aj)jeqi,m) < une indexation des arétes par pondération croissante ;
B+ 0;
14 1;
tant que le graphe (S, B) n’est pas connexe faire

si le graphe (S, B U {a;}) est acyclique alors

‘ B+ BU {CI,Z},
14 1+1;

ST NS, T O UR R

[~}

retourner (S, B);

Exemple 1.19
L'exécution de l'algorithme sur 'exemple ci-dessus conduit aux choix représentés ci-dessous.

AR T TR

6

Kobdo b Do dlede
TN TN

6 6

&b b

P Exercice de cours 1.20

Exécuter I'algorithme de Kruskal sur les graphes ci-dessous.

Iﬂ“%‘ﬁ I*”Il};; .
L27+T5Z 19! L‘r’* 32 L27+E3
SN SLY AL

Théoréme 1.21

L’algorithme de Kruskal fournit un arbre couvrant de poids minimal.

Démonstration : Nous allons mener la preuve en trois temps : établir des propriétés invariantes de la boucle
tant que de l'algorithme, démontrer la terminaison de I'algorithme, conclure en utilisant les invariants et
la négation de la condition de boucle. Pour chaque j € [1,m], notons z; et y; les extrémités de I'aréte a;.

Invariants. Commencons par démontrer que les propriétés suivantes sont des invariants de la boucle tant
que l'algorithme de Kruskal.

I 1l existe un arbre couvrant de poids minimal de G contenant les arétes de B.
I, B est acyclique.

Iy Vj e [Li =1, x5 ~ y;.

I, i€ [[1,m+ 1]]

Initialisation. Avant les itérations, B = () et ¢ = 1. Ceci assure :

Informatique - MPI Lycée Fermat - 2025/2026 5/27

* la propriété I, en effet G étant connexe il admet un arbre couvrant de poids minimal, et donc un
arbre couvrant de poids minimal contenant les arétes de (};
* la propriété I, en effet le graphe () est trivialement acyclique;
* la propriété Is, en effet [1,i — 1] = 0;
* la propriété I, en effet i = 1.
Propagation de Uinvariant. Soit B® et i*’ les valeurs des variables B et i au début d’'une itération de
boucle, et B et 1%, les valeurs a la fin de cette méme itération.

Supposons que les propriétés I, I, I3 et I, sont vérifiées par B* et i**.
Montrons qu’elles le sont alors toujours par les valeurs B et %P,
Remarquons tout d’abord que i? = i*“ + 1. De plus, d’apres la condition de boucle, B’ n’est pas
connexe.
I, Montrons que " € [1,m + 1].
Par invariant Iy, i* € [1, m + 1], montrons en fait que i** # m + 1. Par 'absurde supposons que
i* = m + 1. Linvariant /3 assure alors Vj € [1,m], z; G Yio autrement dit les deux extrémités de

n’'importe quelle aréte de G sont reliées dans B’ (%). Montrons alors que B®¥ est connexe.
Soit (z,y) € S2. Par connexité de G, il existe une chaine de = a y dans GG, qu’on note comme suit.

€ :’)’03’713’725---5% =Y

De la remarque (%), on déduit que Vi € [0,p — 1], G, it et finalement par transitivité x =

0 L =Y Ainsi B® est connexe, ABSURDE.

On en déduit que i*” # m + 1 donc i®” € [1,m] donc i*? € [2,m + 1] et a fortiori i*P € [1,m + 1].

I3 Montrons que Vj € [1,:% — 1], z; 5 Vi
Soit j € [1,i?’ — 1]. Si j € [1,i*” — 1], puisque B* C B, la propriété I3 en début de tour assure
Tj o~ Y- Sij =i —1 =1, on distingue deux cas.

° Cas B = B U {ajw}, soit B = B* U {a;}. La chaine réduite a I'aréte a; assure x; ~ ;.
Bap

o Sinon B = B®. D’apres la condition du si, B*” U {a;a } soit B*” U {a;} n’est pas acyclique, or
B® est acyclique par invariant /. Ainsi, par contraposé du Lemme 1.6, z; G Vi
ap

I, Montrons que B est acyclique.
Si B = B% U {a;a }, Cest parce que B U {a;qv } est acyclique (d’apres la condition du si). Sinon
B = B qui est acyclique par invariant /5.

I; Montrons qu'’il existe un arbre couvrant de poids minimal de G contenant les arétes de BP.
Soit T C A un arbre couvrant de poids minimal de G contenant les arétes de B®’ (un tel arbre
existe par invariant I;).
Si B C T, on conclut en considérant le méme arbre.
Sinon B ¢ T, autrement dit on a sélectionné dans B une aréte lors du tour de boucle considéré,
ainsi B*? = B* Ll {aav }. De plus, d’apres la condition du si, B acyclique.
Notons {z,y} & aav, et posons alors U & T'Li{a;e }. Ainsi U est connexe et contient 3%, mais il n’est
pas acyclique. En effet, puisque T est un arbre, on peut considérer ¢ I'unique chaine élémentaire de
x a y dans T, et former un cycle élémentaire v en y ajoutant 'aréte a;av.

VYix—...—Yy — T
—_———— Qv
5

B étant acyclique, il existe une aréte de v qui n’est pas dans B°". Notons-la f et remarquons que
f # ajev car aar € B, Posons alors 7" < U \ {f}.

Du lemme 1.5, T” est encore connexe et contient toujours B%.

Montrons que 7" est de plus acyclique. En effet, 77 = (T'\ {f}) U{ajav } soit T' = (T'\ {f}) U{z, y}-
T\ {f} est acyclique en tant que sous-graphe acyclique de 7' (lui-méme un arbre). De plus f est

Informatique - MPI Lycée Fermat - 2025/2026 6/27

une aréte de I'unique chaine élémentaire dans 7" de z a y, donc = %7\ () y- D’apres le lemme 1.6,
on en déduit que 7" est acyclique. Ainsi 7" est un arbre contenant B%.

Montrons qu'’il est aussi de poids minimal en montrant qu’il est de poids moindre que 7.

Pour cela montrons finalement que le cofit de I'aréte f est moindre que celui de I'aréte a;av. Consi-
dérons les deux sommets u et v tels que f = {u,v} et 'entier k tel que f = a; et montrons que
k> i%.

Par l'absurde supposons que k£ < i?Y. Alors I'invariant I3 assure que u o U ainsi il existe une
chaine élémentaire v dans B reliant u a v. Puisque B*” C T', (est une chaine de 7'. La chaine /3
n’emprunte pas l'aréte f = {u, v} puisque celle-ci ne se trouve pas dans B*’ (car on a choisi f hors
de B?). Ainsi on a deux chaines élémentaires distinctes reliant v et v dans T : ’aréte f et la chalne
5. ABSURDE puisque T est un arbre.

Ainsi k£ > i%?, et puisque les arétes sont triées par poids croissant, c(ai) > c(a;av), assurant ainsi
que ¢(T") < ¢(T) et donc ¢(T") = ¢(T') par minimalité.

Finalement, 7’ est donc bien un arbre couvrant de poids minimal contenant B,

Variants. Montrons que la boucle tant que de I'algorithme de Kruskal termine. Considérons pour cela
I'expression numérique suivante des variables de la boucle tant que B et i.
V(B,i))Em+1—i
e Par Iy, i € [1,m+ 1] ainsi V(B, i) € N.
* Avec les notations introduites ci-avant, i*? = i%¥ 4 1, ainsi V (B, i) < V (B, i*).
Ainsi V (B, 1) est bien un variant de boucle a valeurs dans I'espace bien fondé (N, <), ce qui nous assure
la terminaison de la boucle Tant que.
Conclusion. Finalement, les valeurs des variables B et i en sortie de boucle sont telles que :

I, il existe un arbre couvrant de poids minimal de GG contenant les arétes de B
I> B est acyclique;

Ig Vj c ﬂl,i — 1]],xj fE Yjs

Iy iel,m+1];

Négation de la condition de boucle : B est connexe.

On en déduit donc que B est un arbre couvrant et qu’il est contenu dans un arbre couvrant de poids
minimal, il est donc lui aussi de poids minimal.

Maintenant que nous nous sommes convaincus que le choix glouton consistant a prendre a chaque
étape I'aréte de plus petit poids conduit bien a un arbre de poids minimal, il nous faut nous demander
comment nous allons implémenter les opérations “le graphe (S, B) est-il connexe? ” ou encore “le
graphe (S, B U {a;}) est-il acyclique ?”. La donnée, a chaque instant de I'algorithme, de 'ensemble
des composantes connexes du graphe G = (S, B) nous permet de répondre “aisément” a ces deux
questions. De plus nous remarquons que 1’évolution des composantes connexes du graphe (5, B), a
mesure que l'algorithme se déroule, peut étre exprimée a 'aide de fusions de partitions, depuis le
partitionnement trivial (dans lequel chaque élément est seul dans sa partie). En effet initialement
B = (), aussi la décomposition en composantes connexes du graphes (.5, B) est la décomposition en
des parties singletons. L'ajout d’une aréte a B a pour effet la fusion des composantes connexes des
sommets se trouvant aux deux extrémités de I'aréte en question. On se pose alors la question de
I'implémentation d’une structure de données qui permette la représentation de partitionnements,
sur lesquels il est possible de faire des opérations de fusion.

1.5 Union Find

Informatique - MPI Lycée Fermat - 2025/2026 7/27

Définition 1.22
On définit le type de données abstrait UnionFind comme contenant :
* un type elt des éléments manipulés;
* un type t représentant la structure;
* une fonction union de signature t x elt X elt — t;
* une fonction trouve de signature t X elt — elt;
* une fonction initialise de signature Ps(elem) — t.

La fonction union est telle que Y% € t,¥(x,y) € elt?, union(®,x,y) calcule le partitionnement
obtenu a partir de % en fusionnant les classes de x et y.

La fonction trouve de signature t x elt — elt est telle que VP € t,Vx € elt, find(P, x) calcule un
représentant de la classe de x dans la partie (, ainsi V% € t ¥ (x,y) € elf’, x est équivalent a y
dans elt® < find(P,x) = find(P,y).

La fonction initialise est telle que pour tout ensemble fini S d’éléments de elt, initialise(S) retourne
le partitionnement trivial dans lequel chaque élément de S est seul dans sa classe.

Remarque 1.23

On notera equiv de signature t x elt x elt — B, la fonction permettant de tester si deux éléments sont dans
la méme classe d’équivalence. Cette fonction peut-étre définie de la maniére suivante.

VP € t,Y(z,y) € elt x elt, equiv(®, z,y) 2 find(P,) = find(P, y)

Dans la suite on suppose que 'ensemble des éléments a représenter est un ensemble d’entiers de la
forme [0,n — 1].

Implémentation au moyen d’une structure arborescente. On met en place une structure de
forét. A chaque élément de S on adjoint un élément de S qui est son pére. Ainsi pour chaque
élément de S on peut aller visiter son pere, puis le pére de son pére, etc. . .. Afin d’assurer qu'un tel
processus termine, le pere d’un élément ne peut étre son descendant strict. Cependant le pere d’'un
élément peut-étre lui-méme, auquel cas on dit que cet élément est une racine. L'ensemble S étant
fini, le parcours de pére en pere depuis n'importe quel élément = conduit alors nécessairement a
un élément racine : c’est le représentant de la classe de x. Attention, les arbres manipulés n’ont
donc pas la structures inductive usuelle des arbres. Si un arbre est souvent défini comme un neceud
contenant deux fils qui sont eux-mémes des arbres, ici un noeud contient un pointeur vers son pere
seulement, il n’a pas acces a ses fils, qui peuvent d’ailleurs étre en nombre quelconque (0, 1, 2 ou plus
...). On choisit comme représentant canonique de chaque classe la racine de 'arbre représentant la
classe.

Exemple 1.24
L'illustration ci-dessous représente la partition de [0, 10] en 4 classes : {1,2,3,7}, {0,5}, {6} et {4,8,9,10}.

() () () ()

7 5 6 4
/N 1 RN
3 ? 0 8 9 10

1

Ainsi {1, 2, 3,7} admet 7 comme représentant canonique. De méme {0,5} (resp.{6}, resp.{4,8,9,10}) admet
5 (resp.6, resp.4) comme représentant canonique.

Informatique - MPI Lycée Fermat - 2025/2026 8/27

Une telle forét peut aisément étre représentée en machine par la donnée du pere de chaque élément,
stockée par exemple dans un tableau.

Exemple 1.25
On continue 'exemple précédent. La forét ci-dessus serait représentée en OCAML par le tableau [|5; 2; 7;
7; 4; 5; 6; 7; 4; 4; 4]|]

P Exercice de cours 1.26

Donner deux foréts distinctes représentant le partitionnement {{0, 3}, {1},{2,8,9},{4},{5,6,7}}.
Pour chacune de ces foréts donner un tableau OCAML représentant la forét en question.

Algorithmes find et union. L’algorithme find peut alors étre implémenté en se déplacant de pere
en pere, depuis I'élément dont on souhaite connaitre un représentant. Lorsqu’on atteint un élément
qui est son propre pere on s’arréte et on le retourne.

L’algorithme union de deux éléments = et y peut alors étre implémenté en cherchant a et b les
représentants respectifs de x et y (au moyen de deux appels a find), puis a changer le pointeur pére
de a vers b ou l'inverse.

Exemple 1.27

Ainsi dans 'exemple ci-dessus si 'on souhaite faire I'union de la classe de 1 et de la classe de 8 : on trouve le
représentant de 1 (C’est 7), on trouve le représentant de 8 (c’est 4), puis on change le pere de 7 pour que ce
soit 4 conduisant alors a la forét ci-dessous.

o— D

() ()
6 4
8/7/7 7\9\10
/N
S

1

Premiere amélioration : union par rang. Laremontée de pére en pére dans un arbre est d’autant
plus coliteuse (dans le pire cas) que les arbres sont hauts. Aussi dans 'exemple ci-avant, il est
particulierement malheureux d’avoir changer le pére de 7 en 4 plutot que le pere de 4 en 7. En effet
la profondeur du nceud le plus profond n’aurait pas augmentée dans le second cas (profondeur 2
pour 1) alors que dans le cas représenté ci-dessus on atteint une profondeur de 3 pour le nceud
1. En vue de manipuler des arbres les moins hauts possibles, on souhaite connaitre la hauteur des
arbres impliqués lors d’'une opération d’union. Pour cela, on conserve au niveau de chaque nceud
une majoration de la hauteur du sous-arbre qu’il engendre. Plus précisément, on appelle rang d'un
noeud = une majoration de la hauteur du sous-arbre enraciné en . C’est-a-dire 'arbre constitué des
élément qui admettent x comme ancétre. Dans 'exemple ci-avant, le nceud étiqueté par la valeur
4 admet 1 comme rang (mais aussi 42). Aussi lors de I'union on utilise I'information de rang pour
décider de mettre le nceud de rang inférieur “sous” le noeud de rang supérieur. En cas d’égalité on
choisit indifféremment, mais on n’oublie pas d’incrémenter le rang de la nouvelle racine.

Seconde amélioration : compression de chemins. Lorsqu’on fait une opération find(z) on par-
court les nceuds de x vers la racine de I'arbre contenant x. Cette opération a un coft algorithmique
qui est la longueur du chemin entre = et la racine de I'arbre, notons C' ce cof(it. Une fois qu'on a
trouvé le représentant de x (notons le r), on peut, pour un coflit de 'ordre de C, reparcourir le

Informatique - MPI Lycée Fermat - 2025/2026 9/27

chemin de z a r en mettant a jour le pointeur de pére vers r. C’est pour cette raison que le rang
n’est pas exactement la hauteur des arbres mais bien une sur-approximation : le compression de
chemin décroit la hauteur des arbres, sans changer les rangs.

Exemple 1.28
Considérons la structure Union-Find de I'exemple ci-dessus. Les rangs sont indiqués en rouge au dessus a
droite des noeuds.

g=
7
¢ N\
Lo

1

o—aD

Un appel a union(0, 8) conduit aux appels find(0) = 5 et find(8) = 4. Ces deux sommets sont de méme rang,
on choisit indifféremment lequel sera le représentant de la classe : 4. On obtient la structure suivante.

0 Qo QQ
I

72
£
T

1 0

Un appel a union(0, 6) conduit aux appels find(0) = 4 et find(6) = 6. Le noeud 6 est de rang inférieur, il est
donc placé “sous” le nceud 4. Lors de I'appel find(0), on profite d’avoir trouver la racine (4) pour raccourcir
les chemins vers la racine. On obtient la structure suivante. Remarquer que le rang de 4 est strictement
sur-approximant de la profondeur de l'arbre.

0,

N,

7 4
SN, N
3 2 8 9 10 51 0 6

o

1

Finalement un appel a union(3,4) conduit aux appels find(3) = 7 et find(4) = 4. Ces deux nceuds sont de
méme rang. On choisit indifféremment de placer 4 “sous” 7. On obtient la structure suivante.

Informatique - MPI Lycée Fermat - 2025/2026 10/27

P Exercice de cours 1.29

Donner I"évolution de la forét sous-jacente a la structure UnionFind initialisée sur I'ensemble {1,2,3,4,5,6,7,8,9},
sur laquelle on effectue la suite d'opérations ci-dessous. On pensera a appliquer les deux améliorations ci-dessus
(union par rang et compression de chemins). En cas d’ambiguité (lors d'une fusion de deux sommets de méme
rang) on choisira comme racine celle de plus petit numéro.

1. union(1,3); 4. union(5,1); 7. union(8,9);
2. union(5,7); 5. union(7,5); 8. union(4,8);
3. union(7,5); 6. union(4,6); 9. union(6,3);

Conclusion. On se convainc que la structure UnionFind présentée ci-avant admet les invariants
suivants :

* Le rang du pére d'un noeud est toujours strictement supérieur au rang dudit nceud.

* Un arbre dont la racine est de rang p contient au moins 2? noeuds.

De ces invariants, on déduit que si une opération find cofite p € N, c’est que le rang de la racine
ainsi obtenue est au moins p et donc I'arbre de taille au moins 2”. Ou en prenant le raisonnement
dans l'autre sens : dans un arbre contenant au plus n € N nceuds, il n’est pas possible de faire une
opération find colitant strictement plus de log,(n) itérations. Finalement les opérations union et find
de la structure proposée ci-avant induisent dans le pire cas des complexités logarithmiques en le
nombre d’éléments stockés dans la structure.

M Exercice de cours 1.30

Etant donnée une structure UnionFind initialisée 3 n éléments, on manipule cette structure en effectuant
uniquement des opérations d'union sur des éléments qui ne sont pas déja dans la méme classe.

Donner des bornes sur le nombre de telles opérations qu'il est possible d'appliquer avant que la structure ne
représente le partitionnement dans lequel tous les éléments sont dans la méme classe.

B Exercice de cours 1.31

Soit n € N, on considére une structure UnionFind initialisée avec les éléments de S = {1,2,3,...,2"}.
Donner une suite de 2™ — 1 fusions conduisant a un partitionnement dans lequel une des racines est la racine

d'un arbre de hauteur n.

1.6 Retour a I’algorithme de Kruskal

Donnons la forme finale de I'algorithme de Kruskal.

Informatique - MPI Lycée Fermat - 2025/2026 11/27

Algorithme 2 : Algorithme de Kruskal, version avec UnionFind
Entrée : Un graphe connexe non orienté pondéré G = (S, A, ¢)
Sortie : Un arbre couvrant de poids minimum

1 (a;)icp,m] < une indexation des arétes par pondération croissante. ;

2 B+« (;

3 &P < initialiseUnionFinf(S);

414+ 1;

5 tant que card(%®) > 1 faire

6

7

8

9

{2, y} + ai;

si find(2, x) # find(#, y) alors
P < union(P, x,y);

10 1+ 1+1;

11 retourner (S, B);

Etude de complexité. Notons (C7..)nen €t (Ci)nen des majorants de la complexité algorith-
mique des opérations union et find appelés sur des structures contenant n éléments.

Notons de plus (Cliaice)nen Un majorant de la complexité algorithmique de 'opération initialise
appelé sur un ensemble de n éléments.

La complexité algorithmique de l'algorithmique de Kruskal sur un graphe contenant n sommets et

m arétes est alors majorée par :
ligne 1 Un tri des m arétes, induisant un cotit de ©(mlog(m)).
ligne 3 Initialisation de la structure UnionFind, induisant un cofit de C"

initialise*

ligne 5 Une boucle tant que effectuant au plus m itérations, la branche alors du si se trouvant
dans le corps de la boucle est emprunté au plus n — 1 fois.

ligne 7 Deux calculs de représentants dans &, contenant n éléments : 2C{’ |
ligne 8 Un calcul d’'union dans %, contenant n éléments : C”

Soit un bilan a :
O(mlog(m) + Ci, + mCig + nCllion)-

initialise union

En mettant en place la structure UnionFind a base de foréts présentée ci-avant, il est possible de faire
descendre la complexité algorithmique en ©(m log(m) 4+ n + mlog(n) + nlog(n)) = O(mlog(n))*.

B Exercice de cours 1.32

Considérons I'implémentation naive suivante du type de données abstrait UnionFind : le partitionnement est
représenté en mémoire par une liste de listes (le partitionnement {{1,2},{3,4},{5}} est représenté par la liste
[[1; 2]; [3; 41; [511), les opérations initialise, union et find sont implémentés au moyen de manipulations
de listes.

Quelles sont alors les complexités algorithmiques des fonctions initialise, union et find ? Quel est I'impact sur
la complexité algorithmique de I'algorithme de Kruskal ?

2 Algorithme de Kosaraju

L’algorithme de Kosaraju est un algorithme permettant le calcul des composantes fortement connexes
(notées CFC) d’'un graphe orienté. Dans toute cette section, on travaille sur un graphe orienté
G = (S, A), on notera n = card(S) et m = card(A).

&. On rappelle que n — 1 < m < n? donc O(log(m)) = O(log(n))

Informatique - MPI Lycée Fermat - 2025/2026 12/27

Notation 2.1

Pour (u,v) € S%, on note u -~ v (resp.u — v) s’il existe un chemin (resp. un chemin de longueur
k) menant de u a v dans G. On note u ~ v Si et seulement si u — v et u — v.

2.1 Tri préfixe (rappels)

Rappel 2.2

Soit T' = (T})ep1,») une permutation des sommets de G.
On définit le rang d’un sommet u dans la permutation T, noté rg;(u), comme étant le plus petit
indice d’un élément dans la méme CFC que u.

rgr(u) o min{i € [1,n] | T; ~q u}

On dit que T est un tri préfixe de G dés lors que V(u,v) € S?, (u,v) € A = rgp(u) < rgp(v).

B Exercice de cours 2.3

Rappeler comment on calcule un tri préfixe d'un graphe, et avec quelle complexité.
Définition 2.4

Pour (u,v) € S* deux sommets du graphe :
* u est descendant (resp. ascendant) de v si et seulement siv = u (resp.u — v);

* u est descendant propre (resp. ascendant propre) de v si et seulement si v = u et w6
(resp.u = v et)

P Exercice de cours 2.5

Soit (u,v) €S2 Soit T un tri préfixe de G.

» Siu~ v, que peut-on dire de rgp(u) et rgy(v) ? Peut-on savoir qui de u et v apparait en premier dans T'?

= Si u est descendant propre de v que peut-on dire de rg(u) et rgy(v) ? Peut-on savoir qui de u et v apparait
en premier dans T'7

2.2 Graphe transposé et CFC

Définition 2.6
On appelle graphe transposé de G le graphe G* = (S, B) ot B = {(v,u) | (u,v) € A}.
Autrement dit c’est le graphe obtenu en retournant tous les arcs.

Remarque 2.7

Le nom vient de la représentation matricielle : la matrice d’adjacence du graphe transposé est la transposée
de la matrice d’adjacence du graphe initial.

B Exercice de cours 2.8

Donner le pseudo-code d'un algorithme de calcul du graphe transposé en complexité linéaire, pour une repré-
sentation par matrice d'adjacence, puis pour une représentation par table de listes d’adjacence.

Informatique - MPI Lycée Fermat - 2025/2026 13/27

Proposition 2.9

* La relation ~ définie par la mutuelle accessibilité dans G est la méme que celle définie de
méme dans G*. Par conséquent les CFC de G sont les mémes que celles de G".

e Le graphe réduit du transposé est le transposé du graphe réduit, i.e. Gt = G".
Autrement dit le passage au quotient selon ~ et le retournement des arcs commutent.

G -G

/~a / ~at

Gt -Gt =Gt

M Exercice de cours 2.10

Démontrer le second point de la proposition 2.9.

Remarque 2.11
Soit (u,v) €S2
u est ascendant (propre) de v dans G si et seulement si u est descendant (propre) de v dans G*.
u est descendant (propre) de v dans G si et seulement si u est ascendant (propre) de v dans G*.

Vocabulaire 2.12

Soit T' une permutation des sommets. Soit L un parcours de G".

On dit que les points de régénération sont choisis prioritairement selon T si les points de
régénération de L apparaissent dans le méme ordre dans'T" et dans L.

De maniere équivalente, pour tout r € [1,n] tel que L, est point de régénération de L, L, = T,
aveciy =min{ie[1,n]|T; € {L;|j€[L,r[}}.

Lemme 2.13

Soit T' une permutation des sommets de ;. Soit L. un parcours de GG. Si les points de régénération
de L sont choisis prioritairement selon T, alors pour tout L, point de régénération de L, pour
touti > r, rgr(L,) < rgp(L;).

Démonstration : Par 'absurde, on suppose qu'’il existe i > r tel que rgp(L;) < rgp(L,). On peut alors
considérer v le premier sommet dans 7" tel que v ~ L;, v apparait a I'indice rg,(L;) dans 7' donc avant
L,. Etant donné que L; n’est pas visité au moment ol L, est choisi comme point de régénération, et que
v = L;, v W’a pas non plus été visité & ce moment 13 * et donc v aurait dii étre choisi. O

Proposition 2.14

Soit T un tri préfixe de G. Soit L un parcours de G".
Si les points de régénération de L sont choisis prioritairement selon T, alors la partition associée
a L est la décomposition en CFC de G* et G.

Démonstration : Puisque G et G* ont les mémes CFC, on ne précisera donc pas toujours de quelles CFC on
parle. On sait déja que deux sommets de la méme CFC sont nécessairement dans la méme partie selon L
(voir chapitre sur les parcours). Il reste a montrer que deux sommets dans la méme partie selon L sont

&. par des arguments de bordure non vide déja développés dans le chapitre sur les parcours

Informatique - MPI Lycée Fermat - 2025/2026 14/27

nécessairement de la méme CFC, autrement dit qu’ils sont mutuellement accessibles I'un depuis 'autre. On
reprend les notations de la définition du partitionnement associé a un parcours :

- K le nombre de points de régénération de L;

- (ri)keq,x] € [1,n]* les indices de ces points de régénération, en ordre strictement croissant ;

- TK+1 = n+1;

- Vke[1, K], Cr, ={L; | j € [re, re+1[}-
Par I'absurde supposons qu’il existe (u,v) € S? appartenant 4 la méme partie C}, et tels que u ¢ v. Puisque
L est un parcours de G*, on sait que u et v sont tous les deux accessibles depuis L,, dans G' (par des
arguments de bordure non vide déja développés dans le chapitre sur les parcours).

On en déduit que, dans G, L,, n’est pas accessible depuis u ou pas accessible depuis v (sinon en concaténant
les chemins on aurait v ~ v). Quitte a échanger u et v, on suppose que L,, n’est pas accessible depuis u
dans G'. Ainsi u est un descendant propre de L,, dans G, autrement dit « est un ascendant propre de L,,
dans G. Puisque T est un tri préfixe de G on en déduit rg,(u) < rgp(Ly,).

Par ailleurs, en appliquant 2.13 a T" et L (respectivement permutation des sommets et parcours du graphe
GY :rgr(Lyy) < rgp(u).

ABSURDE. On en déduit que deux sommets appartenant a une méme partie selon I sont nécessairement
dans la méme CFC. O

Remarque 2.15

Attention il faut bien passer au graphe transposé et le parcourir en choisissant les points de régénération
selon un tri préfixe, rester sur le méme graphe avec le miroir d'un tri préfixe ne suffit pas.

Démonstration : On considére le graphe G ci-dessous & gauche (on donne ci-dessous a droite G* son graphe
transposé). Notons T' = [a, b, ¢, d], ainsi T est un tri préfixe de G, et = [d, ¢, b, a] son miroir.

(@——(——©) D)
- Gt

Sion fait un parcours du graphe G en choisissant les points de régénération
selon ? = [d, ¢, b, a], on obtient le parcours [d, a, b, c], et donc la partition
{{a,b,c,d}}. Or ce n'est pas la décomposition en CFC puisque «a et ¢ par
exemple sont dans la méme partie, alors que ¢ /% a. En effet, dans G on
peut aller de b a ¢ mais pas de ¢ a b, mais on ne s’en rend pas compte ici
car on visite b avant c

Si on fait un parcours du graphe G* en choisissant les points de régéné-

ration selon le tri préfixe T' = [a, b, ¢, d], on obtient {{a,d, b}, {c}}. Cette (a) % c
décomposition est bien la décomposition en CFC. En effet ici, le fait qu'on

ne puisse pas aller de ¢ a b dans G, qui se traduit par 'impossibilité d’al- .

ler de b & ¢ dans G, a forcé le parcours a prendre un nouveau point de @ G
régénération entre b et c.

2.3 Algorithme de Kosaraju

D’apres la propriété précédente on peut décomposer un graphe orienté en CFC avec n'importe quel
parcours pourvu qu’on choisisse les points de régénération (y compris le premier point du parcours)

Informatique - MPI Lycée Fermat - 2025/2026 15/27

selon un tri préfixe. De plus on a vu précédemment qu’on peut construire un tri préfixe par un par-
cours en profondeur. L'algorithme de Kosaraju propose donc d’appliquer deux fois la méme routine
de parcours en profondeur : la premiere fois sur le graphe G avec des points de régénérations arbi-
traires afin d’obtenir T un tri préfixe de G, la seconde fois sur le graphe G' en choisissant les points
de régénération selon 'ordre établi par 7'. La partition associée a ce second parcours fournit alors
la décomposition en CFC.

Algorithme 2 : Algorithme de Kosaraju
Entrée : Un graphe orienté G = (5, A)
Sortie : La décomposition de GG en CFC
1 On calcule L un tri préfixe de G;
2 On parcourt G*, suivant I'ordre induit par L;
3 On retourne le partitionnement associé a ce parcours;

B Exercice de cours 2.16

Appliquer I'algorithme de Kosaraju aux graphes ci-dessous.

Proposition 2.17

©—)
&)
©)

La complexité*de I'algorithme de Kosaraju est en O(n + m).

Démonstration : On représente les graphes par tables de listes d’adjacence, ainsi les deux parcours sont en
O(n + m). Le calcul de G se fait aussi en O(n + m) (Cf. exercice de cours 2.8). O

P Exercice de cours 2.18

On décide d'améliorer I'algorithme de Kosaraju en profitant du premier parcours pour tester si le graphe est,
ou non, sans circuit. Expliquer en quoi cette information est pertinente.

2.4 Application a 2-Sar

Cette section établit un corollaire de I'existence de I'algorithme de Kosaraju, et plus généralement
de l'existence d’'un algorithme de complexité polynomiale permettant le calcul des composantes
fortement connexes d'un graphe orienté. On rappelle que le probléeme de décision 2-SAT est défini
comme suit.

9-SAT - Entrée : Une formule H € F,(Q) donnée comme conjonction de 2-clauses
" | Sortie : H est-elle satisfiable ?

Corollaire 2.19
LZ-SAT € P.

Démonstration : Soit Q un ensemble de variables propositionnelles. Soit H = (I1; VI12) A ... A (lg1 Vi 2)
une instance de 2-Sar. Dans la suite de cette preuve, lorsque /, est un littéral, on note [¢ le littéral opposé.
On remarque que lorsqu’un littéral /; ; est interprété a F, [; o doit nécessairement étre interprété a \V pour
que H soit satisfaite (car la clause (I;1 V l;2) doit en particulier I'étre).

&. Sous réserve que 'ensemble des sommets du graphe considéré soit de la forme [1, n]

Informatique - MPI Lycée Fermat - 2025/2026 16/27

Ainsi si [f; est interprété a V, [; » doit aussi étre interprété a V. De méme lf 5 est interprété a V, [; ; doit
aussi étre interprété a V.

On traduit cette dépendance au moyen d’un graphe orienté sur les littéraux. Plus précisément, on construit
le graphe G’y de la maniere suivante :

* Pensemble de ses sommets est 'ensemble des littéraux sur Q,ie. S=QU{-p|p € Q};

* lensemble de ses arcs est A = {(I7,li2) | i € [1,¢]} U{(55,li1) [4 € [1,m]}.

Exemple 2.20
Par exemple la formule (2 V —y) A (YA (yV —2)A(yV z), le graphe associé est le suivant.

!
2

b

Le graphe Gy est construit de maniere a assurer le lemme suivant.
Lemme 2.21

Soit (u,v) € S?. Siu = v dans Gy et si p est un modeéle de H *tel que [u]” = V alors [v]” = V.

Démonstration : On le montre par récurrence sur la longueur du chemin menant d’'un sommet a l'autre.

* Soit (u,v) € S? tels que u 2 v. Dans ce cas u = v, donc [u]? = [v]? = V.

Ainsi la propriété est vraie au rang 0.
. s . . 1 . .
* Soit k € N. Supposons la propriété est vraie au rang k. Soit (u,v) € S? tels que u ML 0. Soit p soit un
. . T k 1 k

modele de H tel que [u]? = V. Puisque u. "' v, il existe w e S tel que u ~> w et w — v. Comme u, ~ w
et [u]” =V, on a aussi [w]” = V par hypothése de récurrence. De plus comme (w,v) € A, w®V v ou
vV w® est une clause de H, et donc satisfaite par p. Ainsi [w°]” 4 [v]? =V, or [w°]? = [w]? =V =F,
on en déduit que [v]” = V. La propriété est donc vraie au rang k + 1.

O

Proposition 2.22

LH est satisfiable si et seulement si aucune CFC de G'i; ne contient a la fois une variable et sa négation.

Démonstration :
= Si H est satisfiable, on dispose alors d’un environnement propositionnel p € B¥ tel que [H]” = V.
Supposons par 'absurde qu'’il existe une CFC du graphe G contenant les littéraux = et —z.
Par définition d’'une CFC, x = -z et -z - z.
* Si p(z) = V alors [z]? = V. Puisque z > -z, on déduit du lemme 2.21 que [-z]? = V soit

p(z) =F.
* Si p(z) = F alors [-z]? = V. Puisque -z —> z, on déduit du lemme 2.21 que [z]? = V soit
p(z) = V.

Les deux cas étant absurdes, aucune CFC de Gy ne contient une variable et sa négation.

< Réciproquement supposons qu’'aucune CFC de Gy ne contient une variable et sa négation.
Montrons que H est alors satisfiable en exhibant un modele.
Notons (C1, C, ..., Cs) un tri topologique du graphe réduit de Gy. On peut définir 'environnement
p:Q — Bpar p(z) =V siet seulement sii < j ol (i,5) € [1,s]? sont tels que -z € C; etz € Cj.
Ainsi pour toute variable z € Q, si [x]” = V alors z est dans une CFC d’indice strictement supérieur a
la CFC contenant —z. Etant donné qu’aucune variable n’apparait dans la méme CFC que sa négation,
si [z]]” = F alors x est dans une CFC d’indice strictement inférieur a la CFC contenant —x. Autrement

&. Cela signifie que p est un environnement propositionnel tel que [H]* =V

Informatique - MPI Lycée Fermat - 2025/2026 17/27

dit, si [-z]]? = V alors -z est dans une CFC d’indice strictement supérieur a la CFC contenant x.
Ainsi pour tout littéral /, si [I]? = V alors ¢ est dans une CFC d’indice strictement inférieur a la CFC
contenant /.

Supposons alors par 'absurde qu'’il existe une clause /; ; V /; 2 de H telle que [l;; VVI; 2]” = F. Notons

alors :

- ki lindice de la CFC de [; 1 ; - ko l'indice de la CFC de I; 2;

- Kk I'indice de la CFC de ¢ ; - k3 l'indice de la CFC de [f,.
Puisque [l;1 V1i2]? =F, [l;1]7 = F et [l; 2]” = F, soit [If,]* = Vet [I7,]” = V, donc par construction
de p:

* li1 = (If1)° est dans une CFC d’indice strictement inférieur a la CFC contenant I{ |, soit k1 < &} ;
* lia = (If,)° est dans une CFC d’indice strictement inférieur a la CFC contenant I ,, soit kz < k5.

Pourtant, puisque /; 1 V1; 2 est une clause de H, le graphe G contient I'arc (f15 l;2) et l'arc (lﬁz, lir),
qui impliquent respectivement que k] < ko et k) < ki. Mises bout a bout ces quatre inégalités
donnent : k1 < k] < k2 < k% < a. ABSURDE Finalement toute clause /; ; V [; » de H est satisfaite par

p, donc p est bien modeéle de H et H satisfiable.
i

L’algorithme suivant résout donc 2-SAT et il est de complexité polynomiale.

Algorithme 3 : Satisfiabilité d'une 2-CNF
Entrée : Une 2-CNF H
Sortie : H est-elle satisfiable ?
1 Construire le graphe G associé a la formule H ;
2 Calculer les CFC de G ;
3 Tester si aucune variable et sa négation ne sont dans la méme CFC;

M Exercice de cours 2.23

Justifier plus précisément pourquoi cet algorithme est de complexité polynomiale.

Remarque 2.24

On remarque que la preuve précédente fournit en fait un algorithme permettant non seulement de tester
si une 2-CNF est satisfiable, mais aussi d’en construire un modéle.

B Exercice de cours 2.25

Construire un modele de la formule de I'exemple 2.4 en suivant la construction de la preuve précédente (i.e.
donner d’'abord les CFC du graphe, puis donner un tri topologique du graphe réduit avant de donner fixer la
valeur de vérité pour chaque variable).

B Exercice de cours 2.26
Donner un modéle de (my V) A(yV —z) A(yV-2)A(yVz)A(-yV 2).

Remarque 2.27

On remarque que la résolution d’une instance H de 2-SAT dépend seulement de 'ensemble des paires de
littéraux apparaissant dans la formule. En effet si on change I'ordre des clauses, leur multiplicité ou I'ordre
de deux littéraux au sein d’une clause, on e change pas le graphe G associé a la formule H, ainsi on ne
change pas la maniére de décider si H est satisfiable (ni celle, le cas échéant, de trouver un modele de H).

Informatique - MPI Lycée Fermat - 2025/2026 18/27

P Exercice de cours 2.28

Appliquer I'algorithme précédent aux deux instances 2-SAT suivantes (représentées ici par I'ensemble de leurs
clauses) I'y = {-pV q,~qVr,—qVs,—sV-r}etly=T1U{pVq}.
3 Couplage dans un graphe biparti

3.1 Introduction

plante rentre dans quel pot. On cherche a placer un maximum de plantes (ou a
utiliser un maximum de pot, ce qui revient dans les deux cas a former un maxi-

mum d’appariement plante-pot) sachant qu'une plante ne pourra étre placée (© /@
@ @

@vﬂ
Considérons le probléme suivant. On a des plantes et des pots, et on sait quelle
@‘/@

que dans un seul pot, et chaque pot ne pourra contenir qu'une plante, bouture
et permaculture étant remises a plus tard. On peut alors modéliser les données
du probléme par un graphe non orienté biparti comme le graphe ci-contre. Graphe plante-pot

Rappel 3.1

Un graphe non orienté G = (S, A) est dit biparti lorsqu’il existe une partition {S;,S>} de S telle
que pour toute aréte {x,y} € A, (x€S; ety€Sy) ou (x €Sy et ye Sy).

M Exercice de cours 3.2

Démontrer que dans un graphe biparti les cycles ne peuvent étre de longueur impaire.

Exemple 3.3
Le graphe ci-dessus est biparti avec S; = {a, b, c,d} et Sy = {1,2,3,4}.

Remarque 3.4

Il peut exister plusieurs partitions justifiant qu'un graphe G est biparti.

Notation 3.5

Lorsqu’on écrit que G = (S} U Sy, A) est biparti, on sous-entend qu’il s’agit du graphe G = (S, A)
avec S = Sy U Sy et qu’il est biparti pour {S;, Sy}, autrement dit que les arétes de A ont une
extrémité dans S, et I'autre dans S,.

Définition 3.6
Soit G = (S, A) un graphe non orienté. Soit C' C A un sous-ensemble d’arétes.

On dit que C est un couplage de G si et seulement siV¥(e,e') € C?,eNe #0 = e =¢.
Autrement dit C' est un couplage si deux arétes distinctes de C' n’ont aucune extrémité en commun.

Exemple 3.7

M Exercice de cours 3.8

Si C est un couplage et C' C C, que peut-on dire de C'?

Informatique - MPI Lycée Fermat - 2025/2026 19/27

@‘/@ m‘/@
(/13 o /1

@/@ @/@

Couplage du graphe plante-pot Non-couplage du graphe plante-pot

P Exercice de cours 3.9

Donner un majorant du nombre d'arétes dans un couplage d'un graphe a n sommets.
Donner un majorant du nombre d’arétes dans un couplage d'un graphe biparti G = (S; LI S, A) en fonction
de ny = ‘81’ et ng = |S2|

Représentation machine Les arétes d’'un couplage définissant un graphe dont les sommets sont
de degré 0 ou 1, on peut le représenter en machine par un tableau indexé par les sommets qui
associe a chaque sommet son voisin s’il en a un, et une valeur par défaut sinon.

Définition 3.10

Soit G = (S, A) un graphe non orienté. Soit C' C A un couplage de G.

Le couplage C' est dit maximal s’il n’existe pas de couplage de G strictement plus grand pour C.
Autrement dit C' est maximal si et seulement si¥C’ C A, C" couplagede G etC C C' = C =(C".
Le couplage C' est dit maximum s’il est de cardinal maximal parmi les couplages de GG. Autrement
dit C' est maximum si et seulement siVC' C A, C’ couplage de G = |C| > |C'].

Exemple 3.11

@D @—D @—D
@‘/@ a‘/@ @‘/@
@ /Y & /Y @ /@

Couplage [Couplage % Couplage ¢
ni maximum ni maximal maximal non maximum maximal et maximum

Remarque 3.12

Un couplage maximum est nécessairement maximal. En effet, s’il existait un couplage C’ strictement plus
grand pour C qu'un couplage maximum C, on aurait card(C’) > card(C), ABSURDE.

Remarque 3.13

L'ensemble vide est un toujours un couplage, de plus 'ensemble des couplages est inclus dans #(A) qui est
fini, ainsi 'ensemble des couplages est un ensemble fini non vide ce que justifie qu’il existe nécessairement
un couplage maximum, et donc a fortiori il existe un couplage maximal.

Informatique - MPI Lycée Fermat - 2025/2026 20/27

P Exercice de cours 3.14

Donner un couplage maximal, non maximum et un couplage maximum du graphe biparti ci-dessous.

P Exercice de cours 3.15

Soit C' un couplage d'un graphe G = (S, A). Démontrer que C' est maximal si et seulement si on ne peut y
ajouter la moindre aréte, i.e. Ve€ A\C, C'U {a} n'est pas un couplage.

Remarque 3.16

L'algorithme glouton qui construit un couplage par ajouts successifs (i.e. qui sélectionne a chaque étape
une aréte dont aucune extrémité n’est couverte par le couplage courant) conduit a un couplage maximal,
mais pas nécessairement maximum (Cf. exercice de cours 3.14). Ainsi cet algorithme peut étre vu comme
un algorithme de recherche locale qui reste parfois bloqué sur un maximum local (un couplage maximal
est maximum dans son voisinage défini par la relation C). Pour sortir d’un tel maximum local, il faut alors
envisager une autre opération que I'ajout d’aréte. Il faut en fait accepter d’enlever certaines arétes pour en
remettre plus, c’est ce que fait 'opération d’inversion le long d’un chemin que I'on introduit a la section
suivante.

3.2 Chemin augmentant

Définition 3.17
Soit un graphe G = (S, A) un graphe non orienté. Soit C' un couplage de G.
* Ondit d’'un sommet z € S qu’il est libre pour C' s’il n’est I'extrémité d’aucune aréte du couplage,
ie. Wy, zteCix #£yetx # z.
* On dit qu’'une chaine ¢ = (vo,71,--.,72p+1) de longueur impaire qu’elle est augmentante
*pour C si :
- Yo et yop+1 sont libres pour C';
- pour tout i € [0, p], {v2i,Y2is1t €A\ C;
- pour tout i1 €[0,p — 1], {V2i+1, Y242} €C;
- c est élémentaire, i.e. V(i,j)€[0,2p + 1], v =v; = i = J.
Autrement dit une chaine augmentante est une chaine élémentairede longueur impaire, alternant
les arétes de C' et de A\ C dont les deux extremités sont deux sommets libres.

Exemple 3.18
Dans le couplage [ci-dessus, (d, 4) est un chemin augmentant.
Dans le couplage % ci-dessus, (¢, 2,a,1) est un chemin augmentant.

&. Par abus on parlera par la suite de chemin augmentant bien qu’il s’agisse d’une chaine.

Informatique - MPI Lycée Fermat - 2025/2026 21/27

P Exercice de cours 3.19

Dans le graphe biparti ci-dessous donner un chemin augmentant de longueur 1, de longueur 3 et un de longueur
5 pour le couplage =—.

Lemme 3.20
Soit G = (S, A) un graphe non orienté. Soit C' un couplage de G.
Siy = (Yo, V1, - - - V2p+1) un chemin augmentant pour C,

alors I'ensemble C' défini ci-dessous est un couplage de G de cardinal |C| + 1.

C" = C\ {{r2is1,2iv2} [1€]0,p = 1T} U {{r2i, 72041} [i€ [0, p]}

Démonstration : Par construction de C’, |C'| = |C| —p+ (p+ 1), soit |C’| = |C|+ 1. Reste a justifier que C’
est bien un couplage.

Yo 71 Y2 V3 V4 Vs Y6 ----------- Yop — Vop+1

Yo " Yo Y3 V4 V5 Y6 - TV2p m—2p+1

Les sommets hors de ~ ayant les mémes arétes incidentes dans C' et dans C’ (soit une au plus puisque C
est un couplage), il nous suffit d’inspecter les sommets de et de justifier que chacun d’eux est 'extrémité
d’au plus une aréte de C’.

* ~p est libre pour C, donc les seules arétes de C’ susceptibles de lui étre incidentes sont celles qu’on a
ajoutées, soit celles de la forme {72;, 72i+1}. Les sommets de C étant deux a deux distincts, la seule aréte
de cette forme incidente a vy est {0, v1}-

* 72p+1 estlibre pour C, et de méme la seule aréte de C” qui lui est incidente est {2y, v2p+1}-

* Pour k € [1,2p], v; est I'extrémité d’exactement une aréte de C, (@ savoir {y;_1,7x} Si k est pair et
{Vk»Yk+1} sinon), or celle-ci est supprimée dans C’ et une seule autre aréte d’extrémité -, est ajoutée
dans C’ (a savoir {vx,yx+1} Si k est pair et {yx_1, 7k} sinon), donc 7 est I'extrémité d’exactement une
aréte de C'.

O

Vocabulaire 3.21

Dans le cadre de ce cours, on dira que C' est le couplage obtenu a partir de C par inversion le
long de ~.

Proposition 3.22

Soit G = (S, A) un graphe non orienté. Soit C' un couplage de G.
Si C' est maximum alors il n’admet pas de chemin augmentant.

Démonstration : C’est un corollaire du lemme précédent. Si C' admet un chemin augmentant -, alors le
couplage C’ obtenu en inversant C' le long de v est de cardinal |C| + 1, et donc C n’est pas de cardinal
maximum. On conclut par contraposée. O

Informatique - MPI Lycée Fermat - 2025/2026 22/27

Proposition 3.23

Soit G = (S, A) un graphe non orienté. Soit C' un couplage de G.
Si C n’admet pas de chemin augmentant, alors C' est un couplage maximum.

Démonstration : On le montre par contraposée. Soit M un couplage de G non maximum. Montrons qu’il
admet un chemin augmentant. Considérons pour cela M* un couplage maximum.
Nous illustrons la preuve sur le graphe biparti ci-dessous ot le couplage M est U'ensemble == et le couplage
M* est l'ensemble

A [] []
[] ‘. []
Posons alors :
* Dy =M\ M*, ainsi D; C M; e D=DyUDy, ainsi D = MAM™*;

* Dy=M*\M,ainsi Dy C A\ M; * Gp=(S,D).
Dans la suite nous ne représentons plus que les arétes de D. Nous représentons D1 par la couleur de M (=)
et Dy par la couleur de M* (=), nous obtenons alors le graphe ci-dessous.

[] [] [} \. [] [] [] [} []
] L] .\ [] [] [] [] [] L]
On peut alors faire plusieurs remarques.
(a) Dy (resp. D9) est un couplage en tant que sous-ensemble du couplage M (resp.M*). Ainsi un sommet

G p est I'extrémité d’au plus une aréte de D; et au plus une de Dy, et donc est en particulier de degré
au plus 2.

(b) Laremarque précédente assure aussi que les chaines de D alternent nécessairement aréte de D; C M
etde Dy C A\ M.

(c) Puisque M* est maximum mais pas M, card(M) < card(M*) et par conséquent card(D;) < card(D3).
En effet card(D;) = card(M) — card(M N M*) < card(M*) — card(M N M*) = card(D2).

(d) Notons (Ck)req,x] les composantes connexes de Gp et (Ag)reqi,x] leurs ensembles d’arétes. Ainsi
les A; forment une partition de D, or D a strictement plus d’arétes de Dy que de D1, donc il existe
ko€ [1, K] tel que card(Ag, N D2) > card(Ag, N D1). (En effet, si ce n’était pas le cas, on a aurait Vk €
[1, K], card(Ar N D2) < card(Ax N Dy) et en sommant ces inégalités on aurait card(Dz) < card(D;),
ABSURDE.)

Dans notre exemple il y a K = 6 composantes connexes, et pour la numérotation donnée ci-dessous c’est la
composante Cs qui a trois arétes de D et seulement deux D1.

NN

Cl C'5 Cﬁ

On s’intéresse alors a (Cy,, Ak,). En tant que sous-graphe de G p, ce graphe n’a que des sommets de degré
0, 1 ou 2 (d’apres (a)), et comme il est connexe, ce ne peut étre qu'un cycle de longueur paire ou une chaine,

Informatique - MPI Lycée Fermat - 2025/2026 23/27

qui de plus alterne les arétes de D; et D (d’apres (b)). On en déduit qu’il y au plus 1 de différence entre
le nombre d’arétes de D, et de D, dans ce graphe, et sachant que card(Ay, N D2) > card(Ag, N D;) on en
déduit que card(Ag, N Dy) = card(Ag, N D1) + 1. En particulier cela assure que card(Ay) est impaire, ce
qui exclut le cas du cycle. Ainsi (Cy,, Ak,) est une chaine de longueur impaire qui alterne aréte de D; C M
etde Dy C A\ M.

Posons ¢ = card(Ay,). Le cas du cycle étant exclu, on a card(Cy,) = card(Ay,) + 1 = ¢ + 1. Numérotons
alors (7:)ic[o,q les sommets de Cy, de sorte que Ax, = {{7vi;Vi+1} | 7 € [0,¢[}. (les v; sont deux a deux
distincts par cardinalité). Ainsi pour montrer que ~ est une chalne augmentante pour M pour il ne reste
qu’a vérifier que 7 et -y, sont libres pour M.

* Si v est non libre pour M, il existe z € S tel que {vp,z} € M. Puisque {vo,71} € D3, d'une part
{70,m} &€ M, et comme {vp,z} € M on en déduit = # ~;, d’autre part {yy,71} € M* et comme M*
est un couplage, {yo,z} ¢ M*. Ainsi {y,2} € M \ M* = D; C D. Donc z est un voisin de 7, dans
Gp, différent de v, or o est de degré 1 dans Gp en tant qu'extremité de la chaine qu’est (Cl,, A,)-
ABSURDE. Ainsi 7 est libre pour C.

* On montre de méme que ~, est libre pour M.

Finalement (79,71, ..., 7,) est un chemin augmentant pour M. O

Remarque 3.24

La proposition ci-dessus donne une condition suffisante pour qu'un couplage soit maximum, mais aussi,
dans le cas ou le couplage n’est pas maximum, une procédure effective pour construire un couplage de
cardinal supérieur a partir d’'un chemin augmentant, celle qui permet de passer de C' a C’ dans la pro-
priété 3.23.

P Exercice de cours 3.25

On considere le graphe biparti ci-dessous, sur lequel on a représenté un couplage maximum :

3

\

Donner les étapes obtenues en partant du couplage vide C, et en itérant le processus suivant :

= on découvre un chemin augmentant en suivant la démonstration précédente en utilisant le couplage
maximum :

= on inverse ce chemin dans C, et on recommence.

On s'arréte lorsqu'il n'existe plus de chemin augmentant.

On déduit alors de cette proposition une méthode de recherche locale pour trouver un couplage

maximum :

* partir de C' 'ensemble vide qui est un couplage trivial ;

* chercher un chemin augmentant pour C, et si on trouve un tel chemin ~, inverser C' le long de ~
pour gagner en cardinalité;

* si on ne trouve pas de chemin augmentant pour C, c’est que C' est un couplage maximal.

La démonstration ci-dessus ne donne pas un algorithme pour trouver un chemin augmentant, en

effet la construction suppose connu un couplage maximum, alors que c’est ce que 'on essaie de

calculer.

Dans la section suivante on détaille comment est menée la recherche de chemin augmentant dans
le cas particulier d’'un graphe biparti*.

&. En effet tout ce qu’on a fait jusqu’ici vaut pour n’importe quel graphe non orienté

Informatique - MPI Lycée Fermat - 2025/2026 24,27

3.3 Algorithme pour les graphes bipartis
3.3.1 Trouver un chemin augmentant dans un graphe biparti

Etant donné un couplage C' d’un graphe biparti non orienté G' = (S, LI Sy, A), on souhaite ramener

la recherche de chemin augmentant pour C' a un probleme d’accessibilité. Pour cela on construit
un graphe orienté a partir de G, en :

 ajoutant aux sommets une source s prédécesseur de tous les sommets de S, libres pour C';
* ajoutant un puits p successeur de tous les sommets de S, libres pour C';

* en orientant les arétes hors de C' de S; vers S,, et celles de C de S, vers S;.

Avant de formaliser cette construction, on l'illustre avec 'exemple ci-dessous.

Exemple 3.26

@O
m‘/@
© /@

Graphe G et un couplage C Le graphe augmenté G

Proposition 3.27

Soit G = (S1 U Sy, A) un graphe biparti. Soit C' un couplage de G.
On construit le graphe orienté G = (S; U S, LI {s,p}*, A) ot1 :

A={(v,u) | {u,v} € AnCetuc S etve Sy}
U{(u,v) | {u,v} € A\Cetue S, etve Sy}
U{(s,u) | u € Sy libre pour C'}

U{(v,p) | v € Sy libre pour C'}

Alors C' admet un chemin augmentant si et seulement si G admet un chemin de s a p. De plus

on a un algorithme permettant de construire un chemin augmentant pour C' a partir d’un chemin
dans G¢ (et réciproquement).

Démonstration : Soit v = (70,71, -.,%2k+1) un chemin augmentant dans G. Puisque v est de longueur
impaire, on a nécessairement vy € S; ou Y2511 € S1. Quitte a prendre la chaine dans l'autre sens, on peut
supposer que vy € Sp (et donc que o511 € S2). Alors par définition d'un chemin augmentant :

- 40 et Yo41 sont des sommets libres pour C, donc (s,7) € A et (yapi1,p) € A;

- pour tout i € [0, p], {72, v2i+1} € A\ C, et puisque 2i est pair, yo; € S1 donc (79, y2i+1) € A

- pour touti e [[0, p— 1]], {"}’2i+1, ’722'+2} € ANC, et puisque 2¢+ 1 est impair, 2,41 €S2 donc (’}/21‘+1, ’727;+2) € g
Ainsi (s,70,71, - - -, Y2k+1,) €st un chemin de s a p dans G¢.

Réciproquement, si (s,70,71,---,72k+1,) est un chemin de s a p dans Gg, il suffit de remarquer que

(70,71, - - -, Y2k+1) €st un chemin augmentant de G. O

&. On suppose que s et p n'apparaissent pas dans S; U S

Informatique - MPI Lycée Fermat - 2025/2026 25/27

Finalement le probleme de la découverte d’'un chemin augmentant dans GG se raméne au probleme
de la découverte d’'un chemin dans un graphe orienté, ce que I'on sait déja faire, avec une complexité
en O(n + m) ou n est le nombre de sommets du graphe et m le nombre d’arcs du graphe. On note
dans la suite Trouve_chemin_augmentant un tel algorithme, prenant en arguments un graphe biparti
et un couplage et retournant un chemin augmentant si celui-ci existe, None sinon.

P Exercice de cours 3.28

‘ Donner le pseudo-code de I'algorithme Trouve_chemin_augmentant.

Complexité On suppose que le graphe biparti G = (S; LI Ss, A) est décrit par une table de liste
d’adjacence indexée par S; = [0, n, [et par ny, et que C est décrit par un tableau de voisin indexé par
Sy. Le calcul de G¢ se fait alors en O(n +m) (ou n et m sont respectivement le nombre de sommets
et d’arétes de (7). En effet, étant donné un sommet, on teste en O(1) s’il est libre pour C, donc les
arcs issus de s (resp. aboutissants en p) sont calculés en O(n;) = O(n) (resp. O(ny) = O(n)). De
plus, étant donné un sommet u € S; on parcourt en O(1 + deg(u)) ses voisins v, et pour chacun on
teste en O(1) si 'aréte {u,v} est dans C. Dans le cas ou {u,v} € C, on ajoute a G¢ l'arc (v, u), et
dans le cas contraire I'arc (u, v). Ainsi les arcs de G'¢ sont calculés en O(n + m).

On en déduit que l'algorithme Trouve_chemin_augmentant est en O(n + m) puisque qu’en plus de
la construction de G, cet algorithme ne fait qu'un parcours de G¢, qui a n + 2 sommets et moins
de m + 2n arcs.

3.3.2 Résoudre le probleme de couplage maximum dans un graphe biparti

Algorithme 3 : CouplageMaximum

Entrée : Un graphe biparti G = (S LI Ss, A)

Sortie : Un couplage maximum de GG

C <« 0;

tant que Trouve_chemin_augmentant(G, C') # None faire
Notons ~ le chemin augmentant ainsi trouvé ;

L On inverse C' le long du chemin augmentant ~;

AW DN =

5 retourner (';

On donne ci-dessous le déroulé pas a pas de cet algorithme appliqué au graphe donné en exemple
introductif a la page 19.

Informatique - MPI Lycée Fermat - 2025/2026 26/27

Découverte d’'un

chemin augmentant

partant de a

Découverte d’un

chemin augmentant

partant de ¢

P Exercice de cours 3.29

Correction.

{

S
©

®

(@

Inversion le long du
chemin (a, 2).

®)
©

@—0
@‘/@
@ /e

@ @
Inversion le long du

chemin
(¢,2,a,1,b,3).

(@ —D

@] /@

© /@
@ @
Découverte d’'un

chemin augmentant
partant de b

@—0
@‘/@
@ /c)

@ @
Découverte d’un

chemin augmentant
partant de d

Appliquer I'algorithme CouplageMaximum sur le graphe biparti ci-dessous.

@D
@‘/@
& /B
m/ @

Inversion le long du
chemin (b, 1).

=
&

N
(b@
4
G /@
@ @
Inversion le long du
chemin (d,4).

La correction de l'algorithme est assurée par les propriétés précédentes, et par la

négation de la condition de boucle : §’il n’existe plus de chemin augmentant, le couplage est de

cardinal maximum.

Complexité L’algorithme CouplageMaximum est en O(n(n + m)), car le couplage maximum est de
cardinal au plus 7 (Cf. exercice de cours 3.9), ce qui assure qu’il y a au plus de l'ordre de n itérations,
et chaque itération conduit a un appel a Trouve_chemin_augmentant dont on a montré qu’il est en

O(n +m).

Informatique - MPI Lycée Fermat - 2025/2026

27/27

	Arbres couvrants de poids minimum
	Arbres
	Arbres couvrants
	Arbre couvrant et pondération
	Algorithme de Kruskal
	Union Find
	Retour à l'algorithme de Kruskal

	Algorithme de Kosaraju
	Tri préfixe (rappels)
	Graphe transposé et CFC
	Algorithme de Kosaraju
	Application à 2-Sat

	Couplage dans un graphe biparti
	Introduction
	Chemin augmentant
	Algorithme pour les graphes bipartis
	Trouver un chemin augmentant dans un graphe biparti
	Résoudre le problème de couplage maximum dans un graphe biparti

