10

11

12

13

14

15

16

17

18

19

20

21

22

23

=g Utilisation de VERROU en OCAML
Le type abstrait VERROU est implémenté en OCAML par le module Mutex de la librairie
Thread.Posix. Pour charger ce module sur utop on tape donc #require "threads.posix”;;.
Afin de compiler un programme OCAML utilisant ce module on pourra utiliser la ligne de
commande ci-dessous.

| ocamlc -thread unix.cma threads.cma main.ml -o main

Les verrous sont des objets de type Mutex.t. On les manipule a travers les trois opérations
suivantes :

* la fonction Mutex.create : unit -> Mutex.t qui crée un verrou;

* la fonction Mutex.lock : Mutex.t -> unit qui permet de verrouiller un verrou;

* la fonction Mutex.unlock : Mutex.t -> unit qui permet de déverrouiller un verrou.

Une fois un verrou v créé, on garantit 'exclusion mutuelle entre les sections de codes délimitées
par un appel a Mutex.lock v et un appel a Mutex.unlock v.

Exemple 2. On donne ci-dessous deux facons de coder la cas de deux fils d’exécution devant
réaliser la méme tache, a savoir incrémenter un compteur partagé un nombre donné de fois. Si
le nombre d’incrémentation souhaité est le méme pour les deux fils, ceux-ci peuvent partager
la méme structure pour leurs entrées/sorties, qui contient le nombre d’incrémentations et
un champ mutable pour le compteur partagé. On aboutit alors au code de gauche. Dans le
cas contraire, les deux fils ont des entrées différentes, et donc nécessairement des structures
différentes pour leurs entrées/sorties. Dans ce cas on ne peut pas utiliser le champ mutable
comme compteur commun, car ce seront alors deux compteurs différents. Ainsi on passe plutot
aux deux structures la méme référence de type entier. On aboutit alors au code de droite.

type args = 1| type args =
{ 2 {
nbt : int; (* nombre de tours, >= 0 *)s nbt : int; (* nombre de tours, >= 0 *)
mutable cpt : int; 4 cpt_ref : int ref;
} 5 }
6
let verrou = Mutex.create () 7| let verrou = Mutex.create ()

(** Ajoute [a.nbt] fois 1 a [a.cpt] *) 9| (** Ajoute [a.nbt] fois 1 a [a.cpt] *)

let add_one (a : args) : unit = 10| let add_one (a : args) : unit =
for i =1 to a.nbt do 1 for i =1 to a.nbt do
Mutex.lock verrou; 12 Mutex.lock verrou;
a.cpt <- a.cpt + 1; 13 a.cpt_ref := I!(a.cpt_ref) + 1;
Mutex.unlock verrou 14 Mutex.unlock verrou
done 15 done
16
let main (n : int) : unit = 17| let main (n : int) : unit =
let a = {nbt = n; cpt = @} in 18 let cpt = ref @ (* compteur partagée *)
let f1 = Thread.create add_one a in < 1in
let f2 = Thread.create add_one a in 19 let al = {nbt = n; cpt_ref = cpt} in
Thread.join f1; 20 let a2 = {nbt = 2 * n; cpt_ref = cpt} in
Thread. join f2; 21 let f1 = Thread.create add_one al in

let res = a.cpt in 22 let f2 = Thread.create add_one a2 in
23 Thread. join f1;
24 Thread.join f2;
25 let res = !Icpt in

25/26 > MPI|MPI* > Informatique > a compléter

