Colle 8 – Questions de cours

QUESTION DE COURS N⁰1 — **Propriété**. Positivité de l'intégrale : soient a et b deux réels, avec $a \le b$, et $f \in \mathscr{C}^0([a,b],\mathbb{R})$. Si $f \geqslant 0$ sur [a,b], alors $\int_a^b f(t) \, \mathrm{d}t \geqslant 0$.

Sous les hypothèses de l'énoncé, la fonction f est continue et positive sur le segment [a,b]: à ce titre, elle admet une primitive F (th fondamental de l'intégration) sur [a,b], et F est croissante sur [a,b] (car F est dérivable et $F'=f\geqslant 0$). On en déduit que $\int_{-a}^{b} f = F(b) - F(a) \geqslant 0$, d'où la conclusion.

Application. Pour tout entier naturel n, on pose : $I_n = \int_0^1 t^n \left(\operatorname{ch}(t) - 1 \right) dt$. Justifions que pour tout $n \in \mathbb{N}$, $I_n \geqslant 0$.

Soient n un entier naturel, et t un réel de [0,1]. D'une part, on a évidemment : $t^n \ge 0$. D'autre part, $\operatorname{ch}(t) - 1 \ge 0$, puisque la fonction ch est minorée par 1 (c'est même le minimum de la fonction ch sur \mathbb{R}).

On en déduit que la fonction $t \longmapsto t^n(\operatorname{ch}(t)-1)$ est positive sur [0,1] d'où, par positivité de l'intégrale : $I_n \geqslant 0$.

QUESTION DE COURS N⁰2 — **Propriété**. Croissance de l'intégrale : soient a et b deux réels, avec $a\leqslant b$, et $f,g\in \mathscr{C}^0([a,b],\mathbb{R})$. Si $f\geqslant g$ sur [a,b], alors $\int_a^b f(t)\,\mathrm{d}t\geqslant \int_a^b g(t)\,\mathrm{d}t$.

Sous les hypothèses de l'énoncé, la fonction f-g est continue et positive sur le segment [a,b]. Par positivité de l'intégrale, on a donc : $\int_a^b (f-g) \ge 0$. Par linéarité de l'intégrale, on en déduit que : $\int_a^b f - \int_a^b g \ge 0$, d'où la conclusion.

Application. Pour tout $n \in \mathbb{N}$, on pose : $I_n = \int_0^1 (1-t)^n e^{-t} dt$. Montrons que la suite (I_n) est décroissante.

Pour tout $n \in \mathbb{N}$, on a:

$$I_{n+1} - I_n = \int_0^1 (1-t)^{n+1} e^{-t} dt - \int_0^1 (1-t)^n e^{-t} dt \underbrace{=}_{\text{linéarité}} \int_0^1 (1-t)^{n+1} e^{-t} - (1-t)^n e^{-t} dt$$

$$= \int_0^1 (1-t)^n (1-t-1) e^{-t} dt = \int_0^1 \underbrace{-t (1-t)^n e^{-t}}_{\text{cositivité}} dt \underbrace{\leq}_{\text{positivité}} 0$$

Ainsi : $\forall n \in \mathbb{N}, \ I_{n+1} - I_n \leq 0$. La suite (I_n) est décroissante.

QUESTION DE COURS N⁰3 — **Propriété**. Formule d'intégration par parties

Soient u et v deux fonctions de classe \mathscr{C}_1 sur un intervalle I, et soient a et \overline{b} deux réels dans I. Alors uv est dérivable sur I et :

 $\forall x \in I, (uv)'(x) = u'(x)v(x) + u(x)v'(x)$. Par intégration entre a et b (légitime car u, v, u' et v' sont continues), on en déduit que : $\int_a^b (uv)'(x) dx = \int_a^b u'(x)v(x)dx + \int_a^b u(x)v'(x)dx$ d'où

$$\forall (u,v) \in \mathscr{C}^1(I,\mathbb{R}), \int_a^b u'(x)v(x)dx = \left[u(x)v(x)\right]_a^b - \int_a^b u(x)v'(x)dx$$

Application. Calcul de $I = \int_0^1 (1-t) e^{-t} dt$. Pour tout réel $t \in [0,1]$, on pose :

$$\begin{cases} u(t) = -e^{-t} \\ v(t) = 1 - t \end{cases} \Longrightarrow \begin{cases} u'(t) = e^{-t} \\ v'(t) = -1 \end{cases}$$

Selon les TG, u et v sont de classe \mathscr{C}^1 , et on peut utiliser une IPP pour obtenir :

$$I = \int_0^1 (1 - t) e^{-t} dt = \left[-e^{-t} (1 - t) \right]_0^1 - \int_0^1 e^{-t} dt = 1 + \left[e^{-t} \right]_0^1 = 1 + e^{-1} - 1 = e^{-1}$$

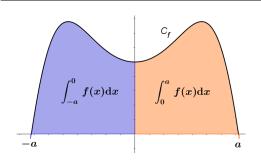
Remarque : cette méthode peut en particulier être appliquée au calcul de primitives :

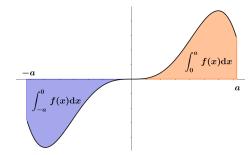
$$\forall (u,v) \in \mathscr{C}^1(I,\mathbb{R}), \int u'(x)v(x)dx = u(x)v(x) - \int u(x)v'(x)dx \ (+cste)$$

QUESTION DE COURS 4 — Intégrale et parité. Soit $f \in \mathscr{C}^0([-a, a], \mathbb{R})$ (avec $a \in \mathbb{R}_+$).

Si
$$f$$
 est paire, alors :
$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$

Si
$$f$$
 est impaire, alors : $\int_{-a}^{a} f(x) dx = 0$





D'après la relation de Chasles pour les intégrales, on a : $\int_{-a}^{a} f(x) \, \mathrm{d}x = \int_{-a}^{0} f(x) \, \mathrm{d}x + \int_{0}^{a} f(x) \, \mathrm{d}x \ (\spadesuit)$

Le changement de variable u=-x donne : $\int_{-a}^{0} f(x) dx = \int_{a}^{0} f(-u) (-du) \quad \text{Soit : } \boxed{\int_{-a}^{0} f(x) dx = \int_{0}^{a} f(-u) du \ (\clubsuit)}$

➤ Si
$$f$$
 est paire : $\int_0^a f(-u) du = \int_0^a f(u) du$. On en déduit, avec (♣) et (♠) que :
$$\int_{-a}^a f(x) dx = \int_0^a f(x) dx + \int_0^a f(u) du$$
. Par conséquent : $[f \text{ paire}] \Longrightarrow \left[\int_{-a}^a f(x) dx = 2 \int_0^a f(x) dx\right]$

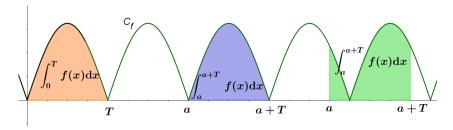
➤ Si
$$f$$
 est impaire : $\int_0^a f(-u) du = \int_0^a -f(u) du = -\int_0^a f(u) du$. On en déduit, avec (♣) et (♠) que :
$$\int_{-a}^a f(x) dx = \int_0^a f(x) dx - \int_0^a f(u) du$$
. Par conséquent : $[f \text{ impaire}] \Longrightarrow \left[\int_{-a}^a f(x) dx = 0\right]$

QUESTION DE COURS 5 — Intégrale et périodicité. Soit $f \in \mathcal{C}^0(\mathbb{R}, \mathbb{R})$, T-périodique (avec $T \in \mathbb{R}_+^*$). On a :

$$\forall a \in \mathbb{R}, \int_{0}^{a+T} f(x) dx = \int_{0}^{T} f(x) dx$$

L'intégrale d'une fonction T périodique sur un segment de longueur T est indépendante de l'origine de ce segment.

Preuve. Soit $f \in \mathcal{C}^0(\mathbb{R}, \mathbb{R})$, T-périodique (avec $T \in \mathbb{R}_+^*$), et soit a un réel : $\exists ! k \in \mathbb{Z}, kT \leqslant a < (k+1)T$.



D'après la relation de Chasles : $\int_a^{a+T} f(x) \, \mathrm{d}x = \int_a^{(k+1)T} f(x) \, \mathrm{d}x + \int_{(k+1)T}^{a+T} f(x) \, \mathrm{d}x$

Dans la première (resp. seconde) intégrale intervenant au second membre de cette égalité, on procède au changement de variable u = x - kT (resp. u = x - (k+1)T). On obtient alors :

$$\int_{a}^{a+T} f(x) dx = \int_{a-kT}^{T} \underbrace{f(u+kT)}_{=f(u)} du + \int_{0}^{a-kT} \underbrace{f(u+(k+1)T)}_{=f(u)} du$$

D'où : $\int_{a}^{a+T} f(x) dx = \int_{a-kT}^{T} f(u) du + \int_{0}^{a-kT} f(u) du = \int_{0}^{T} f(u) du = \int_{0}^{T} f(x) dx$, cqfd

BANQUE D'EXERCICES

EXERCICE 1. — Déterminer une primitive de ln sur \mathbb{R}_{+}^{*} .

EXERCICE 2. — Déterminer une primitive de arctan sur \mathbb{R} .

EXERCICE 3. — Déterminer une primitive de arcsin sur]-1,1[.

EXERCICE 4. — Déterminer une primitive de arccos sur]-1,1[.

EXERCICE 5. — Pour tout réel α , calculer : $I_{\alpha} = \int_{e}^{e^2} \frac{1}{x \ln^{\alpha}(x)} dx$.

EXERCICE 6. — Pour tout $n \in \mathbb{N}$, on pose : $I_n = \int_0^1 \frac{(1-x)^n}{n!} e^x dx$

Montrer que pour tout $n \in \mathbb{N}$: $I_n = \frac{1}{(n+1)!} + I_{n+1}$

EXERCICE 7. — Pour tout entier naturel n, on pose : $I_n = \int_0^1 \frac{x^{n+1}}{1+x} dx$.

Montrer que : $\lim_{n \to +\infty} I_n = 0$

EXERCICE 8. — Soit x un réel > -1.

1/ Etablir que pour tout $n \in \mathbb{N}$ on a : $\frac{1}{1+x} = \left[\sum_{k=0}^{n} (-1)^k x^k\right] + (-1)^{n+1} \frac{x^{n+1}}{1+x}$

2/ En déduire que : $\ln 2 = \left[\sum_{k=0}^{n} \frac{(-1)^k}{k+1}\right] + (-1)^{n+1} \int_0^1 \frac{x^{n+1}}{1+x} dx$

EXERCICE 9. — Soit a un réel strictement positif. Déterminer une primitive de $f: x \in \mathbb{R} \longmapsto \frac{1}{x^2 + a^2}$.

EXERCICE 10. — Pour tout réel x, on pose :

$$\varphi(x) = \int_0^x e^{\cos(t)} dt$$

- 1/ Montrer que φ est une fonction strictement croissante sur $\mathbb{R}.$
- 2/ Développement limité à l'ordre 1 en 0 de φ ?

BANQUE D'EXERCICES - CORRIGÉS

EXERCICE 1. — Déterminer une primitive de ln sur \mathbb{R}_+^* .

$$\int \ln(x) dx = \int 1 \times \ln(x) dx = x \ln(x) - \int x \times \frac{1}{x} dx = x \ln(x) - x$$
La fonction $x \in \mathbb{R}_+^* \longmapsto x \ln(x) - x$ est une primitive de la fonction $\ln \sup \mathbb{R}_+^*$.

EXERCICE 2. — Déterminer une primitive de arctan sur \mathbb{R} .

$$\int \arctan(x) \mathrm{d}x = \int 1 \times \arctan(x) \mathrm{d}x = x \arctan(x) - \int \frac{x}{1+x^2} \, \mathrm{d}x = x \arctan(x) - \ln\left(\sqrt{1+x^2}\right)$$
 La fonction $x \in \mathbb{R} \longmapsto x \arctan(x) - \ln\left(\sqrt{1+x^2}\right)$ est une primitive de la fonction arctan sur \mathbb{R} .

EXERCICE 3. — Déterminer une primitive de arcsin sur]-1,1[.

$$\int \arcsin(x) dx = \int 1 \times \arcsin(x) dx = x \arcsin(x) - \int \frac{x}{\sqrt{1 - x^2}} dx = x \arcsin(x) + \sqrt{1 - x^2}$$

$$\text{La fonction } x \in] -1, 1[\longrightarrow x \arcsin(x) + \sqrt{1 - x^2} \text{ est une primitive de la fonction arcsin sur }] -1, 1[.$$

EXERCICE 4. — Déterminer une primitive de arccos sur]-1,1[.

$$\int \arccos(x) \mathrm{d}x = \int 1 \times \arccos(x) \mathrm{d}x = x \arccos(x) + \int \frac{x}{\sqrt{1-x^2}} \, \mathrm{d}x = x \arccos(x) - \sqrt{1-x^2}$$

$$\text{La fonction } x \in]-1,1[\longmapsto x \arccos(x) - \sqrt{1-x^2} \text{ est une primitive de la fonction arccos sur }]-1,1[.$$

EXERCICE 5. — Pour tout réel α , calculer : $I_{\alpha} = \int_{0}^{e^{2}} \frac{1}{x \ln^{\alpha}(x)} dx$.

On a :
$$I_{\alpha} = \int_{e}^{e^{2}} \frac{1}{x} \times \ln^{-\alpha}(x) dx = \int_{e}^{e^{2}} u'(x) \times (u(x))^{-\alpha} dx$$
 en ayant posé $u(x) = \ln(x)$

Premier cas : $\alpha \neq 1$. On a :

$$I_{\alpha} = \frac{1}{1-\alpha} \left[\ln^{1-\alpha}(x) \right]_{e}^{e^{2}} = \frac{2^{1-\alpha}-1}{1-\alpha}$$

Second cas : $\alpha = 1$. On a :

$$I_{\alpha} = \int_{e}^{e^2} \frac{\frac{1}{x}}{\ln(x)} dx = [\ln|\ln(x)|]_{e}^{e^2} = \ln(2)$$

EXERCICE 6. — Pour tout $n \in \mathbb{N}$, on pose : $I_n = \int_0^1 \frac{(1-x)^n}{n!} e^x dx$

Montrer que pour tout $n \in \mathbb{N}$: $I_n = \frac{1}{(n+1)!} + I_{n+1}$

Soit $n \in \mathbb{N}$. Selon l'énoncé, on a : $I_{n+1} = \frac{1}{(n+1)!} \int_0^1 (1-x)^{n+1} e^x dx$

Pour tout réel
$$x \in [0,1]$$
, posons :
$$\begin{cases} u(x) = e^x \\ v(x) = (1-x)^{n+1} \end{cases} \implies \begin{cases} u'(x) = e^x \\ v'(x) = -(n+1)(1-x)^n \end{cases}$$

Par IPP on obtient :
$$\int_0^1 (1-x)^{n+1} e^x dx = \left[(1-x)^{n+1} e^x \right]_0^1 + (n+1) \int_0^1 (1-x)^n e^x dx$$

Ainsi:
$$\int_0^1 (1-x)^{n+1} e^x dx = -1 + (n+1) \int_0^1 (1-x)^n e^x dx$$

D'où :
$$I_{n+1} = -\frac{1}{(n+1)!} + \frac{1}{n!} \int_0^1 (1-x)^n e^x dx \iff I_{n+1} = -\frac{1}{(n+1)!} + I_n.$$

Il s'ensuit que :
$$\boxed{\forall\,n\in\,\mathbb{N},I_n=\frac{1}{(n+1)!}+I_{n+1}}$$

EXERCICE 7. — Pour tout entier naturel n, on pose : $I_n = \int_0^1 \frac{x^{n+1}}{1+x} dx$.

Montrer que : $\lim_{n \to +\infty} I_n = 0$

Pour tout réel $x \in [0, 1]$, on a : $0 \le \frac{x^{n+1}}{1+x} \le x^{n+1}$.

Par croissance de l'intégrale, on en déduit que : $0 \le \int_0^1 \frac{x^{n+1}}{1+x} dx \le \int_0^1 x^{n+1} dx$

D'où : $\forall n \in \mathbb{N}, \ 0 \leq I_n \leq \frac{1}{n+2}$. D'où la conclusion, par théorème d'encadrement.

EXERCICE 8. — Soit x un réel > -1.

1/ Etablir que pour tout
$$n \in \mathbb{N}$$
 on a : $\frac{1}{1+x} = \left[\sum_{k=0}^{n} (-1)^k x^k\right] + (-1)^{n+1} \frac{x^{n+1}}{1+x}$

Soit n un entier naturel, et x un réel différent de (-1). On a : $\left[\sum_{k=0}^{n} (-1)^k x^k\right] = \frac{1 - (-1)^{n+1} x^{n+1}}{1 + x}$ (somme géométrique de raison $-x \neq 1$).

Il s'ensuit que :
$$\frac{1}{1+x} = \left[\sum_{k=0}^{n} (-1)^k x^k \right] + (-1)^{n+1} \frac{x^{n+1}}{1+x}$$

2/ En déduire que :
$$\ln 2 = \left[\sum_{k=0}^{n} \frac{(-1)^k}{k+1}\right] + (-1)^{n+1} \int_0^1 \frac{x^{n+1}}{1+x} \mathrm{d}x$$

En intégrant terme à terme la relation de la question précédente on obtient :

$$\int_{0}^{1} \frac{1}{1+x} dx = \int_{0}^{1} \left(\left[\sum_{k=0}^{n} (-1)^{k} x^{k} \right] + (-1)^{n+1} \frac{x^{n+1}}{1+x} \right) dx$$

$$\iff [\ln(1+x)]_{0}^{1} = \int_{0}^{1} \left[\sum_{k=0}^{n} (-1)^{k} x^{k} \right] dx + \int_{0}^{1} (-1)^{n+1} \frac{x^{n+1}}{1+x} dx \qquad \text{(par linéarité de l'intégrale)}$$

$$\iff \ln 2 = \left[\sum_{k=0}^{n} (-1)^{k} \int_{0}^{1} x^{k} dx \right] + (-1)^{n+1} \int_{0}^{1} \frac{x^{n+1}}{1+x} dx \qquad \text{(par linéarité de l'intégrale, bis)}$$

$$\iff \ln 2 = \left[\sum_{k=0}^{n} (-1)^{k} \left[\frac{x^{k+1}}{k+1} \right]_{0}^{1} \right] + (-1)^{n+1} \int_{0}^{1} \frac{x^{n+1}}{1+x} dx$$

$$\iff \ln 2 = \left[\sum_{k=0}^{n} \frac{(-1)^{k}}{k+1} \right] + (-1)^{n+1} \int_{0}^{1} \frac{x^{n+1}}{1+x} dx$$

Remarque. Les résultats des exos 7 et 8 permettent d'affirmer que :

$$\ln(2) = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{(-1)^k}{k+1}$$
 ce que l'on notera à l'avenir : $\ln(2) = \sum_{k=0}^{+\infty} \frac{(-1)^k}{k+1}$

EXERCICE 9. — Soit a un réel strictement positif. Déterminer une primitive de $f: x \in \mathbb{R} \mapsto \frac{1}{x^2 + a^2}$.

$$F = \int \frac{1}{x^2 + a^2} \, \mathrm{d}x = \int \frac{1}{a^2 \left(\frac{x^2}{a^2} + 1\right)} \, \mathrm{d}x = \frac{1}{a^2} \int \frac{1}{\left(\frac{x}{a}\right)^2 + 1} \, \mathrm{d}x.$$

On pose $u = \frac{x}{a}$. Alors x = a u d'où dx = a du. Ainsi :

$$F = \frac{1}{a} \int \frac{1}{u^2 + 1} \, \mathrm{d}u = \frac{1}{a} \arctan(u) \quad \text{D'où finalement} : \boxed{\int \frac{1}{x^2 + a^2} \, \mathrm{d}x = \frac{1}{a} \arctan\left(\frac{x}{a}\right)}$$

EXERCICE 10. — Pour tout réel x, on pose :

$$\varphi(x) = \int_0^x e^{\cos(t)} dt$$

1/ Montrer que φ est une fonction strictement croissante sur \mathbb{R} .

La fonction φ est par construction l'unique primitive sur \mathbb{R} de la fonction $t \in \mathbb{R} \longmapsto e^{\cos(t)}$ qui s'annule en 0. Il s'ensuit que φ est dérivable sur \mathbb{R} et que : $\forall x \in \mathbb{R}$, $\varphi'(x) = e^{\cos(x)} > 0$, d'où la conclusion.

2/ Développement limité à l'ordre 1 en 0 de φ ?

La fonction φ étant dérivable en 0, elle admet un DL1 en 0, explicitement : $\varphi(h) = \varphi(0) + h\varphi'(0) + h\varepsilon(h)$ avec $\lim_{h\to 0} \varepsilon(h) = 0$.

Or:
$$\varphi(0) = 0$$
 et $\varphi'(0) = e^{\cos(0)} = e$. Par suite: $\varphi(h) = eh + h\varepsilon(h)$ avec $\lim_{h\to 0} \varepsilon(h) = 0$