TD - Automates

Exercice 1. Donner un automate fini déterministe reconnaissant chacun des langages suivants sur l'alphabet $\Sigma = \{a, b\}$.

- 1. $L_1 = \{u \in \Sigma^*, |u| = 0 \mod 2\}$
- 2. $L_2 = \{u \in \Sigma^*, |u|_b \le 1\}$
- 3. $L_3 = \{u \in \Sigma^*, |u|_b > 1\}$
- 4. $L_4 = \{u \in \Sigma^*, u \text{ ne contient jamais deux } a \text{ consécutifs}\}$
- 5. $L_5 = \{u \in \Sigma^*, aba \text{ est un préfixe de } u\}$
- 6. $L_6 = \{u \in \Sigma^*, aba \text{ est un suffixe de } u\}$
- 7. $L_7 = \{u \in \Sigma^*, aba \text{ est un facteur de } u\}$
- 8. $L_8 = \{u \in \Sigma^*, aba \text{ est un sous-mot de } u\}$
- 9. $L_9 = \{u \in \Sigma^*, \text{toute occurrence de } b \text{ est suivie par une occurrence de } a\}$
- 10. $L_{10} = \{u \in \Sigma^*, \text{les deux dernières lettres de } u \text{ sont identiques}\}$

Exercice 2. Montrer que les langages suivants ne sont pas reconnaissables.

- 1. $L_1 = \{u \in \Sigma^*, |u|_a = |u|_b\}$
- 2. $L_2 = \{u \in \Sigma^*, |u|_a < |u|_b\}$
- 3. $L_3 = \{u \in \Sigma^*, u \text{ est un palindrome}\}\$
- 4. $L_4 = \{a^p, p \text{ est premier}\}$

Exercice 3. Quelques propriétés...

- 1. Un sous-langage d'un langage reconnaissable est-il reconnaissable?
- 2. L'union de deux langages non reconnaissables peut-elle être reconnaissable?
- 3. Les mots d'une certaine longueur fixée d'un langage reconnaissable forment-ils un langage reconnaissable ?
- 4. L'ensemble des mots pour lesquels un automate fini fait un blocage est-il reconnaissable?

Exercice 4. Soient $\mathscr{A}_1 et \mathscr{A}_2$ deux automates finis déterministes. Construire un automate reconnaissant la différence symétrique de $L(\mathscr{A}_1)$ et $L(\mathscr{A}_1)$ (c'est-à-dire, les mots appartenant à un des deux langages, mais n'appartenant pas aux deux à la fois).

Exercice 5. Montrer que si L est un langage reconnaissable, alors le langage "miroir" de L (les mots de L écrits à l'envers) est reconnaissable.

Exercice 6. Un exercice de langages qui ne parle pas d'automates... mais très classique ! Si L est un langage, on définit sa racine carrée \sqrt{L} de la manière suivante :

$$\sqrt{L} = \{u \in \Sigma^*, u.u \in L\}$$

- 1. Comparer L et $\sqrt{L^2}$. Sont-ils inclus l'un dans l'autre, identiques?
- 2. Même question avec L et $(\sqrt{L})^2$.