Chapitre 8 : Concurrence

Les différentes formes de concurrence. Informellement, la notion de concurrence correspond
au fait que plusieurs fils d’exécution s’exécutent de maniere non indépendante (par exemple en
partageant des données) les uns des autres. Citons quelques exemples de concurrence.

* La machine sur laquelle on exécute un programme, n’est pas exclusivement en train d’exécuter
ce programme, il lui faut aussi gérer (par exemple) les déplacements de la souris, les retours
graphiques,

e Certains calculs cotiteux (phase d’apprentissage d’un LLM* , simulation numérique cofiteuse, ...)
nécessitent que les calculs soient répartis sur plusieurs machines qui interagissent pour produire
le résultat final.

* Le réseau internet est un ensemble de machines, opérant ensemble sur les données que sont les
pages web.

1 Vocabulaire de la concurrence

Vocabulaire 1.1

Un programme concurrent est un ensemble de programmes séquentiels “classiques”. Ces pro-
grammes sont composés d’instructions atomiques, qui est une instruction dont I'exécution ne
peut étre scindée : une fois I'exécution de l'instruction commencée, celle-ci se poursuit sans étre
interrompue.

Exécution d’un programme concurrent. L'exécution d’'un programme concurrent est non dé-
terministe. Une exécution possible d’'un programme concurrent, appelée scénario, est obtenue en
entrelacant les différentes exécutions des programmes séquentiels qui le compose.

Remarque 1.2

Dans nos machines, la création de cet entrelacement est déléguée a 'ordonnanceur, qui est un programme
s’exécutant sur la machine et chargé de répartir les ressources de calcul entre les différents fils d’exécution
en cours d’exécution.

Le modele d’exécution adopté ici (ot tous les entrelacements sont possibles) est trés permissif : il est peu
probable que 'ordonnanceur donne la main au fils d’exécution P pour une seule instruction élémentaire.
Toutefois dans un objectif de généralité nous ne faisons aucune hypothése sur les entrelacements possibles.

Remarque 1.3

Lorsque les programmes séquentiels composant un programme concurrent exécutent une boucle infinie on
ne considere que des entrelacements faisant intervenir chaque fil d’exécution infiniment souvent. Autre-
ment dit : lorsque plusieurs programmes séquentiels s’exécutent de maniére concurrente, on demande a
ce que 'ordonnanceur passe la main a chacun de ces programmes séquentiels aprés une durée finie.

&. large language model

Informatique - MPI Lycée Fermat - 2025/2026 1/19

Vocabulaire 1.4

On appelle fil d’exécution I'un des programmes séquentiels constituant le programme concur-
rent. Etant donné un fil en cours d’exécution, on appelle pointeur d’instruction la prochaine
instruction qu’il doit exécuter.

Fil d’exécution P Fil d’exécution @)
1 P1s 1G5
2 P2; 2 g2
3 435

Algorithme 1 — Exemple de programme concurrent a deux fils d’exécution P et Q).

Exemple 1.5

L’exécution du programme concurrent de I'algorithme 1 ci-dessous peut conduire au scénario suivant : ¢g; —
g2 — p1 — q3 — po2. Apres avoir exécuté les instructions atomiques p1, ¢ et ¢o, les pointeurs d’instructions
de P et () indiquent respectivement les instructions p; et gs.

Les autres scénarios du programme concurrent de I'algorithme 1 sont :

®* P1—pP2—>4q1—q2—4q3; ®* P1—>q — 4243 — P2; * @1 —7pP1—7492 Qg3 — P2;
* P1—q —P2—~>q2—4q3; * Q1 —>pP1—>P2—q2—4qs3; * 1 —q2 — P1 — P2 —q3;
* P1—q1 —q2— P2 —(Qq3; ® g1 —P1—Qq2— P2 —(q3; ® q1—q2 —q3 — p1 — P2.

M Exercice de cours 1.6

Justifier que tous les entrelacements possibles pour |'exemple ci-dessus ont été envisagés.
Autrement dit justifier qu'il y a seulement 10 entrelacements possibles ici.

Notation 1.7

Dans la suite, les entrelacements obtenus lors de I'exécution concurrente de deux fils d’exécution
P et () seront notés en donnant : le nom du fil d’exécution (par exemple p) suivi de la ligne
de programme que ce fil a exécuté. Le premier scénario de I'exemple ci-dessus sera alors noté
Q1, Q2, P1, Q3, P2.

Diagramme d’états. L'ensemble des exécutions possibles d'un programme concurrent peut étre
représenté au moyen d’'un diagramme d’états. Un tel diagramme est un graphe orienté dont les
sommets sont les états* de 'exécution du programme (valeurs des pointeurs d’instructions et état
de la mémoire), deux états ¢ et ¢’ sont alors reliés par un arc des lors quune étape d’exécution du
programme concurrent peut conduire de I'état e a 'état ¢’.

Exemple 1.8
Considérons le programme concurrent ci-dessous, dans lequel deux fils d’exécution P et () opérent sur n,
une variable globale entiere initialisée a 0, comme indiqué dans le préambule de I'algorithme.

&. On se limite aux états accessibles

Informatique - MPI Lycée Fermat - 2025/2026 2/19

n < variable globale initialisée a 0;

Fil d’exécution P Fil d’exécution @)

1n<+1; 1 ko < variable locale init. a 2;
2 N < l{/’g,

Algorithme 2 — Algorithme exemple

Un état de I'exécution de cet algorithme est représenté par les éléments suivants.

* Deux entiers : les pointeurs d’instructions, (e représente un fils d’exécution ayant terminé son exécution).
Par exemple (1,2) représente un état ou la prochaine instruction a exécuter pour P est n < 1 et la
prochaine instruction a exécuter pour () est n < ks.

* Un environnement portant sur les variables du programme. Par exemple (n +— 2, ko — 2) représente un
environnement dans lequel n vaut 2 et ko vaut 2.

Le diagramme d’états de cet algorithme est alors le suivant.

FIGURE 1 — Diagramme d’états de I'algorithme 2

2 Atomicité

Afin de rendre plus clairs les algorithmes, on se permet généralement d’utiliser des instructions
élémentaires “de haut niveau”*®. Dans ce chapitre, on prendra garde & n’utiliser comme opérations
élémentaires que des instructions atomiques, afin de ne pas négliger d’éventuels entrelacements.
Afin d’illustrer cette problématique on considére dans cette section le cas de I'instruction d’incré-
mentation c++.

Exemple de l'incrémentation. L’instruction d’incrémentation c++ du langage C est compilée en
langage bas niveau en trois instructions. On donne ci-dessous ces trois instructions en assembleur
et leur équivalent en pseudo-code.

mov 0x2d78(%rip),%eax # 4070 <c> 1 Registre « c;
add $0X1 ,%eaX 2 Reglstre++;

mov %eax,0x2d6f (%rip) # 4070 <c> 3 ¢« Registre;

(a) Code assembleur de I'instruction c++ (b) Equivalent en pseudo-code

Considérons les deux algorithmes concurrents ci-dessous.

&. On peut penser par exemple a la condition “tant que le graphe n’est pas connexe” de I'algorithme de Kruskal, a
I'instruction “Soit un sommet non encore visité” dans un algorithme de parcours de graphe

Informatique - MPI Lycée Fermat - 2025/2026 3/19

c « variable globale initialisée a 0;

Fil d’exécution P Fil d’exécution ()

1 CH; 1 CH;

Algorithme 3 — Double incrémentation de c : version haut niveau

c « variable globale initialisée a 0;
Fil d’exécution P Fil d’exécution ()
Soit regP var. loc. ; Soit regQ var. loc. ;
P1 RegP < c; Q1 RegQ < c;
p2 RegP++; Q2 RegQ++;
P3 C <+ RegP; Q3 C < RegQ;

Algorithme 4 — Double incrémentation de c : version bas niveau

Tous les scénarios d’exécution de l'algorithme 3 conduisent a une valeur de 2 pour la variable glo-
bale c. L’algorithme 4 peut quant a lui conduire a '’entrelacement p1, Q1, p2, Q2, p3, @3, et donc a une
valeur de 1 pour la variable globale c.

Un tel comportement peut parfois étre observé en machine. Aussi, dans toute la suite du chapitre
nous considérerons comme atomiques uniquement des opérations de lecture et d’écritures de valeurs
“simples”.

3 Programmation

Dans cette section, on répertorie les différentes fonctions C et OCAML au programme permettant

la manipulation des fils d’exécution®. En OCaML la manipulation de fils d’exécution se fera au

moyen du module Thread. En C la manipulation de fils d’exécution se fera au moyen de la librairie

pthread.h, la compilation d’'un programme C utilisant la librairie pthread.h nécessite I'option de

compilation -pthread : gcc -pthread main.c -o main.

Le schéma de manipulation des fils d’exécution est le méme en OCaML et en C.

* Les fils d’exécution sont des valeurs (ayant un type propre) qui peuvent étre manipulées par le
programme.

* Pour créer un fil d’exécution on passe en parametres la fonction décrivant les instructions que ce
fil devra exécuter.

* L'exécution d’un fil d’exécution peut étre démarrée par un appel de fonction.

* Etant donné un fil d’exécution en cours d’exécution il est possible d’attendre (de maniére blo-
quante) que I'exécution de celui-ci termine.

Le type des fils d’exécution. En OCami, les fils d’exécution sont des objets de type Thread.t. En
C, les fils d’exécution sont des objets de type pthread_t.

Création de fils d’exécution. En OCaMmL, la création et le lancement de 'exécution d’un fil d’exé-
cution se font au moyen de la fonction Thread.create : ('a -> 'b) -> 'a -> Thread.t. Cette

&. thread en anglais.

Informatique - MPI Lycée Fermat - 2025/2026 4/19

fonction prend en parametres une fonction f (de type 'a -> 'b) et un objet x (de type 'a). L'ap-
pel (Thread.create f x) crée alors un fil exécutant 'appel (f x) et retourne une valeur p de type
Thread.t permettant d’identifier ce fil.

En C, la création et le lancement de 'exécution d’un fil d’exécution se font au moyen de la fonction
pthread_create prenant 4 parametres : un pointeur p vers le fils d’exécution a créer, un pointeur
vers une fonction f, un pointeur qui ne nous intéresse pas (on mettra donc NULL), un pointeur vers un
argument de la fonction f. L’'appel pthread_create(p, NULL, f, p_arg) crée alors un fil exécutant
I'appel f(p_arg) et écrit dans p un thread de type pthread_t. La fonction f doit étre de signature
void* f(void#) et p_arg doit donc étre de type void*.

Attente de fin d’exécution d’un fil d’exécution. En OCamL, I'attente de fin d’exécution d’un
fils d’exécution p: Thread.t se fait au moyen de la fonction Thread.join : Thread.t -> unit. Si
p a été créé au moyen dun appel (Thread.create f x), 'appel (Thread.join p) met en pause
I'exécution du fil d’exécution courant tant que 'appel (f x) n’a pas terminé.

En C, I'attente de fin d’exécution d’un fil d’exécution p se fait au moyen de la fonction pthread_join
prenant en parametres : le fil a attendre, un pointeur qui ne nous intéresse pas (on mettra donc
NULL). Si p a été créé au moyen d’un appel pthread_create(p, NULL, f, p_arg), alors I'appel
(pthread_join(p, NULL)) met en pause I'exécution du fil d’exécution courant tant que l'appel
f(p_arg) n’a pas terminé.

Exemple 3.1
On fournit ci-dessous deux exemples exécutant le méme algorithme concurrent, un en OCAML et un en C.

Mise au carré en OCAML.

1| (* Déclaration d’un type structuré permettant le stockage des arguments
2 (nb) et de la valeur de retour (res) de la fonction au_carre. *)

3| type args =

4 {

5 nb: int ;

6 mutable res : int ;

7 }

8

9

let au_carre (args: args): unit =
(* On écrit le résultat du calcul dans de la mémoire accessible par la
fonction appelante. *)
args.res <- args.nb * args.nb

e e e
w N = O

let) =
let argl = {nb = 2; res = -1} in
let arg2 = {nb = 9; res = -1} in
(* On "lance” le thread pb : il doit exécuter la fonction au_carre sur
1’argument 2 et écrire le résultat dans le champs res de argil. *)
let pa = Thread.create au_carre argl in

P
S © ® 9N o « »

(* On "lance” le thread pb : il doit exécuter la fonction au_carre sur
1’argument 9 et écrire le résultat dans le champs res de arg2. *)
let pb = Thread.create au_carre arg2 in

NONNN
A W N R

(* On attend que les deux exécutions soient terminées. *)
Thread. join pa;

Thread. join pb;

assert (argl.res = 4 && arg2.res = 81)

NONNN
o N o wu

Mise au carré en C.

1| #include <pthread.h>

Informatique - MPI Lycée Fermat - 2025/2026 5/19

#include <assert.h>

/* Déclaration d’'un type structuré permettant le stockage des arguments
* (nb) et de la valeur de retour (res) de la fonction au_carre. */
struct args_s {
int nb;
int* res;

o 0 N Y L AW N

i

typedef struct args_s arg_carre;

=
=]

/* La fonction que 1'on souhaite exécuter de maniére concurrente. */
void* au_carre(void* args) {
/* On transtype 1'argument de type void* qui est un arg_carrex */
arg_carre* a = (arg_carre*) args;
/% On écrit le résultat du calcul dans de la mémoire accessible par la
* fonction appelante. */
*(a->res) = a->nb * a->nb;
return NULL;

[T~ T o T e S o S~ S S
O 0 N 1AW N

3

NN
N = O

int main(){
int resA, resB;
arg_carre argsA = {2, &resA};
arg_carre argsB = {9, &resB};
/* Déclaration des deux threads */
pthread_t pA, pB;
/* On "lance” le thread pA : il doit exécuter la fonction au_carre sur
* 1'argument 2 et écrire la valeur résultat dans resA. */
pthread_create(&pA, NULL, au_carre, &argsA);

N
w

Wow NN NN NN
~ & ¥ ® N o u &
1]

w
%]

/* On "lance” le thread pB : il doit exécuter la fonction au_carre sur
* 1'argument 9 et écrire la valeur résultat dans resB. */
pthread_create(&pB, NULL, au_carre, &argsB);

wWoow W W
o U A~ W

/* On attend que les deux exécutions soient terminées. */
pthread_join(pA, NULL);

pthread_join(pB, NULL);

assert((resA == 4) && (resB == 81));

return 0;

AW oW W
o v o 3

N
—
-

4 Exclusion mutuelle

4.1 Définition du probleme et verrou

Le probléme de I'exclusion mutuelle est un probléme classique dans le domaine de la concurrence.
Afin d’illustrer ce probléme, reprenons ’exemple de la double incrémentation de la section précé-
dente. Deux fils d’exécution souhaitent incrémenter de maniere concurrente un compteur partage.
La section précédente a montré qu’une telle incrémentation est “dangereuse” au sens ou elle ne peut
étre effectuée de maniere atomique et peut donc conduire a des entrelacements pour lesquelles la
valeur du compteur est erronée. On souhaite donc mettre en place un mécanisme permettant d’as-
surer que ces entrelacements non voulus sont impossibles. On souhaite en fait assurer que si le fil
d’exécution P commence I'incrémentation de ¢, le fil d’exécution () ne peut pas incrémenter ¢ tant
que P n’a pas terminé. Finalement on aimerait pouvoir désigner une zone du code de P et une zone
du code de @ dans lesquelles les P et () ne peuvent se trouver de maniere simultanée : on appelle
cette propriété 'exclusion mutuelle et ces zones de code les sections critiques.

Cette situation est résumée dans l'algorithme 5.

Informatique - MPI Lycée Fermat - 2025/2026 6/19

Fil d’exécution P Fil d’exécution)

tant que ... faire tant que ... faire
Section non critique; Section non critique;
Section critique ; Section critique ;
Section non critique ; Section non critique ;

Algorithme 5 — Le probleme de la section critique

Cadre de résolution. On considere un programme concurrent ou N fils d’exécution exécutent

en boucle une séquence d’instructions (chacun la leur), parmi lesquelles certaines sont identifiées

comme formant une section critique. On cherche alors a mettre en place un protocole (un ensemble

d’instructions) a suivre par les fils d’exécution, en deux temps (avant la section critique, aprés la

section critique), qui assurent les trois propriétés ci-dessous.

1. Les instructions des sections critiques de deux fils d’exécution ne peuvent pas étre entrelacées,
on appelle cette propriété 'exclusion mutuelle.

2. Siun fil d’exécution souhaite accéder a la section critique ; alors il n’empéche pas I'exécution des
autres fils d’exécution, on appelle cette propriété 'absence d’interblocage.

3. Si un fil d’exécution souhaite accéder a sa section critique, alors il pourra éventuellement y
accéder, on appelle cette propriété 'absence de famine.

On fait de plus les suppositions suivantes.

* Les N fils d’exécution exécutent en boucle les sections non critiques et sections critiques (ainsi
que les protocoles).

* L'exécution d’'une section critique termine toujours et sans erreur.

* Un fil d’exécution peut étre interrompu entre deux acces a la section critique.

L’algorithme 6 résume le cadre que nous nous sommes fixés dans le cas de deux fils d’exécution, les
instructions soulignées désignent le protocole que I'on cherche a mettre en place.

Fil d’exécution P Fil d’exécution @)
tant que ... faire tant que ... faire
Section non critique; Section non critique;
Pré-section critique; Pré-section critique;
Section critique;; Section critique;
Post-section critique ; Post-section critique ;
Section non critique; Section non critique;

Algorithme 6 — Le probleme de I'exclusion mutuelle de la section critique

Afin de rendre modulaire le protocole, on le “cache” derriere un type de donnée abstrait Verrou.
Définition 4.1

Le type de donnée abstrait Verrou, fournit une définition de type verrou et trois fonctions de
manipulations de ce type :

* create : () — verrou, qui correspond a la création de variables globales utiles au protocole;

* Jlock : verrou — (), qui correspond a la partie du protocole précédant la section critique;
* unlock : verrou — (), qui correspond a la partie du protocole suivant la section critique.

La figure 7 résume alors le cadre de résolution du probleme de ’exclusion mutuelle que nous fixons
pour la suite de cette section, dans le cas de deux fils d’exécution.

Informatique - MPI Lycée Fermat - 2025/2026 7/19

V' < create();

Fil d’exécution P

Fil d’exécution @)

tant que ... faire
Section non critique ;
lock(V,0);
Section critique;
unlock(V; 0)

tant que ... faire
Section non critique ;
lock(V,1);
Section critique;
unlock(V, 1)

Informatique - MPI Lycée Fermat - 2025/2026

Algorithme 7 — Utilisation de verrou pour deux fils d’exécution

4.2 Une solution dans le cas N = 2, I’algorithme de Peterson

Dans cette section, on se propose de définir une implémentation du type de donnée abstrait Verrou.
La version proposée ci-dessous ne permet la gestion que de deux fils d’exécution. De plus elle né-
cessite les fonctions lock et unlock prennent en parametre un entier de {0, 1} qui permet d’identifier
quel fil d’exécution appelle la fonction (on numérote 0 et 1 les deux fils d’exécution).

On présente ces algorithmes (create, lock, unlock) par raffinements successifs servant d’exemples.

4.2.1 Une premiere mauvaise version.

On décide ici d’utiliser comme variables globales un tableau Dedans de 2 booléens, indiquant, pour
chaque case d’indice i € {0, 1}, si le fil d’exécution numéro i est, ou non, en section critique.

Procedure create() :
Soit Dedans un tableau de deux booléens initialisés a F
L retourner Dedans

~

rocedure lock(Dedans, 7) :

o+1—1 // Lautre
1 tant que Dedans[o] faire Rien
2 Dedans[i] <V

// On attend tant que l'autre est en section critique

// On se signale comme étant en section critique

Procedure unlock(Dedans, i) :
3 L Dedans[i] «+F

// On se signale comme n’étant plus en section critique

Diagramme d’états. On trouvera en figure 3 le diagramme d’états de ce premier algorithme. On
remarque qu'’il est possible d’atteindre une situation dans laquelle les pointeurs d’instructions de P
et () sont simultanément sur 3 et 3, (grace a 'entrelacement p1; Q1; P2; Q2; P4; Q4) ce qui correspond
au cas ou les deux fils d’exécution sont en section critique. Ainsi le verrou ne vérifie pas la propriété 1.

8/19

1,3 2,3 p 3,3
Dedans[0] : O P Dedans[0] : O » Dedans[0] : 1
Dedans[1]: 1 Dedans[1]: 1 Dedans[1]: 1

A M A

Q Q Q

1,2 p 2,2 P 3,2
Dedans[0] : O »Dedans[0] : O »Dedans[0] : 1
Dedans[1]: 0 \ Dedans[1]: 0 Dedans[1]: 0

A i |

Q Q
1,1 p 2,1 P 3,1
Dedans[0] : O » Dedans[0] : 0 » Dedans[0] : 1
Dedans[1]: O Dedans[1] : O Dedans[1] : O
P

FIGURE 3 — Diagramme d’états de la premiere version

4.2.2 Une seconde mauvaise version.

On décide cette fois d’utiliser comme variables globales un tableau Want de 2 booléens, indiquant,
pour chaque case d’indice ¢ € {0, 1}, si le fil d’exécution d’indice i souhaite, ou non, aller en section
critique.

Procedure create() :
Soit Want un tableau de deux booléens initialisés a F
retourner Want

Procedure lock(Want, 7) :

0+1—1 // Lautre
1 Want[z] <V // On dit vouloir aller en section critique
2 tant que Want[o] faire Rien // On attend tant que l'autre veut aller en section critique

Procedure unlock(Want, i) :
3 L Want[i] <+F // On dit ne plus vouloir aller en section critique

Diagramme d’états. On trouvera en figure 4 le diagramme d’états de ce second algorithme. Re-
marquons que lorsque les pointeurs d’instruction des deux fils d’exécution sont sur les instructions
2 et 2, les fils d’exécution P et () sont bloqués dans une boucle infinie sur cet état. Une telle boucle
infinie correspond a 'entrelacement p1; Q1; P2; Q2; P3; Q3; P4; Q4; P3; Q3 ...

Informatique - MPI Lycée Fermat - 2025/2026 9/19

1,3
Want[0] : O
Want[1]:1

2,3
» Want[0] : 1
Want[1] :

1,2 a
Want[0] : 0 Want[0] : 1 Q

Want[1]:1
A

3,1
» Want[0] : 1
Want[1]: 0

2,1
P » Want[0] : 1
Want[1]: 0

P

FIGURE 4 — Diagramme d’états de la seconde version
Ainsi le verrou ne vérifie pas la propriété 2.

4.2.3 Une troisieme mauvaise version.

On choisit comme variables globales : une variable entiere Turn valant 0 ou 1 et indiquant I'identifiant
du fil d’exécution dont c’est le tour de rentrer en section critique.

Procedure create() :
Soit Turn une variable entiére initialisée a 0
| retourner Turn

Procedure lock(Turn, 7) :
0+1—1 // Lautre
1 tant que Turn = o faire Rien // On attend que ce soit notre tour

Procedure unlock(Turn, %) :
0+1—1 // Lautre
2 Turn <o // On passe le tour a l'autre

Diagramme d’états. On trouvera en figure 5 le diagramme d’états de ce troisieme algorithme.
On remarque que cette solution assure que les fils d’exécution rentrent alternativement en section
critique : le fil d’exécution 0 a le droit de rentrer, puis le fil d’exécution 1, puis le fil d’exécution 0,
Remarquons que lorsque les pointeurs d’instruction des deux fils d’exécution sont sur les instructions
1 et 1, sile fil d’exécution P (resp. le fil d’exécution () n’avance plus (comprendre le fil d’exécution

Informatique - MPI Lycée Fermat - 2025/2026 10/19

P (resp. le fil d’exécution Q) a cessé son exécution) alors le fil d’exécution @ (resp. le fil d’exécution
P) ne peut plus progresser vers la section critique.

1,1 =
e

FIGURE 5 — Diagramme d’états de la troisieme version

4.2.4 Version finale.

On combine les idées des deux dernieres versions. On choisit comme variables globales :

 un tableau Want de 2 booléens, indiquant, pour chaque case d’indice ¢ € {0, 1}, si le fil d’exécution
d’indice i souhaite, ou non, aller en section critique;

* une variable entiére Turn valant 0 ou 1 et indiquant I'identifiant du fil d’exécution dont c’est le
tour de rentrer en section critique, cette variable sert ici seulement a décider lequel, de P ou @),
accede a la section critique en cas de demande simultanée.

Procedure create() :

Soit Turn une variable entiere initialisée a 0

Soit Want un tableau de deux booléens initialisés a F
| retourner (Turn, Want)

Procedure lock(Turn, Want,) :

0+1—1 // Lautre
1 Want[i] <V // On dit vouloir aller en section critique
2 Turn <o // On céde la priorité
3 tant que Want[o| et Turn = o faire Rien // On attend tq o veut y aller et qu’il a la priorité

Procedure unlock(Turn, %) :
4 L Want[i] «+F // On dit ne plus vouloir y aller

Algorithme 8 — Algorithme de Peterson

Diagramme d’états. On trouvera en figure 6 le diagramme d’états de I'algorithme de Peterson.
1. Onremarque qu’il n’est pas possible d’atteindre une situation dans laquelle les pointeurs d’ins-
tructions de P et () sont simultanément sur 4 et 4, démontrant que I’exclusion mutuelle est
assurée.

Informatique - MPI Lycée Fermat - 2025/2026 11/19

2. Remarquons sur le diagramme que les transitions d’un état ayant pour pointeur d’instruction
P:iet(@:jversun état P:i et () :j sont de trois types.
* OQubieni=4,i =0etj = j' (ou de méme en inversant les roles de i et j) ce qui correspond

a une nouvelle itération d’acces a la section critique
* Oubien: = et j = j/, une telle transition ne fait pas progresser I'algorithme, toutefois elle
ne peut avoir lieu indéfiniment. Supposons, sans perdre en généralité, que cette transition
ait lieu au moyen d’une instruction de (). Les seules telles cas se présentent pour i/ > 0
et 7/ > 0, ce qui assure (par hypothese) que les deux fils d’exécution sont encore en cours
d’exécution, ainsi 'entrelacement fera apparaitre au moins une instruction de P dans le
futur or il n’y a pas d’état présentant en méme temps une boucle pour () et pour P, ainsi
éventuellement la prochaine instruction exécutée par nous fera progresser P.

* Oubien ¢ > i ouj > jce qui assure la progression de 'algorithme.

Cette remarque nous assure 'absence d’interblocage.
3. Finalement remarquons qu’un circuit (non réduit a un état) dans le diagramme d’état faisant
intervenir uniquement P (sans perdre en généralité) n’est possible que lorsque le pointeur
d’instruction de @) vaut 1, signifiant que () ne souhaite pas accéder a la section critique. Cette

remarque assure I’absence de famine.

1,4 2,4 3,4
Want[0] : 0 P Want[0] : 1 P Want[0] : 1 P
Want[1] : 1 Want[1]: 1 Want[1] : 1
turn : 0 turn : 0 turn: 1
A
Q
3,3
Want[0] : 1
13 / 5 3 Pp Want[1]: 1
- X turn: 1
Want[0] : O P Want[0] : 1
Want[1] : 1 Want[1]: 1 3 3 P
turn : 0 turn : 0 W
} Want[1] : 1
turn: 0
Q RS
Q 1,2 2,2
Want[0]: 0 P Want[0] : 1
Wsntllllt 1 Want[1] : 1 p
urn : turn: 1 3,2
T Want[0] : 1[N
| p Want[1] : 1
2,2 turn : 1
P Want[0] : 1 A
Want[1] : 1
turn : 0
Q
Q
P
Wi 1t'[é] 0 2.1 3,1
antl®, : 2,1 Want[0]: 1| p ’
Want[1]1: 0| |Want[0]: 1| |Want[1]: 0 w;g:m .
turn: 1) iwant[1]: 0 turn : 1 N
p turn : 0 P -

FIGURE 6 — Diagramme d’états de I'algorithme de Peterson

Informatique - MPI Lycée Fermat - 2025/2026

N

turn: 0

4,3
Want[0] : 1
Want[1] : 1

4,2
Want[0] : 1
Want[1] : 1

turn: 1

4,1
Want[0] : 1
Want[1] : 0

turn: 1

12/19

Proposition 4.2

LL’algorithme de Peterson implémente le type abstrait verrou pour deux fils d’exécution.

Démonstration : On se place dans le cas ot deux fils d’exécution P et () utilisent le méme verrou comme
indiqué sur 'algorithme 7. Montrons que I'exclusion mutuelle est garantie.

Supposons par I'absurde qu’a un instant ¢, a la fois P et () se trouvent en section critique. On considére
pour chacun des fils les étapes du dernier appel a lock avant d’entrer en section critique, et on note alors ¢;
(resp.t;) I'instant ou la ligne ¢ de cet appel a lock a été exécutée pour la derniére fois, plus précisément :

- alinstant t;, P a exécuté Want[0] « V;

- alinstant ¢}, Q a exécuté Want[1] + V;

- alinstant t5, P a exécuté Turn < 1;

a l'instant ¢}, Q a exécuté Turn < 0;

- la derniére fois que P a évalué sa condition de boucle tant que se décompose en deux® :

- alinstant t3 1, I'expression Want[1] est évaluée (par P) a la valeur ¢y €B;
- alinstant ¢35, I'expression Turn = 1 est évaluée (par P) a la valeur ct €B;
et on sait alors que cy.ct = F(%);
- la derniére fois que @ a évalué sa condition de boucle tant que se décompose en deux :
- alinstant t5 ;, 'expression Want[0] est évaluée (par) a la valeur ¢}, €B;
- alinstant tf 4, 'expression Turn = 0 est évaluée (par ()) a la valeur ¢} €B;
et on sait alors que ¢}y.c5 = F(%k') .

Puisque chaque fil exécute ses instructions dans l'ordre, t; <ta<t31 <tsa2<tett) <th<th , <th,<t.

Afin de pouvoir nous appuyer sur la valeur de Turn pour raisonner, on travaille par disjonction de cas sur

l'ordre relatif de ¢, et t5.

e Sity < t), alors apres l'instant ¢, on a Turn = 0, en particulier au temps ¢ ;, donc ¢ = V. D’apres (%)
on en déduit que |, = F, ce qui signifie qu'au temps ¢4 5, Want[0] vaut F. Pourtant t5 o > t5 > to > t;
et t 5 < t, donc cet instant ce situe apres le moment ot P a exécuté Want[0] < V, et avant que P n’ait
exécuté I'appel a unlock (seule autre instruction susceptible de modifier Want[0]), donc Want[0] vaut V a
Iinstant ¢4 ,. ABSURDE

e Sitl, < ty, on établit de méme une contradiction sur la valeur de Want[1].

Les deux cas étant absurdes, on en déduit qu’a aucun instant ¢ les deux fils P et () ne sont tous les deux en
section critique. O

4.3 Une solution pour N > 2 : l’algorithme de la boulangerie de Lamport

L'idée de cette implémentation est la suivante : on simule un distributeur de tickets, chaque fil
d’exécution souhaitant rentrer en section critique prend un ticket numéroté par une valeur supé-
rieure aux tickets des autres fils d’exécution. Le fil d’exécution ayant le ticket de plus petite valeur
est autorisé a entrer en section critique. Le ticket de valeur 0 a un sens spécial : le fil d’exécution ne
souhaite pas rentrer dans la section critique.

On présente I'algorithme final par raffinements successifs d’algorithmes. Dans toute la suite 'entier
N est fixé et représente le nombre de fils d’exécution. Tout comme l'algorithme de Peterson on
suppose ici que les fils d’exécution sont munis d’un identifiant entier unique de l'intervalle [0, N —1],
et que cet entier est passé en argument aux verrous.

&. On omet I'évaluation paresseuse de la conjonction pour simplifier 'écriture de la preuve.

Informatique - MPI Lycée Fermat - 2025/2026 13/19

Procedure create(n) :
Soit Ticket un tableau de n entiers initialisés a 0
retourner Ticket

Procedure lock(Ticket, 7) :
1 Ticket[i] < 1 + max{Ticket[j] | j € [0,n — 1]}
2 pour j =0 a N — 1 faire // Pour chaque autre fil d’exécution
//0n attend qu'’il ait un moins bon ticket que nous, ou plus de ticket du tout
L tant que Ticket[j] # 0 et Ticket[j] < Ticket[i] faire Rien

Procedure unlock(Ticket,) :
4 L Ticket[i] < 0

Laligne Ticket[i] <— 1+ max{Ticket[j] | j € [0,n—1]} de I'algorithme n’est pas effectuée de maniere
atomique, ce qui peut conduire plusieurs fils d’exécution a avoir le méme numéro de ticket. Afin de
pallier ce probléme on oblige les fils d’exécution a attendre que chaque autre fil d’exécution intéressé
par la section critique ait fini de calculer le max.

Procedure create(n) :
Soit Ticket un tableau de n entiers initialisés a 0
Soit EnCalcul un tableau de n booléens initialisés a F
retourner (Ticket, EnCalcul)

Procedure lock(Ticket,) :

EnCalcul[i] + V

Ticket[i] «+ 1 + max{Ticket[j] | 7 € [0,n — 1]}
EnCalcul[i] + F

pour j =0 a n — 1 faire // Pour chaque autre fil d’exécution
//0n attend qu’il ait fini le calcul du max

5 tant que EnCalcul[j] faire Rien
//Puis on attend qu’il ait un moins bon ticket que nous, ou plus de ticket du tout
6 tant que Ticket[j] # 0 et Ticket[j] < Ticket[i] faire Rien

AW N =

Procedure unlock(Ticket, 7) :
7 L Ticket[i] < 0

Cette version de I'algorithme a toutefois un dernier inconvénient : deux fils d’exécution a et b peuvent
avoir le méme numéro de Ticket de part le calcul concurrent des max. Prenons par exemple le cas
ou deux fils d’exécution calculent de maniere concurrente le maximum alors qu’ils ont tout deux
une valeur de ticket de 0, ils lisent chacun la valeur 0 de l'autre fil d’exécution, puis choisissent la
valeur de ticket 1. Afin de pallier ce probleme, on autorise différents fils d’exécution a avoir le méme
numéro de ticket, en cas d’égalité c’est le fil d’exécution de plus petit numéro qui rentre en premier
dans la section critique. Ainsi les fils d’exécution ne sont plus comparés seulement par ticket, mais
par la relation d’ordre lexicographique sur la valeur du ticket puis la valeur de leur identifiant. On
note =; cette relation d’ordre lexicographique.

Informatique - MPI Lycée Fermat - 2025/2026 14/19

Procedure create(n) :
Ticket est un tableau de n entiers initialisés a 0.
EnCalcul est un tableau de n booléens initialisés a F.
retourner (Ticket, EnCalcul)

Procedure lock(Ticket,EnCalcul, 7) :

EnCalculfi] <~V

Ticket[i] < 1 + max{Ticket[j] | 7 € [0,n — 1]}
EnCalcul[i] < F

pour j =0 a n — 1 faire // Pour chaque autre fil d’exécution
//0n attend qu’il ait fini le calcul du max

5 tant que EnCalcul[j] faire Rien
//Puis on attend qu’il ait un moins bon ticket que nous, ou plus de ticket du tout
6 tant que Ticket[j] # 0 et ((Ticket[j], 7) <; (Ticket[i], 7)) faire Rien

AW N =

Procedure unlock(Ticket, 7) :
7 | Ticket[i] <0

Algorithme 9 — Algorithme de la boulangerie de Lamport

4.4 En OCamL, en C
4.4.1 En OCaMmL

Le type abstrait Verrou est implémenté en OCaML par le module Mutex. Les verrous sont des objets
de type Mutex.t. On les manipule a travers les trois opérations suivantes :

* la fonction Mutex.create : unit -> Mutex.t qui crée un verrou;

* la fonction Mutex.lock : Mutex.t -> unit qui permet de verrouiller un verrou;

* la fonction Mutex.unlock : Mutex.t -> unit qui permet de déverrouiller un verrou.

Une fois un verrou v créé, on garantit I'’exclusion mutuelle entre les sections de codes délimitées par
un appel a (Mutex.lock v) et un appel a (Mutex.unlock v).

Exemple 4.3
On donne ci-dessous le cas de deux fils d’exécution devant réaliser la méme tache, a savoir incrémenter un
compteur partagé un nombre donné de fois.

1| type args = 1
2 { nbt : int ; mutable cpt : int } 12| let main (n : int) : unit =
3| let verrou = Mutex.create () 13 let a = {nbt = n; cpt = @} in
4| (*¥* Ajoute [a.nbt] fois 1 a [a.cpt] *) 14 let f1 = Thread.create add_one a in
s | let add_one (a : args) : unit = 15 let f2 = Thread.create add_one a in
6 for i =1 to a.nbt do 16 Thread. join f1;
7 Mutex.lock verrou; 17 Thread. join f2;
8 a.cpt <- a.cpt + 1; 18 let res = a.cpt in
9 Mutex.unlock verrou 19 assert (res = 2 * n)
10 done
44.2 EnC

Le type abstrait Verrou est implémenté en C par le type pthread_mutex_t de la bibliotheque pthread.
Une fois un verrou v déclaré et initialisé grace a un appel a pthread_mutex_init(&v, NULL), on ga-
rantit 'exclusion mutuelle entre les sections de codes délimitées par un appel a pthread_mutex_lock(&v)

Informatique - MPI Lycée Fermat - 2025/2026 15/19

et un appel a pthread_mutex_unlock(&v).

Exemple 4.4

On donne ci-dessous une exemple avec trois fils d’exécution devant réaliser la méme tache, a savoir incré-
menter un compteur partagé un nombre donné de fois. On définit donc une seule tache (la fonction add_one),
et une seule structure pour passer a cette fonction ses arguments (la structure args). Afin de mettre en ex-
clusion mutuelle les incrémentations du compteur faites par chaque fil réalisant add_one, on protege la ligne
16 grace a un verrou déclaré au préalable (ligne 5).

1| #include <stdio.h> 21

2 | #include <stdlib.h> 22 | int main(int argc, char* argv[]) {

3| #include <pthread.h> 23

4 24 int cpt = @; // variable partagée

s | pthread_mutex_t verrou ; 25 args al = {.cpt = &cpt, .nbt = 10000};

6 | typedef struct args_s { 26

7 int* cpt; /* adresse compteur */ 27 pthread_mutex_init(&verrou, NULL);

8 int nbt; /* nb de tours souhaités */ 28

9| } args ; 29 pthread_t p1, p2, p3;

10 30 pthread_create(&p1, NULL, add_one, &al);
11| /* incr. arg->nbt fois *(arg->cpt) */ 31 pthread_create(&p2, NULL, add_one, &al);
12 | void* add_one(void* arg) { 32 pthread_create(&p3, NULL, add_one, &al);
13 args* a = (args*) arg; 33

14 for (int i = 0; i < a->nbt ; i++) { 34 pthread_join(p1, NULL);

15 pthread_mutex_lock(&verrou); 35 pthread_join(p2, NULL);

16 *(a->cpt)= *(a->cpt) + 1; 36 pthread_join(p3, NULL);

17 pthread_mutex_unlock(&verrou); 37

18 } 38 return 0;

19 return NULL; 39| }

20 | }

5 Sémaphores

5.1 Définition
Les sémaphores sont une généralisation des verrous.

Métaphore explicative. Il y a un nombre n de postes disponibles dans une salle informatique.

Des étudiants souhaitent utiliser ces postes, mais sont en nombre supérieur au nombre de poste.

On installe donc un surveillant qui est en charge de laisser entrer les étudiants dans la salle in-

formatique. Ce surveillant ne regarde jamais dans la salle, il maintient seulement un compteur du

nombre de postes disponibles dans la salle, ainsi qu'un registre des étudiants souhaitant accéder a

la salle informatique. Lorsqu’un étudiant arrive, il y a deux cas :

* ou bien le nombre de places disponibles dans la salle est non nul, auquel cas le surveillant laisse
entrer I'étudiant et décrémente le compteur du nombre de places disponibles dans la salle;

* ou bien le nombre de places disponibles dans la salle est nul, auquel cas le surveillant demande
a étudiant de patienter, et il I'inscrit sur le registre des étudiants en attente.

Lorsqu’un étudiant sort de la salle, il y a deux cas :

* ou bien il n’y a pas d’étudiants attendant 'acces a la salle, auquel cas le surveillant incrémente le
nombre de places disponibles dans la salle;

* ou bien il y a des étudiants qui attendent de pouvoir accéder a la salle, le surveillant va alors
chercher un des étudiants de son registre et lui donne acces a la salle.

Informatique - MPI Lycée Fermat - 2025/2026 16/19

Définition 5.1

Le type de donnée abstrait Semaphore fournit une définition de type semaphore et trois fonctions
de manipulation de ce type :

* create : N — semaphore, une fonction de création d’une sémaphore pour un entier n ;

* acquire : semaphore — (), une fonction d’aquisition du sémaphore;

* release : semaphore — (), une fonction de libération du sémaphore.

Etat du sémaphore L’état d’'un sémaphore est représenté par un compteur et par la donnée d’un
ensemble de fils d’exécution en attente.
* Lors d’'une tentative d’acquisition du sémaphore :
- si le compteur est nul alors le fil d’exécution courant est mis en attente;;
- sinon le compteur est décrémenté et le fil d’exécution continue son exécution.
* Lors de la libération d’'un sémaphore :
- si un fil d’exécution est en attente, on en choisit un, on le laisse continuer son exécution ;
- sinon on incrémente la valeur du compteur.

Remarque 5.2

Contrairement a ce que la métaphore introductive pourrait laisser penser, on remarque que le type de
donnée abstrait Semaphore ne fournit pas d’opération d’accés au nombre d’éléments en attente. De plus
dans certains cas on pourra libérer le sémaphore avant d’y avoir accédé (Cf. section 5.2.3), ce qui, dans le
cadre de la métaphore précédente permet de modéliser I'installation de machines supplémentaires dans la
salle, ce qui augmente le nombre de places disponibles sans pour autant qu'un étudiant ait quitté la salle.

5.2 Quelques problemes classiques de la concurrence

5.2.1 Le probleme de ’exclusion mutuelle

On peut facilement garantir 'exclusion mutuelle a ’'aide d’'un sémaphore créé pour I’entier 1. Chaque
fil d’exécution acquiert alors le sémaphore lorsqu’il entre dans sa section critique et il le libére
lorsqu’il 1a quitte. Cette solution ne garantit pas 'absence de famine : lorsque plusieurs fils sont mis
en attente, la sortie d’'un fil d’exécution libere le sémaphore et I'un de ces fils en attente peut alors
entrer en section critique, mais on ne sait pas lequel, ainsi rien n’empéche que I'un des fils reste
toujours en attente tandis que d’autre répetent une infinité de fois leur section critique.

5.2.2 Probleme multiplex

On considere la généralisation suivante du probleme de I'exclusion mutuelle : N fils d’exécutions
souhaitent accéder a une section critique, on autorise au plus p € [[1, N] fils d’exécution a étre dans
la section critique de maniere simultanée. Ce probléme se nomme le probleme du multiplex. De
méme que dans le probleme de I'exclusion mutuelle, les N fils d’exécution exécutent “en boucle” la
suite d’instructions : Section non critique; lock() ; Section critique ; unlock().

Le probléeme du multiplex peut étre résolu au moyen d’'un sémaphore en implémentant les fonctions
lock et unlock de la maniere suivante.

Informatique - MPI Lycée Fermat - 2025/2026 17/19

Procedure create() :
1 L retourner S Sémaphore initialisé par create(p)

Procedure lock() :
2 Lacquire(S)

Procedure unlock() :
3 Lrelease(S)

Algorithme 10 — Multiplex

Le systeme des N fils d’exécution assure alors I'invariant suivant : la valeur du sémaphore est de
p moins le nombre de fils d’exécution se trouvant en section critique. En effet, cet invariant est
initialement vrai et les fils d’exécutions décrémentent la valeur du sémaphore en entrant dans la
section critique et 'incrémente en sortant, ce qui assure bien le maintient de l'invariant.

5.2.3 Le probleme de la mise en séquence

Dans le cas de la programmation concurrente, le probleme de la mise en séquence est celui d’assu-
rer qu'une instruction d’un certain fil d’exécution est exécutée avant une certaine instruction d’'un
autre fil d’exécution. On peut imaginer par exemple que la seconde instruction dépend du résultat
d’un calcul effectué par la premiere.

Ce probléme peut étre résolu au moyen d'un sémaphore. En effet considérons ’algorithme concur-
rent 11. L’instruction p, est nécessairement exécutée avant I'instruction ¢, : le fil d’exécution () est
bloqué par I'exécution du acquire(S) tant que P n’a pas exécuté l'instruction release(.S), et a fortiori,
I'instruction p,.

S <— Semaphore.create(0)
Fil d’exécution P Fil d’exécution @)
1 P15 1.q15
2 D2 2 acquire(9S);
3 release(95); 3 ¢o;
4 P35 443,

Algorithme 11 — Mise en séquence de p, et ¢ au moyen d’un sémaphore.

5.2.4 Producteurs-consommateurs

On considere une application dans laquelle des fils d’exécution produisent des ressources (les ré-
sultats d’un calcul par exemple) et stockent les résultats dans une mémoire bornée de taille n € N.
On dit que ces fils d’exécution sont des producteurs. D’autres fils d’exécution consomment ces res-
sources, on dit que ce sont des consommateurs. Si les consommateurs consomment moins vite que
les producteurs ne produisent, la mémoire servant de zone de stockage risque de “déborder”. A Iin-
verse, si les consommateurs consomment plus vite que les producteurs ne produisent, la mémoire
risque d’étre vide. Le probleme producteur-consommateur est donc de réguler la production et la
consommation pour éviter un déséquilibre de la zone de stockage.

On propose le protocole suivant :

Informatique - MPI Lycée Fermat - 2025/2026 18/19

* un fil d’exécution producteur est mis en attente s’il souhaite écrire dans une mémoire pleine;

e un fil d’exécution consommateur est mis en attente s’il souhaite écrire dans une mémoire vide ;

e un seul fil d’exécution est en train d’accéder a la mémoire (lecture ou écriture) a la fois.

On propose pour cela 'implémentation utilisant les structures suivantes :

e un verrou Acces, protege l'acces a la lecture et/ou a 'écriture dans la mémoire ;
* un sémaphore Vide, interdisant 'acces a la lecture si la mémoire est vide, initialisé a la valeur 0;
* un sémaphore Plein interdisant ’acces a I'écriture si la mémoire est pleine, initialisé a la valeur n.
Le sémaphore Vide compte le nombre de places occupées dans la mémoire afin de mettre en attente
les consommateurs lorsque la mémoire est vide, tandis que le sémaphore Plein compte le nombre de
places libres dans la mémoire de mettre en attente les producteurs lorsque la mémoire est pleine.

Algorithme des consommateurs

Algorithme des producteurs

acquire(Vide) ;

lock (Acces) ;

Lecture;

unlock(Acces) ;

release(Plein) ;

Traitement de la donnée lue

A U1 AW N =

A AW =

Génération d'une donnée;
acquire(Plein) ;

lock (Acces) ;

Ecriture ;

unlock(Acces) ;
release(Vide) ;

Ainsi les consommateurs diminuent le nombre de places occupées et augmentent le nombre de

places libres, c’est I'inverse pour les producteurs.

Informatique - MPI Lycée Fermat - 2025/2026

19/19

	Vocabulaire de la concurrence
	Atomicité
	Programmation
	Exclusion mutuelle
	Définition du problème et verrou
	Une solution dans le cas N = 2, l'algorithme de Peterson
	Une première mauvaise version.
	Une seconde mauvaise version.
	Une troisième mauvaise version.
	Version finale.

	Une solution pour N2 : l'algorithme de la boulangerie de Lamport
	En OCaml, en C
	En OCaml
	En C

	Sémaphores
	Définition
	Quelques problèmes classiques de la concurrence
	Le problème de l'exclusion mutuelle
	Problème multiplex
	Le problème de la mise en séquence
	Producteurs-consommateurs

