
Chapitre 8 : Concurrence

Les différentes formes de concurrence. Informellement, la notion de concurrence correspond
au fait que plusieurs fils d’exécution s’exécutent de manière non indépendante (par exemple en
partageant des données) les uns des autres. Citons quelques exemples de concurrence.
• La machine sur laquelle on exécute un programme, n’est pas exclusivement en train d’exécuter

ce programme, il lui faut aussi gérer (par exemple) les déplacements de la souris, les retours
graphiques, ….

• Certains calculs coûteux (phase d’apprentissage d’un LLM♣ , simulation numérique coûteuse, …)
nécessitent que les calculs soient répartis sur plusieurs machines qui interagissent pour produire
le résultat final.

• Le réseau internet est un ensemble de machines, opérant ensemble sur les données que sont les
pages web.

1 Vocabulaire de la concurrence

Vocabulaire 1.1
Un programme concurrent est un ensemble de programmes séquentiels “classiques”. Ces pro-
grammes sont composés d’instructions atomiques, qui est une instruction dont l’exécution ne
peut être scindée : une fois l’exécution de l’instruction commencée, celle-ci se poursuit sans être
interrompue.

Exécution d’un programme concurrent. L’exécution d’un programme concurrent est non dé-
terministe. Une exécution possible d’un programme concurrent, appelée scénario, est obtenue en
entrelaçant les différentes exécutions des programmes séquentiels qui le compose.

Remarque 1.2
Dans nos machines, la création de cet entrelacement est déléguée à l’ordonnanceur, qui est un programme
s’exécutant sur la machine et chargé de répartir les ressources de calcul entre les différents fils d’exécution
en cours d’exécution.
Le modèle d’exécution adopté ici (où tous les entrelacements sont possibles) est très permissif : il est peu
probable que l’ordonnanceur donne la main au fils d’exécution P pour une seule instruction élémentaire.
Toutefois dans un objectif de généralité nous ne faisons aucune hypothèse sur les entrelacements possibles.

Remarque 1.3
Lorsque les programmes séquentiels composant un programme concurrent exécutent une boucle infinie on
ne considère que des entrelacements faisant intervenir chaque fil d’exécution infiniment souvent. Autre-
ment dit : lorsque plusieurs programmes séquentiels s’exécutent de manière concurrente, on demande à
ce que l’ordonnanceur passe la main à chacun de ces programmes séquentiels après une durée finie.

♣. large language model
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Vocabulaire 1.4
On appelle fil d’exécution l’un des programmes séquentiels constituant le programme concur-
rent. Étant donné un fil en cours d’exécution, on appelle pointeur d’instruction la prochaine
instruction qu’il doit exécuter.

Fil d’exécution P Fil d’exécution Q

1 p1 ;
2 p2 ;

1 q1 ;
2 q2 ;
3 q3 ;

Algorithme 1 – Exemple de programme concurrent à deux fils d’exécution P et Q.

Exemple 1.5
L’exécution du programme concurrent de l’algorithme 1 ci-dessous peut conduire au scénario suivant : q1 →
q2 → p1 → q3 → p2. Après avoir exécuté les instructions atomiques p1, q1 et q2, les pointeurs d’instructions
de P et Q indiquent respectivement les instructions p2 et q3.
Les autres scénarios du programme concurrent de l’algorithme 1 sont :
• p1 → p2 → q1 → q2 → q3 ;
• p1 → q1 → p2 → q2 → q3 ;
• p1 → q1 → q2 → p2 → q3 ;

• p1 → q1 → q2 → q3 → p2 ;
• q1 → p1 → p2 → q2 → q3 ;
• q1 → p1 → q2 → p2 → q3 ;

• q1 → p1 → q2 → q3 → p2 ;
• q1 → q2 → p1 → p2 → q3 ;
• q1 → q2 → q3 → p1 → p2.

Exercice de cours 1.6
Justifier que tous les entrelacements possibles pour l’exemple ci-dessus ont été envisagés.
Autrement dit justifier qu’il y a seulement 10 entrelacements possibles ici.

Notation 1.7
Dans la suite, les entrelacements obtenus lors de l’exécution concurrente de deux fils d’exécution
P et Q seront notés en donnant : le nom du fil d’exécution (par exemple P) suivi de la ligne
de programme que ce fil a exécuté. Le premier scénario de l’exemple ci-dessus sera alors noté
Q1, Q2, P1, Q3, P2.

Diagramme d’états. L’ensemble des exécutions possibles d’un programme concurrent peut être
représenté au moyen d’un diagramme d’états. Un tel diagramme est un graphe orienté dont les
sommets sont les états♣ de l’exécution du programme (valeurs des pointeurs d’instructions et état
de la mémoire), deux états e et e′ sont alors reliés par un arc dès lors qu’une étape d’exécution du
programme concurrent peut conduire de l’état e à l’état e′.

Exemple 1.8
Considérons le programme concurrent ci-dessous, dans lequel deux fils d’exécution P et Q opèrent sur n,
une variable globale entière initialisée à 0, comme indiqué dans le préambule de l’algorithme.

♣. On se limite aux états accessibles
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n← variable globale initialisée à 0 ;

Fil d’exécution P Fil d’exécution Q

1 n← 1 ; 1 k2 ← variable locale init. à 2 ;
2 n← k2 ;

Algorithme 2 – Algorithme exemple

Un état de l’exécution de cet algorithme est représenté par les éléments suivants.
• Deux entiers : les pointeurs d’instructions, (• représente un fils d’exécution ayant terminé son exécution).

Par exemple (1, 2) représente un état où la prochaine instruction à exécuter pour P est n ← 1 et la
prochaine instruction à exécuter pour Q est n← k2.

• Un environnement portant sur les variables du programme. Par exemple (n 7→ 2, k2 7→ 2) représente un
environnement dans lequel n vaut 2 et k2 vaut 2.

Le diagramme d’états de cet algorithme est alors le suivant.

(1, 1)
n 7→ 0
k2 7→?

(•, 1)
n 7→ 1
k2 7→?

(1, 2)
n 7→ 0
k2 7→ 2

(•, 2)
n 7→ 1
k2 7→ 2

(1, •)
n 7→ 2
k2 7→ 2

(•, •)
n 7→ 2
k2 7→ 2

(•, •)
n 7→ 1
k2 7→ 2

P

Q

Q

P

Q

Q

Q

Figure 1 – Diagramme d’états de l’algorithme 2

2 Atomicité
Afin de rendre plus clairs les algorithmes, on se permet généralement d’utiliser des instructions
élémentaires “de haut niveau”♣. Dans ce chapitre, on prendra garde à n’utiliser comme opérations
élémentaires que des instructions atomiques, afin de ne pas négliger d’éventuels entrelacements.
Afin d’illustrer cette problématique on considère dans cette section le cas de l’instruction d’incré-
mentation c++.

Exemple de l’incrémentation. L’instruction d’incrémentation c++ du langage C est compilée en
langage bas niveau en trois instructions. On donne ci-dessous ces trois instructions en assembleur
et leur équivalent en pseudo-code.

mov 0x2d78(%rip),%eax # 4070 <c>
add $0x1,%eax
mov %eax,0x2d6f(%rip) # 4070 <c>

(a) Code assembleur de l’instruction c++

1 Registre← c ;
2 Registre++ ;
3 c← Registre ;

(b) Équivalent en pseudo-code

Considérons les deux algorithmes concurrents ci-dessous.

♣. On peut penser par exemple à la condition “tant que le graphe n’est pas connexe” de l’algorithme de Kruskal, à
l’instruction “Soit un sommet non encore visité” dans un algorithme de parcours de graphe
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c← variable globale initialisée à 0 ;

Fil d’exécution P Fil d’exécution Q

1 c++ ; 1 c++ ;

Algorithme 3 – Double incrémentation de c : version haut niveau

c← variable globale initialisée à 0 ;

Fil d’exécution P Fil d’exécution Q

Soit regP var. loc. ;
P1 RegP← c ;
P2 RegP++ ;
P3 c← RegP ;

Soit regQ var. loc. ;
Q1 RegQ← c ;
Q2 RegQ++ ;
Q3 c← RegQ ;

Algorithme 4 – Double incrémentation de c : version bas niveau

Tous les scénarios d’exécution de l’algorithme 3 conduisent à une valeur de 2 pour la variable glo-
bale c. L’algorithme 4 peut quant à lui conduire à l’entrelacement P1, Q1, P2, Q2, P3, Q3, et donc à une
valeur de 1 pour la variable globale c.
Un tel comportement peut parfois être observé en machine. Aussi, dans toute la suite du chapitre
nous considérerons comme atomiques uniquement des opérations de lecture et d’écritures de valeurs
“simples”.

3 Programmation
Dans cette section, on répertorie les différentes fonctions C et OCaml au programme permettant
la manipulation des fils d’exécution♣. En OCaml la manipulation de fils d’exécution se fera au
moyen du module Thread. En C la manipulation de fils d’exécution se fera au moyen de la librairie
pthread.h, la compilation d’un programme C utilisant la librairie pthread.h nécessite l’option de
compilation -pthread : gcc -pthread main.c -o main.
Le schéma de manipulation des fils d’exécution est le même en OCaml et en C.
• Les fils d’exécution sont des valeurs (ayant un type propre) qui peuvent être manipulées par le

programme.
• Pour créer un fil d’exécution on passe en paramètres la fonction décrivant les instructions que ce

fil devra exécuter.
• L’exécution d’un fil d’exécution peut être démarrée par un appel de fonction.
• Étant donné un fil d’exécution en cours d’exécution il est possible d’attendre (de manière blo-

quante) que l’exécution de celui-ci termine.

Le type des fils d’exécution. En OCaml, les fils d’exécution sont des objets de type Thread.t. En
C, les fils d’exécution sont des objets de type pthread_t.

Création de fils d’exécution. En OCaml, la création et le lancement de l’exécution d’un fil d’exé-
cution se font au moyen de la fonction Thread.create : ('a -> 'b) -> 'a -> Thread.t. Cette

♣. thread en anglais.
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fonction prend en paramètres une fonction f (de type 'a -> 'b) et un objet x (de type 'a). L’ap-
pel (Thread.create f x) crée alors un fil exécutant l’appel (f x) et retourne une valeur p de type
Thread.t permettant d’identifier ce fil.
En C, la création et le lancement de l’exécution d’un fil d’exécution se font au moyen de la fonction
pthread_create prenant 4 paramètres : un pointeur p vers le fils d’exécution à créer, un pointeur
vers une fonction f, un pointeur qui ne nous intéresse pas (onmettra donc NULL), un pointeur vers un
argument de la fonction f. L’appel pthread_create(p, NULL, f, p_arg) crée alors un fil exécutant
l’appel f(p_arg) et écrit dans p un thread de type pthread_t. La fonction f doit être de signature
void* f(void*) et p_arg doit donc être de type void*.

Attente de fin d’exécution d’un fil d’exécution. En OCaml, l’attente de fin d’exécution d’un
fils d’exécution p: Thread.t se fait au moyen de la fonction Thread.join : Thread.t -> unit. Si
p a été créé au moyen d’un appel (Thread.create f x), l’appel (Thread.join p) met en pause
l’exécution du fil d’exécution courant tant que l’appel (f x) n’a pas terminé.
En C, l’attente de fin d’exécution d’un fil d’exécution p se fait au moyen de la fonction pthread_join
prenant en paramètres : le fil à attendre, un pointeur qui ne nous intéresse pas (on mettra donc
NULL). Si p a été créé au moyen d’un appel pthread_create(p, NULL, f, p_arg), alors l’appel
(pthread_join(p, NULL)) met en pause l’exécution du fil d’exécution courant tant que l’appel
f(p_arg) n’a pas terminé.

Exemple 3.1
On fournit ci-dessous deux exemples exécutant le même algorithme concurrent, un en OCaml et un en C.

Mise au carré en OCaml.

1 (* Déclaration d'un type structuré permettant le stockage des arguments
2 (nb) et de la valeur de retour (res) de la fonction au_carre. *)
3 type args =
4 {
5 nb: int ;
6 mutable res : int ;
7 }
8

9 let au_carre (args: args): unit =
10 (* On écrit le résultat du calcul dans de la mémoire accessible par la
11 fonction appelante. *)
12 args.res <- args.nb * args.nb
13

14 let () =
15 let arg1 = {nb = 2; res = -1} in
16 let arg2 = {nb = 9; res = -1} in
17 (* On "lance" le thread pb : il doit exécuter la fonction au_carre sur
18 l'argument 2 et écrire le résultat dans le champs res de arg1. *)
19 let pa = Thread.create au_carre arg1 in
20

21 (* On "lance" le thread pb : il doit exécuter la fonction au_carre sur
22 l'argument 9 et écrire le résultat dans le champs res de arg2. *)
23 let pb = Thread.create au_carre arg2 in
24

25 (* On attend que les deux exécutions soient terminées. *)
26 Thread.join pa;
27 Thread.join pb;
28 assert (arg1.res = 4 && arg2.res = 81)

Mise au carré en C.

1 #include <pthread.h>
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2 #include <assert.h>
3

4 /* Déclaration d'un type structuré permettant le stockage des arguments
5 * (nb) et de la valeur de retour (res) de la fonction au_carre. */
6 struct args_s {
7 int nb;
8 int* res;
9 };

10 typedef struct args_s arg_carre;
11

12 /* La fonction que l'on souhaite exécuter de manière concurrente. */
13 void* au_carre(void* args) {
14 /* On transtype l'argument de type void* qui est un arg_carre* */
15 arg_carre* a = (arg_carre*) args;
16 /* On écrit le résultat du calcul dans de la mémoire accessible par la
17 * fonction appelante. */
18 *(a->res) = a->nb * a->nb;
19 return NULL;
20 }
21

22 int main(){
23 int resA, resB;
24 arg_carre argsA = {2, &resA};
25 arg_carre argsB = {9, &resB};
26 /* Déclaration des deux threads */
27 pthread_t pA, pB;
28 /* On "lance" le thread pA : il doit exécuter la fonction au_carre sur
29 * l'argument 2 et écrire la valeur résultat dans resA. */
30 pthread_create(&pA, NULL, au_carre, &argsA);
31

32 /* On "lance" le thread pB : il doit exécuter la fonction au_carre sur
33 * l'argument 9 et écrire la valeur résultat dans resB. */
34 pthread_create(&pB, NULL, au_carre, &argsB);
35

36 /* On attend que les deux exécutions soient terminées. */
37 pthread_join(pA, NULL);
38 pthread_join(pB, NULL);
39 assert((resA == 4) && (resB == 81));
40 return 0;
41 }

4 Exclusion mutuelle

4.1 Définition du problème et verrou
Le problème de l’exclusion mutuelle est un problème classique dans le domaine de la concurrence.
Afin d’illustrer ce problème, reprenons l’exemple de la double incrémentation de la section précé-
dente. Deux fils d’exécution souhaitent incrémenter de manière concurrente un compteur partagé.
La section précédente a montré qu’une telle incrémentation est “dangereuse” au sens où elle ne peut
être effectuée de manière atomique et peut donc conduire à des entrelacements pour lesquelles la
valeur du compteur est erronée. On souhaite donc mettre en place un mécanisme permettant d’as-
surer que ces entrelacements non voulus sont impossibles. On souhaite en fait assurer que si le fil
d’exécution P commence l’incrémentation de c, le fil d’exécution Q ne peut pas incrémenter c tant
que P n’a pas terminé. Finalement on aimerait pouvoir désigner une zone du code de P et une zone
du code de Q dans lesquelles les P et Q ne peuvent se trouver de manière simultanée : on appelle
cette propriété l’exclusion mutuelle et ces zones de code les sections critiques.
Cette situation est résumée dans l’algorithme 5.
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Fil d’exécution P Fil d’exécution Q

tant que … faire
Section non critique ;
Section critique ;
Section non critique ;

tant que … faire
Section non critique ;
Section critique ;
Section non critique ;

Algorithme 5 – Le problème de la section critique

Cadre de résolution. On considère un programme concurrent où N fils d’exécution exécutent
en boucle une séquence d’instructions (chacun la leur), parmi lesquelles certaines sont identifiées
comme formant une section critique. On cherche alors à mettre en place un protocole (un ensemble
d’instructions) à suivre par les fils d’exécution, en deux temps (avant la section critique, après la
section critique), qui assurent les trois propriétés ci-dessous.
1. Les instructions des sections critiques de deux fils d’exécution ne peuvent pas être entrelacées,

on appelle cette propriété l’exclusion mutuelle.
2. Si un fil d’exécution souhaite accéder à la section critique ; alors il n’empêche pas l’exécution des

autres fils d’exécution, on appelle cette propriété l’absence d’interblocage.
3. Si un fil d’exécution souhaite accéder à sa section critique, alors il pourra éventuellement y

accéder, on appelle cette propriété l’absence de famine.
On fait de plus les suppositions suivantes.
• Les N fils d’exécution exécutent en boucle les sections non critiques et sections critiques (ainsi

que les protocoles).
• L’exécution d’une section critique termine toujours et sans erreur.
• Un fil d’exécution peut être interrompu entre deux accès à la section critique.
L’algorithme 6 résume le cadre que nous nous sommes fixés dans le cas de deux fils d’exécution, les
instructions soulignées désignent le protocole que l’on cherche à mettre en place.

Fil d’exécution P Fil d’exécution Q

tant que … faire
Section non critique ;
Pré-section critique ;
Section critique ;
Post-section critique ;
Section non critique ;

tant que … faire
Section non critique ;
Pré-section critique ;
Section critique ;
Post-section critique ;
Section non critique ;

Algorithme 6 – Le problème de l’exclusion mutuelle de la section critique

Afin de rendre modulaire le protocole, on le “cache” derrière un type de donnée abstrait Verrou.
Définition 4.1
Le type de donnée abstrait Verrou, fournit une définition de type verrou et trois fonctions de
manipulations de ce type :
• create : ()→ verrou, qui correspond à la création de variables globales utiles au protocole ;
• lock : verrou→ (), qui correspond à la partie du protocole précédant la section critique ;
• unlock : verrou→ (), qui correspond à la partie du protocole suivant la section critique.

La figure 7 résume alors le cadre de résolution du problème de l’exclusion mutuelle que nous fixons
pour la suite de cette section, dans le cas de deux fils d’exécution.
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V ← create() ;

Fil d’exécution P Fil d’exécution Q

tant que … faire
Section non critique ;
lock(V, 0) ;
Section critique ;
unlock(V, 0)

tant que … faire
Section non critique ;
lock(V, 1) ;
Section critique ;
unlock(V, 1)

Algorithme 7 – Utilisation de verrou pour deux fils d’exécution

4.2 Une solution dans le cas N = 2, l’algorithme de Peterson
Dans cette section, on se propose de définir une implémentation du type de donnée abstrait Verrou.
La version proposée ci-dessous ne permet la gestion que de deux fils d’exécution. De plus elle né-
cessite les fonctions lock et unlock prennent en paramètre un entier de {0, 1} qui permet d’identifier
quel fil d’exécution appelle la fonction (on numérote 0 et 1 les deux fils d’exécution).
On présente ces algorithmes (create, lock, unlock) par raffinements successifs servant d’exemples.

4.2.1 Une première mauvaise version.

On décide ici d’utiliser comme variables globales un tableau Dedans de 2 booléens, indiquant, pour
chaque case d’indice i ∈ {0, 1}, si le fil d’exécution numéro i est, ou non, en section critique.

Procedure create() :
Soit Dedans un tableau de deux booléens initialisés à F
retourner Dedans

Procedure lock(Dedans, i) :
o←1− i // L’autre

1 tant que Dedans[o] faire Rien // On attend tant que l’autre est en section critique
2 Dedans[i]←V // On se signale comme étant en section critique

Procedure unlock(Dedans, i) :
3 Dedans[i]←F // On se signale comme n’étant plus en section critique

Diagramme d’états. On trouvera en figure 3 le diagramme d’états de ce premier algorithme. On
remarque qu’il est possible d’atteindre une situation dans laquelle les pointeurs d’instructions de P
et Q sont simultanément sur 3 et 3, (grâce à l’entrelacement P1 ; Q1 ; P2 ; Q2 ; P4 ; Q4) ce qui correspond
au cas où les deux fils d’exécution sont en section critique. Ainsi le verrou ne vérifie pas la propriété 1.
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Figure 3 – Diagramme d’états de la première version

4.2.2 Une seconde mauvaise version.

On décide cette fois d’utiliser comme variables globales un tableau Want de 2 booléens, indiquant,
pour chaque case d’indice i ∈ {0, 1}, si le fil d’exécution d’indice i souhaite, ou non, aller en section
critique.

Procedure create() :
Soit Want un tableau de deux booléens initialisés à F
retourner Want

Procedure lock(Want, i) :
o←1− i // L’autre

1 Want[i]←V // On dit vouloir aller en section critique
2 tant que Want[o] faire Rien // On attend tant que l’autre veut aller en section critique

Procedure unlock(Want, i) :
3 Want[i]←F // On dit ne plus vouloir aller en section critique

Diagramme d’états. On trouvera en figure 4 le diagramme d’états de ce second algorithme. Re-
marquons que lorsque les pointeurs d’instruction des deux fils d’exécution sont sur les instructions
2 et 2, les fils d’exécution P et Q sont bloqués dans une boucle infinie sur cet état. Une telle boucle
infinie correspond à l’entrelacement P1 ; Q1 ; P2 ; Q2 ; P3 ; Q3 ; P4 ; Q4 ; P3 ; Q3 ; …
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Figure 4 – Diagramme d’états de la seconde version

Ainsi le verrou ne vérifie pas la propriété 2.

4.2.3 Une troisième mauvaise version.

On choisit comme variables globales : une variable entièreTurn valant 0 ou 1 et indiquant l’identifiant
du fil d’exécution dont c’est le tour de rentrer en section critique.

Procedure create() :
Soit Turn une variable entière initialisée à 0
retourner Turn

Procedure lock(Turn, i) :
o←1− i // L’autre

1 tant que Turn = o faire Rien // On attend que ce soit notre tour

Procedure unlock(Turn, i) :
o←1− i // L’autre

2 Turn← o // On passe le tour à l’autre

Diagramme d’états. On trouvera en figure 5 le diagramme d’états de ce troisième algorithme.
On remarque que cette solution assure que les fils d’exécution rentrent alternativement en section
critique : le fil d’exécution 0 a le droit de rentrer, puis le fil d’exécution 1, puis le fil d’exécution 0, . . ..
Remarquons que lorsque les pointeurs d’instruction des deux fils d’exécution sont sur les instructions
1 et 1, si le fil d’exécution P (resp. le fil d’exécution Q) n’avance plus (comprendre le fil d’exécution
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P (resp. le fil d’exécution Q) a cessé son exécution) alors le fil d’exécution Q (resp. le fil d’exécution
P ) ne peut plus progresser vers la section critique.

Figure 5 – Diagramme d’états de la troisième version

4.2.4 Version finale.

On combine les idées des deux dernières versions. On choisit comme variables globales :
• un tableau Want de 2 booléens, indiquant, pour chaque case d’indice i ∈ {0, 1}, si le fil d’exécution

d’indice i souhaite, ou non, aller en section critique ;
• une variable entière Turn valant 0 ou 1 et indiquant l’identifiant du fil d’exécution dont c’est le

tour de rentrer en section critique, cette variable sert ici seulement à décider lequel, de P ou Q,
accède à la section critique en cas de demande simultanée.

Procedure create() :
Soit Turn une variable entière initialisée à 0
Soit Want un tableau de deux booléens initialisés à F
retourner (Turn, Want)

Procedure lock(Turn, Want, i) :
o←1− i // L’autre

1 Want[i]← V // On dit vouloir aller en section critique
2 Turn← o // On cède la priorité
3 tant que Want[o] et Turn = o faire Rien // On attend tq o veut y aller et qu’il a la priorité

Procedure unlock(Turn, i) :
4 Want[i]←F // On dit ne plus vouloir y aller

Algorithme 8 – Algorithme de Peterson

Diagramme d’états. On trouvera en figure 6 le diagramme d’états de l’algorithme de Peterson.
1. On remarque qu’il n’est pas possible d’atteindre une situation dans laquelle les pointeurs d’ins-

tructions de P et Q sont simultanément sur 4 et 4, démontrant que l’exclusion mutuelle est
assurée.
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2. Remarquons sur le diagramme que les transitions d’un état ayant pour pointeur d’instruction
P : i et Q : j vers un état P : i′ et Q : j′ sont de trois types.
• Ou bien i = 4, i′ = 0 et j = j′ (ou de même en inversant les rôles de i et j) ce qui correspond

à une nouvelle itération d’accès à la section critique
• Ou bien i = i′ et j = j′, une telle transition ne fait pas progresser l’algorithme, toutefois elle

ne peut avoir lieu indéfiniment. Supposons, sans perdre en généralité, que cette transition
ait lieu au moyen d’une instruction de Q. Les seules telles cas se présentent pour i′ > 0
et j′ > 0, ce qui assure (par hypothèse) que les deux fils d’exécution sont encore en cours
d’exécution, ainsi l’entrelacement fera apparaître au moins une instruction de P dans le
futur or il n’y a pas d’état présentant en même temps une boucle pour Q et pour P , ainsi
éventuellement la prochaine instruction exécutée par nous fera progresser P .

• Ou bien i′ > i ou j′ > j ce qui assure la progression de l’algorithme.
Cette remarque nous assure l’absence d’interblocage.

3. Finalement remarquons qu’un circuit (non réduit à un état) dans le diagramme d’état faisant
intervenir uniquement P (sans perdre en généralité) n’est possible que lorsque le pointeur
d’instruction de Q vaut 1, signifiant que Q ne souhaite pas accéder à la section critique. Cette
remarque assure l’absence de famine.

Figure 6 – Diagramme d’états de l’algorithme de Peterson
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Proposition 4.2
L’algorithme de Peterson implémente le type abstrait verrou pour deux fils d’exécution.

Démonstration : On se place dans le cas où deux fils d’exécution P et Q utilisent le même verrou comme
indiqué sur l’algorithme 7. Montrons que l’exclusion mutuelle est garantie.
Supposons par l’absurde qu’à un instant t, à la fois P et Q se trouvent en section critique. On considère
pour chacun des fils les étapes du dernier appel à lock avant d’entrer en section critique, et on note alors ti

(resp. t′
i) l’instant où la ligne i de cet appel à lock a été exécutée pour la dernière fois, plus précisément :

- à l’instant t1, P a exécuté Want[0]← V ;
- à l’instant t′

1, Q a exécuté Want[1]← V ;
- à l’instant t2, P a exécuté Turn← 1 ;
- à l’instant t′

2, Q a exécuté Turn← 0 ;
- la dernière fois que P a évalué sa condition de boucle tant que se décompose en deux♣ :

- à l’instant t3.1, l’expression Want[1] est évaluée (par P ) à la valeur cW∈B ;
- à l’instant t3.2, l’expression Turn = 1 est évaluée (par P ) à la valeur cT∈B ;

et on sait alors que cW.cT = F(F) ;
- la dernière fois que Q a évalué sa condition de boucle tant que se décompose en deux :

- à l’instant t′
3.1, l’expression Want[0] est évaluée (par Q) à la valeur c′

W∈B ;
- à l’instant t′

3.2, l’expression Turn = 0 est évaluée (par Q) à la valeur c′
T∈B ;

et on sait alors que c′
W.c′

T = F(F′) .
Puisque chaque fil exécute ses instructions dans l’ordre, t1 <t2 <t3.1 <t3.2 <t et t′

1 <t′
2 <t′

3.1 <t′
3.2 <t.

Afin de pouvoir nous appuyer sur la valeur de Turn pour raisonner, on travaille par disjonction de cas sur
l’ordre relatif de t2 et t′

2.
• Si t2 < t′

2, alors après l’instant t′
2 on a Turn = 0, en particulier au temps t′

3.1, donc c′
T = V. D’après (F′)

on en déduit que c′
W = F, ce qui signifie qu’au temps t′

3.2, Want[0] vaut F. Pourtant t′
3.2 > t′

2 > t2 > t1
et t′

3.2 < t, donc cet instant ce situe après le moment où P a exécuté Want[0] ← V, et avant que P n’ait
exécuté l’appel à unlock (seule autre instruction susceptible de modifier Want[0]), donc Want[0] vaut V à
l’instant t′

3.2. Absurde

• Si t′
2 < t2, on établit de même une contradiction sur la valeur de Want[1].

Les deux cas étant absurdes, on en déduit qu’à aucun instant t les deux fils P et Q ne sont tous les deux en
section critique. �

4.3 Une solution pour N > 2 : l’algorithme de la boulangerie de Lamport
L’idée de cette implémentation est la suivante : on simule un distributeur de tickets, chaque fil
d’exécution souhaitant rentrer en section critique prend un ticket numéroté par une valeur supé-
rieure aux tickets des autres fils d’exécution. Le fil d’exécution ayant le ticket de plus petite valeur
est autorisé à entrer en section critique. Le ticket de valeur 0 a un sens spécial : le fil d’exécution ne
souhaite pas rentrer dans la section critique.
On présente l’algorithme final par raffinements successifs d’algorithmes. Dans toute la suite l’entier
N est fixé et représente le nombre de fils d’exécution. Tout comme l’algorithme de Peterson on
suppose ici que les fils d’exécution sont munis d’un identifiant entier unique de l’intervalle J0, N−1K,
et que cet entier est passé en argument aux verrous.

♣. On omet l’évaluation paresseuse de la conjonction pour simplifier l’écriture de la preuve.
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Procedure create(n) :
Soit Ticket un tableau de n entiers initialisés à 0
retourner Ticket

Procedure lock(Ticket, i) :
1 Ticket[i]← 1 + max{Ticket[j] | j ∈ J0, n− 1K}
2 pour j = 0 à N − 1 faire // Pour chaque autre fil d’exécution

//On attend qu’il ait un moins bon ticket que nous, ou plus de ticket du tout
3 tant que Ticket[j] 6= 0 et Ticket[j] < Ticket[i] faire Rien

Procedure unlock(Ticket, i) :
4 Ticket[i]← 0

La ligne Ticket[i]← 1+max{Ticket[j] | j ∈ J0, n−1K} de l’algorithme n’est pas effectuée de manière
atomique, ce qui peut conduire plusieurs fils d’exécution à avoir le même numéro de ticket. Afin de
pallier ce problème on oblige les fils d’exécution à attendre que chaque autre fil d’exécution intéressé
par la section critique ait fini de calculer le max.

Procedure create(n) :
Soit Ticket un tableau de n entiers initialisés à 0
Soit EnCalcul un tableau de n booléens initialisés à F
retourner (Ticket, EnCalcul)

Procedure lock(Ticket, i) :
1 EnCalcul[i]← V
2 Ticket[i]← 1 + max{Ticket[j] | j ∈ J0, n− 1K}
3 EnCalcul[i]← F
4 pour j = 0 à n− 1 faire // Pour chaque autre fil d’exécution

//On attend qu’il ait fini le calcul du max
5 tant que EnCalcul[j] faire Rien

//Puis on attend qu’il ait un moins bon ticket que nous, ou plus de ticket du tout
6 tant que Ticket[j] 6= 0 et Ticket[j] < Ticket[i] faire Rien

Procedure unlock(Ticket, i) :
7 Ticket[i]← 0

Cette version de l’algorithme a toutefois un dernier inconvénient : deux fils d’exécution a et b peuvent
avoir le même numéro de Ticket de part le calcul concurrent des max. Prenons par exemple le cas
où deux fils d’exécution calculent de manière concurrente le maximum alors qu’ils ont tout deux
une valeur de ticket de 0, ils lisent chacun la valeur 0 de l’autre fil d’exécution, puis choisissent la
valeur de ticket 1. Afin de pallier ce problème, on autorise différents fils d’exécution à avoir le même
numéro de ticket, en cas d’égalité c’est le fil d’exécution de plus petit numéro qui rentre en premier
dans la section critique. Ainsi les fils d’exécution ne sont plus comparés seulement par ticket, mais
par la relation d’ordre lexicographique sur la valeur du ticket puis la valeur de leur identifiant. On
note �l cette relation d’ordre lexicographique.
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Procedure create(n) :
Ticket est un tableau de n entiers initialisés à 0.
EnCalcul est un tableau de n booléens initialisés à F.
retourner (Ticket, EnCalcul)

Procedure lock(Ticket,EnCalcul, i) :
1 EnCalcul[i]← V
2 Ticket[i]← 1 + max{Ticket[j] | j ∈ J0, n− 1K}
3 EnCalcul[i]← F
4 pour j = 0 à n− 1 faire // Pour chaque autre fil d’exécution

//On attend qu’il ait fini le calcul du max
5 tant que EnCalcul[j] faire Rien

//Puis on attend qu’il ait un moins bon ticket que nous, ou plus de ticket du tout
6 tant que Ticket[j] 6= 0 et ((Ticket[j], j) ≺l (Ticket[i], i)) faire Rien

Procedure unlock(Ticket, i) :
7 Ticket[i]← 0

Algorithme 9 – Algorithme de la boulangerie de Lamport

4.4 En OCaml, en C

4.4.1 En OCaml

Le type abstrait Verrou est implémenté en OCaml par le module Mutex. Les verrous sont des objets
de type Mutex.t. On les manipule à travers les trois opérations suivantes :
• la fonction Mutex.create : unit -> Mutex.t qui crée un verrou ;
• la fonction Mutex.lock : Mutex.t -> unit qui permet de verrouiller un verrou ;
• la fonction Mutex.unlock : Mutex.t -> unit qui permet de déverrouiller un verrou.
Une fois un verrou v créé, on garantit l’exclusion mutuelle entre les sections de codes délimitées par
un appel à (Mutex.lock v) et un appel à (Mutex.unlock v).

Exemple 4.3
On donne ci-dessous le cas de deux fils d’exécution devant réaliser la même tâche, à savoir incrémenter un
compteur partagé un nombre donné de fois.

1 type args =
2 { nbt : int ; mutable cpt : int }
3 let verrou = Mutex.create ()
4 (** Ajoute [a.nbt] fois 1 à [a.cpt] *)
5 let add_one (a : args) : unit =
6 for i = 1 to a.nbt do
7 Mutex.lock verrou;
8 a.cpt <- a.cpt + 1;
9 Mutex.unlock verrou

10 done

11

12 let main (n : int) : unit =
13 let a = {nbt = n; cpt = 0} in
14 let f1 = Thread.create add_one a in
15 let f2 = Thread.create add_one a in
16 Thread.join f1;
17 Thread.join f2;
18 let res = a.cpt in
19 assert (res = 2 * n)

4.4.2 En C

Le type abstrait Verrou est implémenté en C par le type pthread_mutex_t de la bibliothèque pthread.
Une fois un verrou v déclaré et initialisé grâce à un appel à pthread_mutex_init(&v, NULL), on ga-
rantit l’exclusionmutuelle entre les sections de codes délimitées par un appel à pthread_mutex_lock(&v)
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et un appel à pthread_mutex_unlock(&v).

Exemple 4.4
On donne ci-dessous une exemple avec trois fils d’exécution devant réaliser la même tâche, à savoir incré-
menter un compteur partagé un nombre donné de fois. On définit donc une seule tâche (la fonction add_one),
et une seule structure pour passer à cette fonction ses arguments (la structure args). Afin de mettre en ex-
clusion mutuelle les incrémentations du compteur faites par chaque fil réalisant add_one, on protège la ligne
16 grâce à un verrou déclaré au préalable (ligne 5).

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <pthread.h>
4

5 pthread_mutex_t verrou ;
6 typedef struct args_s {
7 int* cpt; /* adresse compteur */
8 int nbt; /* nb de tours souhaités */
9 } args ;

10

11 /* incr. arg->nbt fois *(arg->cpt) */
12 void* add_one(void* arg) {
13 args* a = (args*) arg;
14 for (int i = 0; i < a->nbt ; i++) {
15 pthread_mutex_lock(&verrou);
16 *(a->cpt)= *(a->cpt) + 1;
17 pthread_mutex_unlock(&verrou);
18 }
19 return NULL;
20 }

21

22 int main(int argc, char* argv[]) {
23

24 int cpt = 0; // variable partagée
25 args a1 = {.cpt = &cpt, .nbt = 10000};
26

27 pthread_mutex_init(&verrou, NULL);
28

29 pthread_t p1, p2, p3;
30 pthread_create(&p1, NULL, add_one, &a1);
31 pthread_create(&p2, NULL, add_one, &a1);
32 pthread_create(&p3, NULL, add_one, &a1);
33

34 pthread_join(p1, NULL);
35 pthread_join(p2, NULL);
36 pthread_join(p3, NULL);
37

38 return 0;
39 }

5 Sémaphores

5.1 Définition
Les sémaphores sont une généralisation des verrous.

Métaphore explicative. Il y a un nombre n de postes disponibles dans une salle informatique.
Des étudiants souhaitent utiliser ces postes, mais sont en nombre supérieur au nombre de poste.
On installe donc un surveillant qui est en charge de laisser entrer les étudiants dans la salle in-
formatique. Ce surveillant ne regarde jamais dans la salle, il maintient seulement un compteur du
nombre de postes disponibles dans la salle, ainsi qu’un registre des étudiants souhaitant accéder à
la salle informatique. Lorsqu’un étudiant arrive, il y a deux cas :
• ou bien le nombre de places disponibles dans la salle est non nul, auquel cas le surveillant laisse

entrer l’étudiant et décrémente le compteur du nombre de places disponibles dans la salle ;
• ou bien le nombre de places disponibles dans la salle est nul, auquel cas le surveillant demande

à l’étudiant de patienter, et il l’inscrit sur le registre des étudiants en attente.
Lorsqu’un étudiant sort de la salle, il y a deux cas :
• ou bien il n’y a pas d’étudiants attendant l’accès à la salle, auquel cas le surveillant incrémente le

nombre de places disponibles dans la salle ;
• ou bien il y a des étudiants qui attendent de pouvoir accéder à la salle, le surveillant va alors

chercher un des étudiants de son registre et lui donne accès à la salle.
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Définition 5.1
Le type de donnée abstrait Semaphore fournit une définition de type semaphore et trois fonctions
de manipulation de ce type :
• create : N→ semaphore, une fonction de création d’une sémaphore pour un entier n ;
• acquire : semaphore→ (), une fonction d’aquisition du sémaphore ;
• release : semaphore→ (), une fonction de libération du sémaphore.

État du sémaphore L’état d’un sémaphore est représenté par un compteur et par la donnée d’un
ensemble de fils d’exécution en attente.
• Lors d’une tentative d’acquisition du sémaphore :

- si le compteur est nul alors le fil d’exécution courant est mis en attente ;
- sinon le compteur est décrémenté et le fil d’exécution continue son exécution.

• Lors de la libération d’un sémaphore :
- si un fil d’exécution est en attente, on en choisit un, on le laisse continuer son exécution ;
- sinon on incrémente la valeur du compteur.

Remarque 5.2
Contrairement à ce que la métaphore introductive pourrait laisser penser, on remarque que le type de
donnée abstrait Semaphore ne fournit pas d’opération d’accès au nombre d’éléments en attente. De plus
dans certains cas on pourra libérer le sémaphore avant d’y avoir accédé ( Cf. section 5.2.3), ce qui, dans le
cadre de la métaphore précédente permet de modéliser l’installation de machines supplémentaires dans la
salle, ce qui augmente le nombre de places disponibles sans pour autant qu’un étudiant ait quitté la salle.

5.2 Quelques problèmes classiques de la concurrence

5.2.1 Le problème de l’exclusion mutuelle

On peut facilement garantir l’exclusionmutuelle à l’aide d’un sémaphore créé pour l’entier 1. Chaque
fil d’exécution acquiert alors le sémaphore lorsqu’il entre dans sa section critique et il le libère
lorsqu’il la quitte. Cette solution ne garantit pas l’absence de famine : lorsque plusieurs fils sont mis
en attente, la sortie d’un fil d’exécution libère le sémaphore et l’un de ces fils en attente peut alors
entrer en section critique, mais on ne sait pas lequel, ainsi rien n’empêche que l’un des fils reste
toujours en attente tandis que d’autre répètent une infinité de fois leur section critique.

5.2.2 Problème multiplex

On considère la généralisation suivante du problème de l’exclusion mutuelle : N fils d’exécutions
souhaitent accéder à une section critique, on autorise au plus p ∈ J1, NK fils d’exécution à être dans
la section critique de manière simultanée. Ce problème se nomme le problème du multiplex. De
même que dans le problème de l’exclusion mutuelle, les N fils d’exécution exécutent “en boucle” la
suite d’instructions : Section non critique ; lock() ; Section critique ; unlock().
Le problème dumultiplex peut être résolu au moyen d’un sémaphore en implémentant les fonctions
lock et unlock de la manière suivante.
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Procedure create() :
1 retourner S Sémaphore initialisé par create(p)

Procedure lock() :
2 acquire(S)

Procedure unlock() :
3 release(S)

Algorithme 10 – Multiplex

Le système des N fils d’exécution assure alors l’invariant suivant : la valeur du sémaphore est de
p moins le nombre de fils d’exécution se trouvant en section critique. En effet, cet invariant est
initialement vrai et les fils d’exécutions décrémentent la valeur du sémaphore en entrant dans la
section critique et l’incrémente en sortant, ce qui assure bien le maintient de l’invariant.

5.2.3 Le problème de la mise en séquence

Dans le cas de la programmation concurrente, le problème de lamise en séquence est celui d’assu-
rer qu’une instruction d’un certain fil d’exécution est exécutée avant une certaine instruction d’un
autre fil d’exécution. On peut imaginer par exemple que la seconde instruction dépend du résultat
d’un calcul effectué par la première.
Ce problème peut être résolu au moyen d’un sémaphore. En effet considérons l’algorithme concur-
rent 11. L’instruction p2 est nécessairement exécutée avant l’instruction q2 : le fil d’exécution Q est
bloqué par l’exécution du acquire(S) tant que P n’a pas exécuté l’instruction release(S), et a fortiori,
l’instruction p2.

S ← Semaphore.create(0)

Fil d’exécution P Fil d’exécution Q

1 p1 ;
2 p2 ;
3 release(S) ;
4 p3 ;

1 q1 ;
2 acquire(S) ;
3 q2 ;
4 q3 ;

Algorithme 11 – Mise en séquence de p2 et q2 au moyen d’un sémaphore.

5.2.4 Producteurs-consommateurs

On considère une application dans laquelle des fils d’exécution produisent des ressources (les ré-
sultats d’un calcul par exemple) et stockent les résultats dans une mémoire bornée de taille n ∈ N.
On dit que ces fils d’exécution sont des producteurs. D’autres fils d’exécution consomment ces res-
sources, on dit que ce sont des consommateurs. Si les consommateurs consomment moins vite que
les producteurs ne produisent, la mémoire servant de zone de stockage risque de “déborder”. À l’in-
verse, si les consommateurs consomment plus vite que les producteurs ne produisent, la mémoire
risque d’être vide. Le problème producteur-consommateur est donc de réguler la production et la
consommation pour éviter un déséquilibre de la zone de stockage.

On propose le protocole suivant :
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• un fil d’exécution producteur est mis en attente s’il souhaite écrire dans une mémoire pleine ;
• un fil d’exécution consommateur est mis en attente s’il souhaite écrire dans une mémoire vide ;
• un seul fil d’exécution est en train d’accéder à la mémoire (lecture ou écriture) à la fois.
On propose pour cela l’implémentation utilisant les structures suivantes :
• un verrou Acces, protège l’accès à la lecture et/ou à l’écriture dans la mémoire ;
• un sémaphore Vide, interdisant l’accès à la lecture si la mémoire est vide, initialisé à la valeur 0 ;
• un sémaphore Plein interdisant l’accès à l’écriture si la mémoire est pleine, initialisé à la valeur n.
Le sémaphore Vide compte le nombre de places occupées dans la mémoire afin de mettre en attente
les consommateurs lorsque la mémoire est vide, tandis que le sémaphore Plein compte le nombre de
places libres dans la mémoire de mettre en attente les producteurs lorsque la mémoire est pleine.

Algorithme des consommateurs Algorithme des producteurs
1 acquire(Vide) ;
2 lock(Acces) ;
3 Lecture ;
4 unlock(Acces) ;
5 release(Plein) ;
6 Traitement de la donnée lue

1 Génération d’une donnée ;
2 acquire(Plein) ;
3 lock(Acces) ;
4 Écriture ;
5 unlock(Acces) ;
6 release(Vide) ;

Ainsi les consommateurs diminuent le nombre de places occupées et augmentent le nombre de
places libres, c’est l’inverse pour les producteurs.
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