MP* DS N°2 : Corrigé S21

Probléme N°1 : Exosquelette lombaire

Q1 : Les 2 courbes de la figure 3 permettent de faire les observations suivantes :
Disque L3-L4
e diminution de la pression intra-discale de 0,53 MPa a 0,22 MPa pour un effort exercé par 1’actionneur
allant de 0 N a 65 N;
e augmentation de la pression intra-discale de 0,22 MPa a 0,25 MPa pour un effort exercé par 1’actionneur
allant de 65 N a 100 N.
Disque L4-L5
e diminution de la pression intra-discale de 0,48 MPa a 0,2 MPa pour un effort exercé par I’actionneur
allant de 0 N a 65 N;
e augmentation de la pression intra-discale de 0,2 MPa a 0,24 MPa pour un effort exercé par ’actionneur
allant de 65 N a 100 N.

On peut se demander pourquoi le constructeur n’a pas plutot choisi un effort de 65 N environ par actionneur.
Le choix des 40 N est sans doute motivé par la littérature scientifique et par le fait que trop diminuer la pression
intra-discale risque de réduire le volume musculaire de 1’utilisateur (trop d’assistance implique une dé-
musculation souvent). Aussi on remarque qu’a partir de 40N, les contraintes lombaires restent plus faibles
globalement et il est peut-étre plus facile de fournir 40N que 65N.

Q2 : On va calculer "a la main" la valeur moyenne de pression entre 0,5 min et 2 min. Alors :

capteur avant : entre =0, 5 min et # = 1, 2 min la courbe est linéaire et la valeur moyenne est son point milieu,
soita ¢ =0, 85 min a la pression normalisée 0,79. Entre =1, 2 min et # = 2 min la valeur de pression est
constante a 0,78. La pression moyenne normalisée vaut alors

((1,2-0,5).0,79+(2—1, 2).0, 78)/(2 — 0, 5) = 0, 785 soit une diminution de pression de 21,5% .

capteur milieu : avec le méme raisonnement sur les mémes intervalles de temps la pression moyenne normalisée
vaut (1, 2—-0, 5).0, 71 + (2 — 1, 2).0, 74)/(2 — 0, 5) = 0, 726 soit une diminution de pression de 27, 4% .
capteur arriere : avec le méme raisonnement sur les mémes intervalles de temps la pression moyenne normalisée
vaut ((1,2 -0, 5).0, 54+ (2 — 1, 2).0, 52)/(2 — 0, 5) = 0, 53 soit une diminution de pression de 47% .

Q3 : Par fermeture géométrique

OFE+ED+DC+CO =10 & aF +1s(t)F2—bTs—h()F =0

Par méthode du carré scalaire

l2(t) = (/a2 + b2 + h(t)2 — 2a- beos[p(t)] + 2b- h(t) sinfp(1)]

Q4:

Le vérin réalise une course compléte entre t =0 et t = T, donc :

o« [(t=0)= \/CLQ + b2 + 13 — 2a - beos[p(0)] + 2b - hosin[p(0)]. Or cette valeur est minimisée pour ¢(0) =
0, donc |lp(t = 0) = 111, 8mm |;

e L(t=T)= \/az + b2 + (ho + Ah)? — 2a - beos[p(T)] + 2b- (ho + Ah)sin[p(T)]. Or cette valeur est maxi-
misée pour ¢(T) = 20°, donc ‘ lo(t = T) = 205,4mm ‘

La course du vérin vaut donc ‘Alg =b(t=T) -1t =0)=936mm ‘
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Qs5:
On isole le solide (4), il est soumis & :
e l'action mécanique transmise par la liaison glissiere entre 3 et 4 d’axe :ng ;

« Taction du capteur F'copa:
« leffort de rappel du ressort —Kresy(t)go.

Le Théoreme de la Résultante Statique (solide (4) immobile) projetée selon 7/ donne :

0= ?Cap%4 : f_U}O - I{resy(t)

Q6 :

On a un systeme pignon + roue dentée a axes fixes, donc :

wipp  Za
W3 Z

Par composition des vitesses : vj,g/ﬁo = 7&/2 + ?J:Q/RO, or 7213/2 = (0 car J est situé sur 'axe de rotation
as
de la liaison pivot entre (3) et (2). De plus V' j5/p, = %wg/go 70

Encore par composition des vitesses wy /g, = w3 +ws/ g, et Wy g, = 0 par la liaison glissiere entre (3) et (0).

De plus wy /3 = —wy /3 = —Aw(t).

pas

Pour conclure vJ,g/RO = —g)\wnz(t)?o :

Q7:

—
t .
+ F.(arbre moteur/Ry) = L 0 ® wm(t)¥o = lfmwm(t)z car la masse de 'arbre
2 | Imwm (t)v[] I Jarbre moteur/Ro } 2
est négligée ;

« E.(1/Rp) = %Irwr(t)2 = = ([, 2?) win(t)? car la masse de (1) est négligée;

b | =S| =

1 . . ‘
o E.(2/Rp) = §IV°"'5/R0 = — (IyA?) win(t)? car la masse de (2) est négligée ;

2
o E.(3/Ry) = %””13?3,3/1%0 = % (mg [Pas )\} ) Wy (t)? car le solide est en translation.

27

Q8:

Par additivité de I'énergie cinétique :

E.(3/Ro) = E.(0/Ry) + E.(arbre moteur/Ry) + E.(1/Ry) + E.(2/Ro) + Eo(3/ Ro) + Ec(ressort/ Ry) + E.(4/ Ro)

Or E.(ressort/Ry) = 0 car la masse du ressort est négligée et E.(4/Rg) = E.(0/Ry) = 0 car les solides (0) et
(4) sont statiques. Par conséquent :

b |

EC(E/RO) - 9

2
(Im + ITXZ + IVXZ + m3 |:pas)\:l ) wm(t)Z
m

2
On identifie | Iy = I, + L% + Ty A* + ma VQM)‘} .
T

Q9:
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On isole I, les puissances extérieures qui s’exercent sur ce systéme sont :

—
F 0 | |
* DPlnassis—+4/Ry = {’Ehﬁssis#l} @ {V4/Ru} = { C%_ﬂl} ® {ﬁ)} = 0 car le solide (4) est statique;
K K
o Punassis—o/ro = 0 car (0) est statique;
+ puissance développée par la pesanteur : Phesy3/r, = Ppes—a/r, = 0 car (4) est statique et (3) est en

. — . . .
translation selon 4/ ¢ alors que la pesanteur est dirigée orthogonalement. Les autres solides ont une masse
négligée et ne développent pas de puissance diie a la pesanteur.

Finalement le total de la puissance extérieure a ) est nul.

10:
les puissances intérieures qui agissent sur le systeme ¥ sont :
 puissance développée par la motorisation : Pypre moteurcs3 = Cm (£)wm (t) ;

 puissance dissipée par 'actionneur linéaire (imperfection des différentes liaisons du systéme) :
Pdiss = _(1 - n)cm(t)wm(t) ;

« une fois le rendement global pris en compte, on peut supposer les différentes liaisons parfaites ainsi elles
ne dissipent pas de puissance;

6) _Kresy(t)?o
e puissance inter-effort diie au ressort : Pyyq = {V4/3} ® {75%4} =94 ., & = =
YO Vo) g 0 K
—Kresy(t)y(t) (ATTENTION a la définition de y(t) pour bien gérer les signes...).
Q11:

On a par composition des vitesses ?KA/U = ?KA/?, + 7](,3/0.
— . . . . s e
Or ?KA,U = 0 car les solides (0) et (4) sont immobiles. De plus 17},4/3 — (1) Y o par définition de y(t). Enfin

x3/0 = V K3/R, car (0) est immobile, de plus ? K.3/Ro = V 13/R, Dar mouvement de translation de 3/ Ry et

a:
J3/Ro = —%)\wm(t)ffo d’apres la question 6.

Finalement | (t) = = Aw,(t) |
T

QI12:

Le Théoréme de I'Energie Cinétique appliqué i I'ensemble ¥ s’écrit :

dEc(E/RO)

:Pex -Pin
1 t + Lint

avec Payxe la somme des puissances extérieures (nulle ici) et Pipe = o (8)wm (1) — (1= 1) em (D) wm (1) — Kresy () y(t)
la somme des puissances intérieures.

Or 4(t)y(t) = Keranswim (t)y(t). Finalement d’apres les questions précédentes :

quwm(t)wm(t) = Ticm(t)wm (t) - ]{res]{tmnswm(t)y(t)

En simplifiant par w,,(t) de part et d’autre de I’équation, on obtient le résultat voulu avec et

‘ T = I(resl{traus .
Q13:

On a la relation §(t) = Kipanswm (t), on rééerit alors I'équation du mouvement :

Iq .
K = y(t) + KresKtrﬂ,nsy(t) = ncm(t)
trans
] 1z . ] . . ’ - . Kres
C’est 'équation d'un oscillateur harmonique forcé non amorti de pulsation propre wg = Kirans 7
eq

Remarque : c’est un systéme a la limite de l'instabilité (poles & parties réelles nulles), d’ot1 la remarque sur
la nécessité d’un asservissement dans le sujet.
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Ql4:

Dans le domaine de Laplace et a conditions de Heaviside :

* UI (p) = Rfm(p) ;
* qume(p) = Q ) Cm(p) - Cr(p) ;
« Cop) =T-Y(p);
. C"m(p) = kcfm(p)

Ainsi on identifie dans le schéma-blocs : ‘1{3 =Q - keolet ‘ Ky=T ‘
. o . . lr(trans o . . o ](trans
On a 4(t) = Kiranswm,(f) soit dans le domaine de Laplace Qn(p) = Y(p). On identifie | Hg(p) = .
P p
Q15:

On ramene la grande boucle de retour (celle avec le gain Keape) sur la sortie F(p), le gain sur la boucle de

. I{Capt
retour devient alors .

I{res
K
Ainsi pour valider la condition demandée il faut | Kyqapt = K‘fapt .
res

Q16 : On calcule I’erreur vis-a-vis d’une entrée en perturbation constante donc on s’intéresse a la fonction de
transfert en régulation (w.(t) = 0 et ¢, (t) = C,u(t)). Par Black, on a :
1

n(p) __ Iegp _ 1 __ Rt;p
C-(p) 14 Kl ooy Logp + K1]§3Ki 1+7Tp  Rrlegp? + Ky KK (1 + 1;p)

qup " R
En appliquant le théoréme de la valeur finale :

ip

R1;p ) C,
Rtileqp® + K1K3Ki (1 +1;p) ) 0

Ce qui signifie qu'un couple résistant constant n’a pas d’influence sur la vitesse moteur. Le critére de précision
est bien respecte.

lim w,,(t) = limp 2,,(p) = limp (—
t—>oo p—0 p—0

Q17:
On décale la boucle du capteur angulaire de vitesse d’un cran vers la droite, on trouve alors immédiatement
!
Hy(p) = :
) Hg(p)

On peut ensuite appliquer la formule de Black a la boucle qui posséde la chaine de retour Ks, on trouve

Hs(p)
Y(p) Leqp , Hop)
= , par conséquent | Hg(p) = — 5
&l it
qup qup
Q18:
Lin , . Keapt . Ko
On a déja montré en question 16 que Kyq,pt = e factorisant dans la figure 14 on trouve le | K1 = T

de la figure 15.

Q19:

Hy(p)H
Par formule de Black sur la boucle interne on trouve | G(p) :‘ T HZ ((p)) ; (gj))gre(s 1
eqP 2\P) A8\ P )19\ P

Q20:

Sur la figure 16 la simulation s’arréte quand le dépassement vaut 2,5%, soit 41N. On ne peut pas évaluer le
temps de réponse du systéme puisque le régime stationnaire pour une consigne en échelon n'est pas atteint.
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Sur le relevé expérimental ce temps de réponse est clairement inférieur a la valeur 1s demandée par le cahier
des charges et il n'y a pas de dépassement (saturation & 40N). Le cahier des charges concernant le temps de

réponse a 5% est validé expérimentalement.

—4
0,5—-0,1
montée est aussi respecté. Toutefois la vitesse de montée maximale relevée sur la courbe de simulation vaut

7

41 —
environ ——————— = 212N/s > 100N /s, le eritére de vitesse en montée n’est pas respecté lors de la simulation.

0,28 — 0,12

La vitesse de montée expérimentale vaut environ = 80N/s < 100N/s donc le critére de vitesse de

Q21:

; 1) f@‘ Y Etlj(t) : ;
Ona E(t) = (f(t)) = (ul&f(t) . 18wc(t)) = (—ISE[I}(t) n 1,18wc(t)) avec E[1](t) = f(t) la deuxiéme

coordonnée du vecteur E(t). Alors |G (E(t),w.(t),t) = (—18E[1]€g1]4§t1), 18wc(t)) .

Q22:
def G(E, wc, t):
GO = E[1] # Premiére coordonnée
Gl = —18%E[1] + 1.18%wc # Deuxiéme coordonnée
return [GO,G1]
Q23:
def FBFs1(E, t):
Fcons = 40 # échelon de consigne de 40 N
K10 = 0.0277 # adaptation
Kcor = 5400 # gain du correcteur proportionnel
wc = Kcor*K18x(Fcons — E[8]) # Vitesse angulaire de consigne

return G(E, wc, t)
Q24 :
def FBFs1(E, t):
Fcons = 40 # échelon de consigne de 40 N
K10 = 0.0277 # adaptation
Kcor = 5400 # gain du correcteur proportionnel
wcmax = 1250 # limitation en vitesse angulaire dans l’intervalle [-wcmac, wcmax]

wc = KcorxK1@x(Fcons — E[0®]) # Vitesse angulaire de consigne
# Prise en compte de la saturation
if we > wcmax:
WC = wcmax
if we < —wcmax:
WC = —wcmax
return G(E, wc, t)
Q25:

Le systeme est stable, ensuite :
) ) ) 3 41 — 40 -0 )
e on a une valeur maximale de 41N environ, soit un dépassement de 0 - 2,5% (dépassement au

maximum autorisé) ;
o le systéme est précis pour une entrée en échelon (critére 1d1.2 validé);
o le temps de réponse a 5% est inférieur a 0,6s (< 1s), le critére de rapidité sur le temps de réponse est
validé ;
—4

36
05—01" 80N/s < 100N /s, le critére de vitesse de montée

e la pente maximale relevée sur la courbe vaut
est respecté.

Ainsi tous les items du cahier des charges sont validés.
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Probléme N°2 : Inverseur de poussée

Q1:

On a le modéle local suivant :

I Toirss = { E(“‘%”) }
(M)
avec .

° cﬁ(ai'r—>3) = —pS-dS-jg oudS = dr- dz
° 2]\,} = x-T3 + z.73 onzel0Ls]etz E[—%;%]

On déplace le modele local en Oy, point fixe :
(ﬁ?(air — 3) } - —ps - dS - Y3
(02)

d air - - —
Tair—3 { { (3:?3 + Z.Zg )/\—pg-dSv,ng }(02)

OsM A dR(air — 3)

d’]:m"—)3 - { —ps - T - dr dz - ?‘3 (O9)
2

En intégrant sur le domaine défini, on obtient :

Q2:

La vis 1 est assimilable (si on néglige I'influence du filet sur Popérateur d’inertie) a un solide de révolution

d’axe (Op, @p). On a donc bien :

[Al 0 0}
I(0p,1)=| 0 By 0

0 0 B |

|~ 1 (?01717)

Le volet 3 est un solide qui présente des symétries (seules deux sont nécessaires pour conclure) :
e de plan (Gh, o, ?3) :

e de plan (G, s, @)3) :
e de plan (Gg,’?jg,?g).

On a donce bien :

[ Ay 00 w
I(Gg, 3) = 0 By 0
00 Gy (23,72, 70)
Q3:
Lycée Claude Fauriel
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Travail préparatoire : Détermination des relations cinématiques.

L'hélicoidale entre 1 et 2 est a pas & droite. On a donc :

Yy
Voo = ——w
21 9. = 21

Or, Vo; = Vog = V,car Vo1 = 0 (1 est en liaison pivot par rapport a 0) et wo1 = wpy = —9f car wog = 0
(2 est en liaison glissiére par rapport a 0).

On a donc :

Vo = — 2 et 0y = — 2 Kooy
2.7 2.7

On isole I'ensemble {1,2,3,4}. On a :
e comme la vis 1 est en rotation autour d’'un axe fixe (Og, ?0) a une vitesse 0y :

1 )
Ecip0 = 5'141 07

e comme l'ensemble mobile 2 est en translation rectiligne de direction 7o A une vitesse Vag

2 .
LD VAR

1 .
Ecoy = =My -V} = -
e R S

e le volet 3 ayant un mouvement quelconque :

2-Ecs = V30Q®C3p0

avec :
e V3 = Vi : Voo
e Voyy = 0 car 2 est en translation par rapport a 0;
Vag - @0 -
7z Ob %o —— L
° Vg/g = 96—) 0 L3 : car GgOQ = _ ?3
0 O2 P O 73 G
3

°
[
N
o
l
—
=
QL&
o
e <
L0
=
T~
S
—_——
o]
L

v dOoGg
G3/0 =
0

— .
?03,3/0 = I(G3,3)823,9 = C3-6- s car G est le centre d’inertie du volet 3
Ainsi, on obtient :

. . 2 . .
Eecs = % (C’g - 93 + Ms - (szo + % : 95) — My -Ly-6,- V- sin(ﬂb))

e la masse de la bielle 4 étant négligeable :
Ec4 =0
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Au bilan, I'énergie cinétique totale de I'ensemble isolé vaut :

P’ Kz -p?

L3
My + My) + 5 = . 3
(M 3) 4. 72

1
Ecr = - |A1 + (Cs+ﬂfa~4) — M; - Ls -

I{cc ' pQ
2 4. 72 4.

ﬁ ’ Si?l(ﬁb)‘| '9?‘

s

“~
Jeq

On a bien la forme demandée pour J.4 avec :

2 2 2 2
P y y I{Cc'p y L3
Aeg = At + 5 (Mo + M) + W—(Cs + M-

y I{cc 'p2
Beq - _A[‘SLSﬁ

Q4:

On isole l'ensemble {1,2,3,4}. On effectue le bilan des actions mécaniques et on exprime la puissance que
chacune d’entre-elles développe :
e les liaisons étant parfaites, il n’y a aucune puissance intérieure dissipée, toutes les puissances sont exté-
rieures ;
e Pesanteur— 2.

Le mouvement de 2 par rapport a 0 étant orthogonal a la pesanteur, on a :

Ppesﬁ? =0
e Pesanteur— 3.

Ona: _

7, 3{_‘7”3;9'7”} et VB/U{ 9’)'7;’ R }

53— - - 3

P 0 G Vo - o + 260,73 i
donc : I I

Pressy = —My-g- 22 -by - cos(th) = KCC-%-Mg-g-g-cos(eb)-éf

e Flex-shat— 1.

On a : _
0 65 T
TFIe:cfshatﬁl - C, . ? et Vl/U = 6}
f 0 Jo, O
donc : _
PFle:c—shat%l — Gf ' Hf
e Air— 3.
On a : .
FaiT'US 95'?0
7:1:'?1'—>3 — é . Fair ' ?3 et Vg/o = %O ' ?0
2 Os O2
donc :
Pairsz = —Fair-Vao - sin(6y) + I;  Foir -0y = 9f * Fir - 2p : (sin(f?b) — I; : KCC)
ST
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On applique alors le théoreme de I'énergie-puissance :

e Calcul de dECT.
dt

Comme J.; dépend de 8, qui dépend du temps, on a :

dEcr
dt

= g by 4 5O By sin(@)0 = ef-(Jeq.ef - Q.Beq.M.eﬁ)

e Calcul de Pr la somme des puissances :

; P ) Ls P . L
Pr = 0 |Cy + Ko 5. Ms-g- o cos(By) + Fair - 7. (sm(ﬂb) -5 -chﬂ

e D’apres le théoréme de I'énergie-puissance, on a donc :

Kee-p-My-g-La | » ) I
™ 4.7 'COS(Qb) + Fair - 2o . (sm(ﬁb) — 5 . I(cc)

Probléeme N°3 : Téléphérique de la Vanoise

Q 1 : On est en régime permanent V (t) = V. Les vitesses de rotation de tous les éléments tournants sont cstes :

dE.(E/R
donc dEc(E/Ry) _ 0
dt
Q2:P(ext > E/Ry) = 2By, — FyentVocosy — MgV, siny

Q 3: Pipe = Cfrott-w =—fon Wy = _fwrzn

. 1 : 2V
Q4:p, =7 FventVocosy+MgVosmy+f(k—D)
Q5: P, =514 kW <530 kW
Q6:E.(E/Ry) =2X%] (wn)?+=] - (kwn)? +5%x=] (kﬂw )2+50x11 k2w 2+

e bc 0 2/mi\%m 2Jpm m 2 d 4m 279 dg m
1__ (Dk 2 1 (Dk 2
s (Som) +5M (5 on)

2 2 2

: : _ 2 Dy? ) Dk Dk
Ce qui donne : ]—2]m+k]pm+5]d(kd) +50]g(kdg> +m(2) +M(2)
Q7:pP,=0 et P(ext » E/Ry) = —kCrw,, — MgV, siny

D’ou: w, = %(—k(]f — MgDTksiny)
Dk

. v
Q8: a=7wm=—7°:> 7=954s
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