
TP n°6 - Programmation concurrente

Notions abordées
- Utilisation de fils d’exécution en C à l’aide de la librairie pthread
- Utilisation de verrou en C à l’aide de la librairie pthread
- Définition fonctions de type void*, transtypage, et création de struct en C
- Utilisation de fils d’exécution en OCaml à l’aide du module Thread
- Utilisation de verrou en OCaml à l’aide du module Mutex

Exercice 1 : Parallélisation pour le produit de deux matrices
Q. 1 Télécharger le fichier compagnon_mult_mat.c sur cahier de prépa. Prendre connaissance du

type utilisé pour représenter les matrices et des fonctions disponibles. Définir ensuite une
fonction produit qui calcule le produit de deux matrices.

Q. 2 Identifier dans la fonction produit quels calculs pourraient être faits en parallèle. Doit-on
utiliser des verrous pour garantir que la parallélisation de ces opérations mène à un résultat
correct ?

Q. 3 Identifier les données qu’il est nécessaire de passer à chaque fil d’exécution pour qu’il effectue
ces calculs. Créer alors une structure agrégeant les informations nécessaires, puis un type
pour les pointeurs vers une telle structure.

Q. 4 Définir une fonction prenant un seul argument de type void* et de type de retour void* qui
effectuera les calculs que doit réaliser un fil d’exécution.

Q. 5 Définir finalement une fonction produit_parallele qui calcule le produit de deux matrices
en parallélisant le plus de calculs possible. Tester la fonction obtenue. On peut la comparer à
produit. À l’aide d’un affichage bien choisi, on peut observer que les calculs faits en parallèle
ne sont pas toujours faits dans le même ordre.

Informatique - MPI Lycée Fermat - 2025/2026 1/8

Exercice 2 : Addition binaire en parallèle

Les questions 2, 5 et 6 sont à traiter sur machine, en C. Un fichier compagnon_add_par_bloc.c
contenant quelques fonctions utiles est disponible sur cahier de prépa. On veillera à le compiler avec
l’option -pthread nécessaire pour que la librairie du même nom soit bien incluse.

Q. 1 Donner une description précise de la fonction mystere définie ci-dessous.

1 bool mystere(bool* t1, bool* t2, bool* tab, int n){
2 // hyp : t1, t2 et tab sont de taille n
3 // ???
4 bool r = false;
5 for (int i = 0; i < n; i++) {
6 if (t1[i] && t2[i]) {
7 tab[i] = r;
8 r = true;
9 } else if (t1[i] || t2[i]) {

10 tab[i] = !r;
11 } else {
12 tab[i] = r;
13 r = false;
14 }
15 }
16 return r;
17 }

Q. 2 On souhaite adapter cette fonction pour qu’elle puisse être exécutée par un pthread.
- Se munir d’un type qui permet d’agréger des valeurs d’arguments et une valeur de sortie
pour la fonction précédente.

- Définir alors une fonction de type de retour void* et prenant un seul argument de type void*
équivalente à la fonction précédente.

- Proposer alors un jeu de quelques tests permettant de vérifier que les appels à ces deux
fonctions coïncident.

Q. 3 Soit n ∈ N∗. Soient an−1an−2 . . . a0 ∈ {0, 1}n et bn−1bn−2 . . . b0 ∈ {0, 1}n. Soit k ∈ J0, nK. On
note♣ ag = ak−1ak−2 . . . a0 et ad = an−1an−2 . . . ak. On définit de même bg et bd. Si cg (resp.cd)
désigne le mot composé des k (resp.n − k) bits de poids faible de la somme de ag et bg, et si
rg ∈{0, 1} (resp.rd ∈{0, 1}) indique si une retenue a été oubliée dans cette somme, comment
peut-on calculer la somme de a et b?

Q. 4 En s’inspirant de la question précédente, proposer un mécanisme d’addition par blocs qui
puisse être parallélisé. À quelle condition cette parallélisation semble profitable en terme
d’efficacité ?

Q. 5 Définir une fonction add_par_bloc qui additionne deux nombres codés dans des tableaux de
booléens en deux blocs traités séquentiellement grâce à la fonction proposée dès la ques-
tion 1. (On s’assure dans cette question que le découpage, les sous-appels et la gestion des
retenues sont maîtrisés, la parallélisation à proprement parler est traitée à la question sui-
vante).

♣. si les lettres g et d en exposant semblent inversées, ces notations sont cohérentes si on envisage le codage dans
un tableau, où les bits de poids faible sont dans la case d’indice 0, usuellement représentée à gauche.

Informatique - MPI Lycée Fermat - 2025/2026 2/8

Q. 6 Définir une fonction add_parrallele qui additionne deux nombres codés dans des tableaux
de booléens en deux blocs traités parallèlement grâce à la fonction proposée à la question 2.

Exercice 3 : Calcul du maximum par “Diviser pour régner”
Nous nous intéressons ici à l’algorithme de calcul du maximum d’un tableau suivant.
• Si le tableau est de taille 1, alors le maximum est la valeur contenue dans l’unique case.
• Si le tableau est de taille > 1, on le découpe en deux tableaux de tailles > 1, dont on calcule les

maximums par appel récursif, on retourne alors le maximum de ces deux maximums.
Cet algorithme, de type diviser pour régner, suit l’idée d’un tournoi sportif. Une rapide étude de
complexité indique que cet algorithme a une complexité en Θ(n) (où n est la taille du tableau), qui
est aussi la complexité de l’algorithme de calcul du maximum par une simple boucle parcourant le
tableau.

Q. 1 En utilisant plusieurs fils d’exécution, transformer l’algorithme précédent pour qu’il soit de
complexité♣ Θ(log(n)).

Dans l’objectif d’une implémentation en OCaml, on définit le type ci-dessous, permettant la repré-
sentation des entrée/sorties de la fonction récursive auxiliaire calculant le maximum.

1 type espace_recherche = {
2 tab : int array ; (* le tableau dont on cherche le max *)
3 g : int ; (* la borne gauche, au sens large *)
4 d : int ; (* la borne droite, au sens large *)
5 mutable ret : int ; (* la valeur de retour *)
6 }

En passant une telle structure à un appel récursif, on lui indique non seulement quelle recherche de
maximum éffectuer (grâce aux champs tab,g et d), mais aussi où stocker le résulat : dans le champ
ret.

Q. 2 Proposer une implémentation en OCaml de l’algorithme proposé ci-avant.

Q. 3 Si ce n’est pas le cas, modifier votre algorithme pour qu’il utilise au plus n fils d’exécution,
où n est la taille du tableau à trier.

♣. La notion de complexité n’a jamais été définie dans le cas d’algorithme manipulant plusieurs fils d’exécution, la
complexité sera donc ici le “temps d’exécution”. On supposera que la machine dispose d’un nombre non borné de fils
d’exécution, et que ces fils d’exécution s’exécutent en parallèle, même si cette hypothèse n’est pas très réaliste.

Informatique - MPI Lycée Fermat - 2025/2026 3/8

Exercice 4 : Un très mauvais algorithme de tri
On se propose d’implémenter un algorithme de tri inspiré du tri bulle, mais mettant à profit plusieurs
fils d’exécution. Dans toute la suite T désigne un tableau d’entiers de taille n. L’idée est la suivante :
un tableau T de taille n est trié (de manière croissante) lorsque :

∀i ∈ J0, n − 2K, T [i] 6 T [i + 1]

Aussi on utilise n − 1 fils d’exécution, les “trieurs” : le ième étant chargé d’assurer que T [i] 6 T [i +1].
S’il constate que ce n’est pas le cas, il range T [i] et T [i + 1] en les inversant. Chacun de ces n − 2
fils d’exécution a une vision très locale de l’état de tri global du tableau, aussi on charge un autre
fil d’exécution, le “vérifieur”, de parcourir le tableau pour vérifier si celui-ci est globalement trié ou
non. Si c’est le cas il peut arrêter tous les autres fils d’exécution, si ce n’est pas le cas il recommence
sa vérification du tableau.

Q. 1 Proposer un mécanisme de protection assurant qu’aucune valeur du tableau ne soit perdue,
et ce malgré les éventuels entrelacements des fils d’exécutions. Expliciter l’utilisation faite de
ces protections par les différents fils d’exécution.

Q. 2 Montrer qu’il est nécessaire d’accorder une attention particulière aux ordonnancements des
différents mécanismes de protection afin d’éviter les inter-blocages. Justifier que votre choix
d’ordonnancement ne conduit pas à un inter-blocage.

Afin de réaliser l’implémentation en OCaml, les différents fils d’exécutions échangeront au moyen
de variables globales :

- tab: int array le tableau à trier ;
- est_trie: bool ref un booléen initialisé à false indiquant si le tableau est trié, qui sera
notamment sera utile pour permettre au fil d’exécution vérifieur d’arrêter les fils d’exécution
trieurs ;

- les objets mis en place pour les mécanismes de protection.

Q. 3 Proposer une fonction OCaml trieur (i: int): unit qui est le code du fil d’exécution trieur
d’indice i.

Q. 4 Proposer une fonction OCaml verifieur (): unit qui est le code du fil d’exécution vérifieur.

Q. 5 En déduire une fonction tri : unit -> unit permettant de trier le tableau tab par l’algo-
rithme concurrent présenté ci-avant.

On pourra modifier les fonctions ci-dessus pour faire apparaître l’inter-blocage mentionné en Q. 2.

Informatique - MPI Lycée Fermat - 2025/2026 4/8

Lancer deux fils d’exécution en parallèle en OCaml
Pour gérer des fils d’exécution en OCaml on utilise le module Thread de la librairie
Thread.Posix. On peut charger ce module sur utop en tapant #require "threads.posix";;.
Afin de compiler un programme OCaml utilisant ce module on pourra utiliser la ligne de
commande ci-dessous.

ocamlc -thread unix.cma threads.cma main.ml -o main

Les fils d’exécution sont des objets de type Thread.t. Ils doivent être créés par appel à la
fonction Thread.create : ('a -> 'b) -> 'a -> Thread.t qui prend en arguments :
• une fonction qui est celle que le fil d’exécution doit exécuter ;
• l’argument sur lequel ce fil d’exécution doit exécuter la fonction.
La fonction Thread.create retourne alors le fil d’exécution ainsi créé.

De même que pour la création de fils d’exécution en C, on peut se munir d’une structure
permettant la gestion des entrées/sorties de telles fonctions.
On peut demander à attendre qu’un fil d’exécution ait terminé son exécution grâce à la
fonction Thread.join : Thread.t -> unit qui prend en argument le fil d’exécution en
question.

1 type args =
2 {
3 nb: int ;
4 mutable res : int ;
5 }
6

7 let au_carre (args: args): unit =
8 args.res <- args.nb * args.nb

10 let () =
11 let arg1 = {nb = 2; res = -1} in
12 let arg2 = {nb = 9; res = -1} in
13 let pa = Thread.create au_carre arg1 in
14 let pb = Thread.create au_carre arg2 in
15 Thread.join pa;
16 Thread.join pb;
17 assert (arg1.res = 4 && arg2.res = 81).

Informatique - MPI Lycée Fermat - 2025/2026 5/8

Utilisation de Verrou en OCaml
Le type abstrait Verrou est implémenté en OCaml par le module Mutex de la librairie
Thread.Posix. Pour charger ce module sur utop on tape donc #require "threads.posix";;.
Afin de compiler un programme OCaml utilisant ce module on pourra utiliser la ligne de
commande ci-dessous.

ocamlc -thread unix.cma threads.cma main.ml -o main

Les verrous sont des objets de type Mutex.t. On les manipule à travers les trois opérations
suivantes :
• la fonction Mutex.create : unit -> Mutex.t qui crée un verrou ;
• la fonction Mutex.lock : Mutex.t -> unit qui permet de verrouiller un verrou ;
• la fonction Mutex.unlock : Mutex.t -> unit qui permet de déverrouiller un verrou.
Une fois un verrou v créé, on garantit l’exclusionmutuelle entre les sections de codes délimitées
par un appel à Mutex.lock v et un appel à Mutex.unlock v.

Exemple 0.1
On donne ci-dessous deux façons de coder la cas de deux fils d’exécution devant réaliser la même
tâche, à savoir incrémenter un compteur partagé un nombre donné de fois.
Si le nombre d’incrémentation souhaité est le même pour les deux fils, ceux-ci peuvent partager la
même structure pour leurs entrées/sorties, qui contient le nombre d’incrémentations et un champ
mutable pour le compteur partagé. On aboutit alors au code de gauche.
Dans le cas contraire, les deux fils ont des entrées différentes, et donc nécessairement des structures
différentes pour leurs entrées/sorties. Dans ce cas on ne peut pas utiliser le champ mutable comme
compteur commun, car ce seront alors deux compteurs différents… Ainsi on passe plutôt aux deux
structures la même référence de type entier. On aboutit alors au code de droite.

1 type args =
2 {
3 nbt : int; (* nombre de tours, >= 0 *)
4 mutable cpt : int;
5 }
6

7 let verrou = Mutex.create ()
8

9 (** Ajoute [a.nbt] fois 1 à [a.cpt] *)
10 let add_one (a : args) : unit =
11 for i = 1 to a.nbt do
12 Mutex.lock verrou;
13 a.cpt <- a.cpt + 1;
14 Mutex.unlock verrou
15 done
16

17 let main (n : int) : unit =
18 let a = {nbt = n; cpt = 0} in
19 let f1 = Thread.create add_one a in
20 let f2 = Thread.create add_one a in
21 Thread.join f1;
22 Thread.join f2;
23 let res = a.cpt in

1 type args =
2 {
3 nbt : int; (* nombre de tours, >= 0 *)
4 cpt_ref : int ref;
5 }
6

7 let verrou = Mutex.create ()
8

9 (** Ajoute [a.nbt] fois 1 à [a.cpt] *)
10 let add_one (a : args) : unit =
11 for i = 1 to a.nbt do
12 Mutex.lock verrou;
13 a.cpt_ref := !(a.cpt_ref) + 1;
14 Mutex.unlock verrou
15 done
16

17 let main (n : int) : unit =
18 let cpt = ref 0 (* compteur partagé *)

in↪→

19 let a1 = {nbt = n; cpt_ref = cpt} in
20 let a2 = {nbt = 2 * n; cpt_ref = cpt} in
21 let f1 = Thread.create add_one a1 in
22 let f2 = Thread.create add_one a2 in
23 Thread.join f1;
24 Thread.join f2;
25 let res = !cpt in.

Informatique - MPI Lycée Fermat - 2025/2026 6/8

Lancer deux fils d’exécution en parallèle en C
Pour gérer des fils d’exécution en C on utilise la bibliothèque pthread. Ainsi, on veillera à indi-
quer include <pthread.h> en tête du fichier main.c, et à le compiler avec l’option -pthread :

gcc -pthread main.c -o main

Les fils d’exécution sont des objets de type pthread_t. Ils doivent d’abord être déclarés puis
sont lancés par la fonction pthread_create qui prend 4 arguments :
• l’adresse du fil d’exécution, de type pthread_t* donc ;
• une adresse qui ne nous est pas utile, on mettra donc NULL ;
• une fonction void* todo(void* arg);, qui est celle que le fil d’exécution doit exécuter ;
• un pointeur vers les arguments de type void*.

Il est donc nécessaire de formater les instructions à effectuer dans une fonction void*
todo(void* arg). Pour cela on crée d’abord une structure struct arg_s qui rassemble les
données utiles à todo dans un même objet a dont l’adresse sera passée au fil d’exécution
comme 4-ème argument de pthread_create. La fonction todo commence par transtyper son
argument arg pour y reconnaître un pointeur de type (struct arg_s)*. Les calculs peuvent
donc être codés en accédant aux données par a->champ. Enfin le résultat ne peut être retourné
en sortie de todo, mais doit être enregistré dans un objet existant hors de la fonction (on
ajoute parfois son adresse dans la structure arg_s). Autrement dit la fonction todo doit non
seulement prendre ses entrées à travers un unique pointeur, mais doit aussi agir par effet de
bord uniquement.

On attend que plusieurs fils d’exécution aient terminé leur exécution grâce à la fonction
pthread_join qui prend 2 arguments :
• le processus, de type pthread_t donc ;
• une adresse qui ne nous est pas utile, on mettra donc NULL.

1 #include <pthread.h>
2 #include <assert.h>
3

4 struct args_s {
5 int nb;
6 int* res;
7 };
8 typedef struct args_s arg_carre;
9

10 void* au_carre(void* args) {
11 arg_carre* a = (arg_carre*) args;
12 *(a->res) = a->nb * a->nb;
13 return NULL;
14 }

16 int main(){
17 int resA, resB;
18 arg_carre argsA = {2, &resA};
19 arg_carre argsB = {9, &resB};
20 pthread_t pA, pB;
21 pthread_create(&pA, NULL, au_carre, &argsA);
22 pthread_create(&pB, NULL, au_carre, &argsB);
23 pthread_join(pA, NULL);
24 pthread_join(pB, NULL);
25 assert((resA == 4) && (resB == 81));
26 return 0;
27 }

.
Au besoin on pourra consulter le topo sur le lancement d’une multitude de fils d’exécution en C
disponible sur cahier de prépa.

Informatique - MPI Lycée Fermat - 2025/2026 7/8

Utilisation de Verrou en C
Le type abstrait Verrou est implémenté en C par le type pthread_mutex_t de la bibliothèque
pthread. Ainsi pour l’utiliser on veillera à indiquer #include <pthread.h> en tête du fichier
main.c, et à le compiler avec l’option -pthread : gcc -pthread main.c -o main.

Une fois un verrou v déclaré, on garantit l’exclusion mutuelle entre les sec-
tions de codes délimitées par un appel à pthread_mutex_lock(&v); et un appel à
pthread_mutex_unlock(&v). Cependant, le verrou v doit être initialisé dans la fonction
main par un appel à pthread_mutex_init(&v, NULL) avant les appels à pthread_mutex_lock
et pthread_mutex_unlock. Ainsi pour utiliser des verrous en C on réalise les étapes suivantes.
• Déclarer autant de verrous que nécessaire.
• Définir des structures pour passer aux tâches leurs arguments.
• Définir les tâches à faire, en protégeant leur sections critiques avec les verrous.
• Dans la fonction main :

- initialiser chaque verrou par un appel à pthread_mutex_init(&v, NULL); ;
- initialiser les variables qui seront partagées par les fils ;
- initialiser autant de structures que besoin ;
- déclarer puis lancer les fils en attribuant à chacun sa tâche et ses arguments ;
- attendre la fin de tous les fils pour récupérer le résultat.

Exemple 0.2
On donne ci-dessous une exemple avec trois fils d’exécution devant réaliser la même tâche, à savoir
incrémenter un compteur partagé un nombre donné de fois. On définit donc une seule tâche (la fonction
add_one), et une seule structure pour passer à cette fonction ses arguments (la structure args). Afin de
mettre en exclusion mutuelle les incrémentations du compteur faites par chaque fil réalisant add_one,
on protège la ligne 19 grâce à un verrou déclaré au préalable (ligne 5).

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <pthread.h>
4

5 pthread_mutex_t verrou;
6

7 struct args_s {
8 int* cpt; // adr. du compteur partagé
9 int nbt; // nb de tours souhaités

10 };
11 typedef struct args_s args;
12

13 void* add_one(void* arg) {
14 // hyp : arg est de type args*
15 // incr. arg->nbt fois *(arg->cpt)
16 args* a = (args*) arg;
17 for (int i = 0; i < a->nbt ; i++) {
18 pthread_mutex_lock(&verrou);
19 *(a->cpt)= *(a->cpt) + 1;
20 pthread_mutex_unlock(&verrou);
21 }
22 return NULL;
23 }

30 int main(int argc, char* argv[]) {
31

32 int cpt = 0; // variable partagée
33 args a1 = {.cpt = &cpt, .nbt = 10000};
34

35 pthread_mutex_init(&verrou, NULL);
36

37 pthread_t p1, p2, p3;
38 pthread_create(&p1, NULL, add_one, &a1);
39 pthread_create(&p2, NULL, add_one, &a1);
40 pthread_create(&p3, NULL, add_one, &a1);
41

42 pthread_join(p1, NULL);
43 pthread_join(p2, NULL);
44 pthread_join(p3, NULL);
45

46 printf(" [cpt: %d]\n [obj: %d]\n",
*(a1.cpt), 3*a1.nbt);↪→

47

48 return 0;
49 }

.

Informatique - MPI Lycée Fermat - 2025/2026 8/8

	Ex.1 : Parallélisation pour le produit de deux matrices
	Ex.2 : Addition binaire en parallèle
	Ex.3 : Calcul du maximum par ``Diviser pour régner''
	Ex.4 : Un très mauvais algorithme de tri
	Lancer deux fils d'exécution en parallèle en OCaml
	Utilisation de Verrou en OCaml
	Lancer deux fils d'exécution en parallèle en C
	Utilisation de Verrou en C

