Colle 13 – Questions de cours

QUESTION DE COURS Nº1 — **Propriété**. L'intersection de deux sous-groupes est un sous-groupe.

Soient H_1 et H_2 deux sous-groupes d'un même groupe (G, \star) .

— Puisque H_1 et H_2 sont des sous-groupes de G, on a : $H_1 \subset G$ et $H_2 \subset G$.

Il s'ensuit que : $(H_1 \cap H_2) \subset G$ (SG1)

— Puisque H_1 et H_2 sont des sous-groupes de G, on a : $e \in H_1$ et $e \in H_2$.

Il s'ensuit que : $e \in (H_1 \cap H_2)$ (SG2)

— Soient h et h' deux éléments de $H_1 \cap H_2$.

Alors $h \star h'$ appartient à H_1 puisque h et h' sont dans H_1 et que H_1 est un sous-groupe de G.

Et $h \star h'$ appartient à H_2 puisque h et h' sont dans H_2 et que H_2 est un sous-groupe de G.

Donc : $h \star h'$ appartient à $H_1 \cap H_2$.

En résumé : $\forall (h, h') \in (H_1 \cap H_2)^2$, $h \star h' \in H_1 \cap H_2$ (SG3)

— Soient h un élément de $H_1 \cap H_2$.

Alors h^{-1} appartient à H_1 et à H_2 , puisque h appartient à H_1 et H_2 , et que H_1 et H_2 sont des sous-groupes de G.

Ainsi: $\forall h \in (H_1 \cap H_2), h^{-1} \in (H_1 \cap H_2)$ (SG4)

Conclusion. Sous les hypothèses de l'énoncé, $H_1 \cap H_2$ est une partie de G (SG1), contenant l'élément neutre (SG2), stable pour la loi \star (SG3) et par passage à l'inverse (SG4). A ce titre : $H_1 \cap H_2$ est un sous-groupe de G.

QUESTION DE COURS N°2 — Propriété des morphismes de groupes 1. Si $f:(G,\star) \longrightarrow (H,\sharp)$ un morphisme de groupes, alors : $f(e_G) = e_H$

Puisque f est un morphisme de groupes, on a : $f(e_G \star e_G) = f(e_G) \sharp f(e_G)$ et $f(e_G \star e_G) = f(e_G)$.

Ainsi : $f(e_G) \sharp f(e_G) = f(e_G)$. D'où : $[f(e_G)]^{-1} \sharp f(e_G) \sharp f(e_G) = [f(e_G)]^{-1} \sharp f(e_G)$. D'où : $f(e_G) = e_H$.

QUESTION DE COURS N°3 — Propriété des morphismes de groupes 2. Si $f:(G,\star) \longrightarrow (H,\sharp)$ un morphisme de groupes, alors : $\forall g \in G, \ f(g^{-1}) = [f(g)]^{-1}$

Sous les hypothèses de l'énoncé : $f(g^{-1} \star g) = f(g^{-1}) \sharp f(g)$ et $f(g^{-1} \star g) = f(e_G) = e_H$.

Ainsi : $f(g^{-1}) \sharp f(g) = e_H$. D'où : $f(g^{-1}) = [f(g)]^{-1}$

QUESTION DE COURS N°4 — **Propriété des morphismes de groupes 3**. Si $f:(G,\star) \longrightarrow (H,\sharp)$ un morphisme de groupes, alors : ker f est un sous-groupe de G.

Rappelons que : $\ker f = \{g \in G, f(g) = e_H\}$. Il résulte de cette définition que $\ker f$ est une partie de G (SG1), et de la propriété 1 que $e_G \in \ker f$ (SG2).

En outre, ker f est stable pour la loi \star (SG3), puisque :

$$\forall (g, g') \in (\ker f)^2, \ f(g \star g') = f(g) \sharp f(g') = e_H \sharp e_H = e_H$$

D'où : $(g, g') \in (\ker f)^2 \Longrightarrow g \star g' \in \ker f$

Enfin, $\ker f$ est stable par passage à l'inverse (SG4), puisque :

$$\forall g \in \ker f, \ f(g^{-1}) = [f(g)]^{-1} = e_H^{-1} = e_H$$

D'où : $q \in \ker f \Longrightarrow q^{-1} \in \ker f$

Conclusion. Sous les hypothèses de l'énoncé, ker f est une partie de G (SG1), contenant l'élément neutre (SG2), stable pour la loi \star (SG3) et par passage à l'inverse (SG4). A ce titre : ker f est un sous-groupe de G.

^{1.} Lorsqu'il n'y a pas d'ambiguïté sur la loi de composition interne, on peut noter simplement un groupe G, plutôt que (G,\star) .

QUESTION DE COURS N°5 — **Propriété**. Pour tout entier naturel $n \ge 2$, (\mathbb{U}_n, \times) est un sous-groupe de (\mathbb{U}, \times) ; et (\mathbb{U}, \times) est un sous-groupe de (\mathbb{C}^*, \times)

Dans les 2 cas, il suffit de vérifier les axiomes (SG1) à (SG4) (au besoin, voir chapitre 4-bis pour le détail de ces vérifications vraiment rapides).

QUESTION DE COURS N°6 — Propriété (factorisation de $a^n - b^n$). Soient a et b deux éléments de A, tels que $a \times b = b \times a$. On a :

$$\forall n \in \mathbb{N}^*, \ a^n - b^n = (a - b) \times \sum_{k=0}^{n-1} a^k \times b^{n-1-k} = (a - b) \times \sum_{k=0}^{n-1} b^k \times a^{n-1-k}$$

Soient a et b deux éléments de A, tels que $a \times b = b \times a$, et n un entier naturel non nul.

On a:
$$(a - b) \times \sum_{k=0}^{n-1} a^k \times b^{n-1-k} = \left(a \times \sum_{k=0}^{n-1} a^k \times b^{n-1-k}\right) - \left(b \times \sum_{k=0}^{n-1} a^k \times b^{n-1-k}\right)$$
$$= \sum_{k=0}^{n-1} a \times a^k \times b^{n-1-k} - \sum_{k=0}^{n-1} b \times a^k \times b^{n-1-k}$$

Puisque : $a \times b = b \times a$, on peut écrire : $b \times a^k \times b^{n-1-k} = a^k \times b \times b^{n-1-k} = a^k \times b^{n-k}$. D'où :

$$(a-b) \times \sum_{k=0}^{n-1} a^k \times b^{n-1-k} = \left(\sum_{k=0}^{n-1} a^{k+1} \times b^{n-1-k}\right) - \left(\sum_{k=0}^{n-1} a^k \times b^{n-k}\right) = \left(\sum_{k=1}^{n} a^k \times b^{n-k}\right) - \left(\sum_{k=0}^{n-1} a^k \times b^{n-k}\right) = a^n - b^n$$

Conclusion:
$$\forall n \in \mathbb{N}^*, \ a^n - b^n = (a - b) \times \sum_{k=0}^{n-1} a^k \times b^{n-1-k}$$
. La preuve de la seconde formule $(a^n - b^n) = (a - b) \times b^n$

 $\sum_{k=0}^{n-1} b^k \times a^{n-1-k} \text{ repose sur le fait que } a \text{ et } b \text{ jouent des rôles symétriques dans la somme écrite entre parenthèses }^2.$

QUESTION DE COURS N°7 — **Propriété**. (Sim⁺ (\mathbb{C}), \circ) est un groupe non abélien.

Rappelons que $\operatorname{Sim}^+(\mathbb{C})$ est l'ensemble des similitudes directes, c'est à dire l'ensemble des tranformations du plan complexe ayant pour écriture $z \longrightarrow az + b$ (avec $a \in \mathbb{C}^*$ et $b \in \mathbb{C}$); dans cette preuve, nous noterons $f_{a,b}$ cette similitude.

▶ <u>Loi de composition interne</u> : la composition usuelle des applications est une ℓ ci sur $\operatorname{Sim}^+(\mathbb{C})$. En effet, si $f_{a,b}$ et $f_{a',b'}$ sont deux similitudes directes, on a :

$$\forall z \in \mathbb{C}, (f_{a',b'} \circ f_{a,b})(z) = f_{a',b'}(az+b) = a'az+a'b+b' \text{ d'où}: f_{a',b'} \circ f_{a,b} = f_{aa',a'b+b'}$$

La composée de deux similitudes directes est encore une similitude directe, ce qui assure que la composition usuelle est une ℓ ci sur $\operatorname{Sim}^+(\mathbb{C})$.

- ➤ En outre, cette loi est associative, puisque la composition usuelle des applications l'est.
- ▶ Elément neutre : l'identité de \mathbb{C} est l'élément neutre pour la composition puisque pour toute $f \in \operatorname{Sim}^+(\mathbb{C})$ on a : $f \circ \operatorname{id}_{\mathbb{C}} = \operatorname{id}_{\mathbb{C}} \circ f = f$. De plus : $\operatorname{id}_{\mathbb{C}} = f_{1,0}$, d'où : $\operatorname{id}_{\mathbb{C}} \in \operatorname{Sim}^+(\mathbb{C})$.
- Tout élément de Sim⁺ (\mathbb{C}) est inversible : si $f_{a,b}$ est une similitude directe, alors $f_{a,b}$ admet une bijection réciproque qui est encore une similitude directe. Explicitement : $f_{a,b}^{-1} = f_{1/a,-b/a}$.

L'ensemble $\operatorname{Sim}^+(\mathbb{C})$ est muni d'une loi de composition interne associative (la composition usuelle des applications), pour laquelle il existe un élément neutre $(\operatorname{id}_{\mathbb{C}})$, et où tout élément est inversible. Ainsi, $(\operatorname{Sim}^+(\mathbb{C}), \circ)$ est un groupe.

En outre : $f_{1,1} \circ f_{2,1} = f_{2,2}$ tandis que $f_{2,1} \circ f_{1,1} = f_{2,3}$. Il s'ensuit que le groupe $\operatorname{Sim}^+(\mathbb{C})$ est non abélien.

^{2.} Rigoureusement, on peut aussi l'établir en effectuant dans la somme le changement d'indice K = n - 1 - k.

BANQUE D'EXERCICES

- **EXERCICE 1.** Etablir que $\forall x \in [-1, 1], \arccos(x) + \arcsin(x) = \frac{\pi}{2}$
- **EXERCICE 2. Propriété**. La composée de deux applications injectives (*resp.* surjectives) est injective (*resp.* surjective).
- Exercice 3. Une limite de référence. $\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n = e$
- EXERCICE 4. Exercice classique. Calcul de $\sum_{k=0}^{n} \cos(k\theta)$
- **EXERCICE 5.** Calculer la dérivée n-ième de f, définie sur \mathbb{R} en posant : $\forall x \in \mathbb{R}, \ f(x) = (2x-1)e^{ax+b}$
- Exercice 6. Application du binôme de Newton. $\forall n \in \mathbb{N}, \sum_{k=0}^{n} \binom{n}{k} = 2^n \text{ et } \sum_{k=0}^{n} k \binom{n}{k} = n2^{n-1}$
- **EXERCICE 7.** (CCINP-MP 2022). On note H la fonction définie par l'expression $H(x) = \int_0^x e^{t^2} dt$.
- 1/ Justifier que H est définie et de classe \mathscr{C}^{∞} sur $\mathbb{R}.$
- 2/ Donner une expression de H'(x).
- 3/ Ecrire le développement limité à l'ordre 1 en 0 de la fonction H.
- **EXERCICE 8.** (E3A-MP 2022). Pour tout entier $n \ge 2$, on note $\omega = \exp\left(\frac{2i\pi}{n}\right)$.
- 1/ Soit $z\in\mathbb{C}^*.$ Démontrer que |z|=1 si, et seulement si, $\overline{z}=\frac{1}{z}.$
- 2/ Calculer $S_n = \sum_{k=0}^{n-1} \omega^k$ et $P_n = \prod_{k=0}^{n-1} \omega^k$
- EXERCICE 9. (E3A-PC 2022, intégrales de Wallis). Pour tout $n \in \mathbb{N}$, on pose : $u_n = \int_0^{\pi/2} \cos^n(t) dt$
- 1/ Montrer que (u_n) est décroissante; puis qu'elle est convergente.
- 2/ Montrer que : $\forall n \in \mathbb{N}, \quad u_{n+2} = \frac{n+1}{n+2} u_n$
- **EXERCICE 10.** (ATS 2022). Résoudre sur \mathbb{R}_+^* l'équation différentielle :

$$y'(x) + \frac{y(x)}{x} = \frac{1}{x(1+x^2)}$$

EXERCICE 11. — (Centrale-TSI 2021).

- Montrer que pour tout $(n,k) \in \mathbb{N}^2$ tel que k < n on a : $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$.
- **EXERCICE 12. (E3A-MP 2020)**. Calculer $\int_0^x \frac{1}{\operatorname{ch}(t)} dt$

BANQUE D'EXERCICES - CORRIGÉS

EXERCICE 1. — Etablir que $\forall x \in [-1,1]$, $\arccos(x) + \arcsin(x) = \frac{\pi}{2}$

Posons : $\forall x \in [-1, 1], \ f(x) = \arccos(x) + \arcsin(x)$. La fonction f est dérivable sur]-1, 1[, et : $\forall x \in [-1, 1], \ f'(x) = 0$. Il s'ensuit que f est constante sur]-1, 1[, égale (par exemple) à $f(0) = \arccos(0) + \arcsin(0) = \frac{\pi}{2}$.

On a donc établi que : $\forall x \in]-1,1[, \arccos(x) + \arcsin(x) = \frac{\pi}{2}.$

Les calculs aisés de f(1) et f(-1) permettent de "fermer les crochets".

Finalement, on peut conclure : $\forall x \in [-1, 1], \arccos(x) + \arcsin(x) = \frac{\pi}{2}$

EXERCICE 2. — **Propriété**. La composée de deux applications injectives (*resp.* surjectives) est injective (*resp.* surjective).

Soient $f: E \longrightarrow F$ et $g: F \longrightarrow G$ deux applications.

Supposons f et g injectives. Soient x et x' deux éléments de E. Alors :

$$\left[\left(g\circ\ f\right)\left(x\right)=\left(g\circ\ f\right)\left(x'\right)\right]\Longleftrightarrow\left[g\left(f(x)\right)=g\left(f\left(x'\right)\right)\right]\underset{g\ \text{injective}}{\Longrightarrow}\left[f(x)=f\left(x'\right)\right]\underset{f\ \text{injective}}{\Longrightarrow}\left[x=x'\right]$$

Ce qui prouve l'injectivité de $g \circ f$. | Conclusion : si f et g sont injectives, alors $g \circ f$ est injective.

Supposons à présent f et g surjectives. Soit $z \in G$.

Alors, l'application g étant surjective : $\exists y \in F$, g(y) = z.

Et puisque f est surjective : $\exists x \in E, f(x) = y$.

En exploitant ces deux relations, on a : g(f(x)) = z.

Puisque z est un élément arbitraire de G, on vient d'établir que : $\forall z \in G, \exists x \in E, (g \circ f)(x) = z$.

Ce qui prouve la surjectivité de $g \circ f$. Conclusion : si f et g sont surjectives, alors $g \circ f$ est surjective.

Exercice 3. — Une limite de référence. $\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n = e^{-\frac{n}{n}}$

Pour tout $n \geqslant 2024$, on a : $\left(1 + \frac{1}{n}\right)^n = e^{n \ln(1 + \frac{1}{n})}$.

 $\mathrm{Or}: \ln\left(1+\frac{1}{n}\right) \sim_{+\infty} \frac{1}{n} \text{ (usuel)}. \qquad \mathrm{D'où}: n\ln\left(1+\frac{1}{n}\right) \sim_{+\infty} 1. \qquad \mathrm{D'où}: \lim_{n \to +\infty} n\ln\left(1+\frac{1}{n}\right) = 1.$

Conclusion. $\lim_{n\to +\infty} \left(1+\frac{1}{n}\right)^n = e$

EXERCICE 4. — Exercice classique. Calcul de $\sum_{k=0}^{n} \cos(k\theta)$

Soient n et k deux entiers naturels et θ un réel. On a : $\cos(k\theta) = \text{Re}(e^{ik\theta})$.

Par conséquent :

$$\sum_{k=0}^{n} \cos(k\theta) = \sum_{k=0}^{n} \operatorname{Re}\left(e^{ik\theta}\right) \iff \sum_{k=0}^{n} \cos(k\theta) = \operatorname{Re}\left(\sum_{k=0}^{n} e^{ik\theta}\right)$$

Il "ne reste plus qu'à" calculer la somme entre parenthèses. En effet, en posant :

$$S_n = \sum_{k=0}^n e^{ik\theta}$$
, on a donc : $\sum_{k=0}^n \cos(k\theta) = \text{Re}(S_n)$ (\spadesuit)

$$\overline{\mathbf{Or}: S_n = \sum_{k=0}^n e^{ik\theta}} \iff S_n = \sum_{k=0}^n \left(e^{i\theta}\right)^k$$

 S_n est une somme géométrique de raison $e^{i\theta}$. On peut donc lui appliquer la formule que vous connaissez bien, sous réserve que $e^{i\theta} \neq 1$, c'est-à-dire si $\theta \neq 0$ [2 π].

On suppose donc $\theta \neq 0$ [2 π]. Alors :

$$S_n = \frac{1 - \left(e^{\mathrm{i}\theta}\right)^{n+1}}{1 - e^{\mathrm{i}\theta}} \iff S_n = \frac{1 - e^{\mathrm{i}(n+1)\theta}}{1 - e^{\mathrm{i}\theta}} \iff S_n = \frac{e^{\mathrm{i}\left(\frac{n+1}{2}\right)\theta} \left(e^{-\mathrm{i}\left(\frac{n+1}{2}\right)\theta} - e^{\mathrm{i}\left(\frac{n+1}{2}\right)\theta}\right)}{e^{\mathrm{i}\frac{\theta}{2}} \left(e^{-\mathrm{i}\frac{\theta}{2}} - e^{\mathrm{i}\frac{\theta}{2}}\right)}$$
(technique de "l'angle-moitié")

$$\iff S_n = \mathrm{e}^{\mathrm{i}\left(\frac{n\theta}{2}\right)} \ \frac{-2\mathrm{i}\sin\left(\frac{n+1}{2}\ \theta\right)}{-2\mathrm{i}\sin\left(\frac{\theta}{2}\right)} \ \mathrm{d'où\ finalement} : \boxed{S_n = \mathrm{e}^{\mathrm{i}\left(\frac{n\theta}{2}\right)} \ \frac{\sin\left(\frac{n+1}{2}\ \theta\right)}{\sin\left(\frac{\theta}{2}\right)} \ \ (\heartsuit)}$$

On déduit de (\clubsuit) , (\clubsuit) et (\heartsuit) que : $\forall n \in \mathbb{N}, \ \forall \ \theta \in \mathbb{R}, \ \theta \neq 0 \ [2\pi], \ \sum_{k=0}^{n} \cos(k\theta) = \cos\left(\frac{n\theta}{2}\right) \ \frac{\sin\left(\frac{n+1}{2}\theta\right)}{\sin\left(\frac{\theta}{2}\right)}$

Dans le cas où $\theta = 0$ $[2\pi]$, on a $\cos \theta = 1$ d'où : $\forall n \in \mathbb{N}, \ \forall \theta \in \mathbb{R}, \ \theta = 0$ $[2\pi]$, $\sum_{k=0}^{n} \cos(k\theta) = n+1$

EXERCICE 5. — Calculer la dérivée n-ième de f, définie sur \mathbb{R} en posant : $\forall x \in \mathbb{R}, f(x) = (2x-1)e^{ax+b}$

Selon les TG, les fonctions $g: x \longmapsto 2x-1$ et $h: x \longmapsto \mathrm{e}^{ax+b}$ sont de classe \mathscr{C}^{∞} sur \mathbb{R} . Il s'ensuit que f=gh est de classe \mathscr{C}^{∞} , et que pour tout $n \in \mathbb{N}$ on a :

$$f^{(n)} = (gh)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} g^{(k)} h^{(n-k)}$$

En observant que $g^{(k)}$ est nulle dès que $k \ge 2$, on peut écrire : $f^{(n)} = \sum_{k=0}^{n} \binom{n}{k} g^{(k)} h^{(n-k)}$

D'où, pour tout réel x et pour tout entier naturel n :

$$f^{(n)}(x) = \binom{n}{0}(2x-1)a^n e^{ax+b} + \binom{n}{1}2a^{n-1}e^{ax+b} = (2x-1)a^n e^{ax+b} + 2na^{n-1}e^{ax+b} = [a(2x-1)+2n]a^{n-1}e^{ax+b}$$

EXERCICE 6. — Application du binôme de Newton. $\forall n \in \mathbb{N}, \sum_{k=0}^{n} \binom{n}{k} = 2^n \text{ et } \sum_{k=0}^{n} k \binom{n}{k} = n2^{n-1}$

Soit n un entier naturel $\geqslant 2$. On définit sur $\mathbb R$ une fonction f en posant : $\forall x \in \mathbb R, \ f(x) = (1+x)^n \ (\clubsuit)$

D'après la formule du binôme de Newton : $\forall x \in \mathbb{R}, \ f(x) = \sum_{k=0}^{n} \binom{n}{k} x^k \ (\heartsuit)$

En calculant f(1) à l'aide des formules (\spadesuit) et (\heartsuit) , on obtient : $\sum_{k=0}^{n} \binom{n}{k} = 2^n$

La fonction f est dérivable (TG) sur \mathbb{R} , et on obtient deux expressions pour sa dérivée en utilisant les formules (\spadesuit) et (\heartsuit).

D'une part : $\forall x \in \mathbb{R}, \ f'(x) = n(1+x)^{n-1} \ (\diamondsuit)$ Et d'autre part : $\forall x \in \mathbb{R}, \ f'(x) = \sum_{k=1}^{n} k \binom{n}{k} x^{k-1} \ (\clubsuit)$

En calculant f'(1) à l'aide des formules (\diamondsuit) et (\clubsuit) , on obtient : $\sum_{k=1}^{n} k \binom{n}{k} = n2^{n-1} = \sum_{k=0}^{n} k \binom{n}{k}$

EXERCICE 7. — (CCINP-MP 2022). On note H la fonction définie par l'expression $H(x) = \int_0^x e^{t^2} dt$.

1/ Démontrer que H est définie et de classe \mathscr{C}^{∞} sur \mathbb{R} .

Par construction, la fonction H est la primitive s'annulant en 0 de la fonction $f: t \in \mathbb{R} \longmapsto e^{t^2}$.

Puisque f est de classe \mathscr{C}^{∞} sur \mathbb{R} (et que H'=f), on en déduit que : $H\in\mathscr{C}^{\infty}(\mathbb{R},\mathbb{R})$.

2/ Donner une expression de H'(x).

Par construction : $\forall x \in \mathbb{R}, \ H'(x) = e^{x^2}$

3/ Ecrire le développement limité à l'ordre 1 en 0 de la fonction H.

D'après ce qui précède, H est dérivable en 0, donc admet un DL à l'ordre 1 en 0, donné par la célebrissime formule :

$$\forall x \in \mathbb{R}, \ H(x) = H(0) + xH'(0) + x\varepsilon(x) \text{ avec } \lim_{x \to 0} \varepsilon(x) = 0$$

Or
$$H(0)=0$$
 et $H'(0)=1$, d'où : $\forall\,x\in\mathbb{R},\ H(x)=x+x\varepsilon(x)$ avec $\lim_{x\to 0}\varepsilon(x)=0$

EXERCICE 8. — (E3A-MP 2022). Pour tout entier $n \ge 2$, on note $\omega = \exp\left(\frac{2i\pi}{n}\right)$.

1/ Soit $z \in \mathbb{C}^*$. Démontrer que |z| = 1 si, et seulement si, $\overline{z} = \frac{1}{z}$.

Soit
$$z \in \mathbb{C}^*$$
. On a : $|z| = 1 \Longrightarrow_{|z| \ge 0} |z|^2 = 1 \Longleftrightarrow z\overline{z} = 1 \Longleftrightarrow \overline{z} = \frac{1}{z}$.

2/ Calculer $S_n = \sum_{k=0}^{n-1} \omega^k$ et $P_n = \prod_{k=0}^{n-1} \omega^k$

On a :
$$S_n = \sum_{k=0}^{n-1} \omega^k = \frac{1 - \omega^n}{1 - \omega} = 0$$
 (puisque $\omega^n = 1$).

Par ailleurs:

$$P_n = \prod_{k=0}^{n-1} \omega^k = \prod_{k=0}^{n-1} \exp\left(\frac{2ik\pi}{n}\right) = \exp\left(\sum_{k=0}^{n-1} \frac{2ik\pi}{n}\right) = \exp\left(\frac{2i\pi}{n} \sum_{k=0}^{n-1} k\right) = \exp\left(\frac{2i\pi}{n} \times \frac{n(n-1)}{2}\right)$$

$$= \exp\left(i\pi(n-1)\right) = (-1)^{n-1}.$$

Conclusion. Pour tout entier
$$n \ge 2$$
, $S_n = \sum_{k=0}^{n-1} \omega^k = 0$ et $P_n = \prod_{k=0}^{n-1} \omega^k = (-1)^{n-1}$

EXERCICE 9. — (E3A-PC 2022, intégrales de Wallis). Pour tout $n \in \mathbb{N}$, on pose : $u_n = \int_0^{\pi/2} \cos^n(t) dt$

1/ Montrer que (u_n) est décroissante; puis qu'elle est convergente.

Soit $n \in \mathbb{N}$. On a :

$$u_{n+1} - u_n \int_0^{\pi/2} \cos^{n+1}(t) dt - \int_0^{\pi/2} \cos^n(t) dt = \int_0^{\pi/2} \cos^{n+1}(t) - \cos^n(t) dt = \int_0^{\pi/2} \underbrace{\cos^n(t)(\cos(t) - 1)}_{\leq 0} dt$$

Par croissance de l'intégrale, on en déduit que : $\forall n \in \mathbb{N}, \ u_{n+1} - u_n \leq 0$. D'où : (u_n) est décroissante.

Par ailleurs, la suite (u_n) est positive (par positivité de l'intégrale. La suite (u_n) est donc décroissante et minorée (par 0) : d'après le théorème de la limite monotone, elle est convergente.

2/ Montrer que :
$$\forall n \in \mathbb{N}, \quad u_{n+2} = \frac{n+1}{n+2} u_n$$

Soit
$$n \in \mathbb{N}$$
. On a: $u_{n+2} = \int_0^{\pi/2} \cos^{n+2}(t) dt = \int_0^{\pi/2} \cos(t) \cos^{n+1}(t) dt$

$$\text{Posons}: \forall \, t \in \left[0, \pi/2\right], \, \left\{ \begin{array}{l} u(t) = \sin(t) \\ \\ v(t) = \cos^{n+1}(t) \end{array} \right. \, \text{d'où}: \forall \, t \in \left[0, \pi/2\right], \, \left\{ \begin{array}{l} u'(t) = \cos(t) \\ \\ v'(t) = -\left(n+1\right)\sin(t)\cos^{n}(t) \end{array} \right.$$

Selon la formule d'IPP (u et v sont de classe \mathscr{C}^1 sur $[0,\pi/2]$) :

$$u_{n+2} = \underbrace{\left[\sin(t)\cos^{n+1}(t)\right]_0^{\pi/2}}_{=0} + (n+1)\int_0^{\pi/2}\sin^2(t)\cos^n(t)dt$$

D'où :
$$u_{n+2} = (n+1) \int_0^{\pi/2} (1 - \cos^2(t)) \cos^n(t) dt = (n+1) \int_0^{\pi/2} \cos^n(t) dt - (n+1) \int_0^{\pi/2} \cos^{n+2}(t) dt$$

C'est-à-dire : $u_{n+2} = (n+1) u_n - (n+1) u_{n+2}$ d'où : $u_{n+2} = \frac{n+1}{n+2} u_n$

EXERCICE 10. — (ATS 2022). Résoudre sur \mathbb{R}_{+}^{*} l'équation différentielle :

$$y'(x) + \frac{y(x)}{x} = \frac{1}{x(1+x^2)}$$

Pour tout réel $x \in \mathbb{R}_+^*$, posons : a(x) = 1, $b(x) = \frac{1}{x}$ et $c(x) = \frac{1}{x(1+x^2)}$.

Selon les TG, les fonctions a, b et c sont de classe \mathscr{C}^{∞} sur \mathbb{R}_{+}^{*} (en particulier continues sur \mathbb{R}_{+}^{*}).

Il s'ensuit que la solution générale de l'équation homogène associée à celle de l'énoncé est :

$$\forall \in \mathbb{R}_+^*, f_H(x) = Ke^{-A(x)}$$
 avec A une primitive sur \mathbb{R}_+^* de b/a ; $A = \ln$ convient.

Ainsi, la solution générale de $y'(x) + \frac{y(x)}{x} = 0$ est :

$$\forall \in \mathbb{R}_+^*, \ f_H(x) = \frac{K}{x} \ (\text{avec } K \in \mathbb{R}) \quad (\spadesuit)$$

Posons pour tout réel x strictement positif : $f_P(x) = \frac{K(x)}{x}$ avec $K \in \mathscr{C}^1(\mathbb{R}_+^*, \mathbb{R})$.

La fonction f_P est dérivable (H+TG) sur \mathbb{R}_+^* , et pour tout réel x > 0 on a : $f'_P(x) = \frac{xK'(x) - K(x)}{x^2}$.

On en déduit que f_P est solution de l'EDL1 de l'énoncé si et seulement si :

$$\forall \, x > 0, \quad \frac{xK'(x) - K(x)}{x^2} + \frac{K(x)}{x^2} = \frac{1}{x(x^2 + 1)} \Longleftrightarrow \forall \, x > 0, \quad \frac{K'(x)}{x} = \frac{1}{x(x^2 + 1)} \Longleftrightarrow \forall \, x > 0, \quad K'(x) = \frac{1}{x^2 + 1} \Longleftrightarrow (x + 1)$$

On peut donc choisir $K = \arctan$, et affirmer que la fonction f_P définie en posant $\forall x > 0$, $f_P(x) = \frac{\arctan(x)}{x}$, est une solution (particulière) de l'EDL1 de l'énoncé (\clubsuit).

Conclusion. D'après (\spadesuit), (\clubsuit) et le cours, la solution générale sur \mathbb{R}_+^* de $y'(x) + \frac{y(x)}{x} = \frac{1}{x(1+x^2)}$ est :

$$\forall x > 0, \ f(x) = \frac{\arctan(x) + K}{x} \text{ (avec } K \text{ r\'eel arbitraire)}$$

EXERCICE 11. — (Centrale-TSI 2021).

Montrer que pour tout $(n,k) \in \mathbb{N}^2$ tel que k < n on a : $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$.

Soit $(n, k) \in \mathbb{N}^2$ avec k < n. On a :

$$\binom{n}{k} + \binom{n}{k+1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k+1)!(n-k-1)!} = \frac{n!(k+1) + n!(n-k)}{(k+1)!(n-k)!} = \frac{(n+1)!}{(k+1)!(n-k)!} = \binom{n+1}{k+1}$$

Conclusion. Pour tout $(n,k) \in \mathbb{N}^2$ tel que k < n on a : $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$.

Remarque. Cette relation est la relation de Pascal, déjà vue cette année. On peut vérifier aisément qu'elle reste vraie sans condition sur les entiers n et k: $\forall (n,k) \in \mathbb{N}^2$, $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$.

EXERCICE 12. — **(E3A-MP 2020)**. Calculer $\int_0^x \frac{1}{\operatorname{ch}(t)} dt$

La fonction chest continue et ne s'annule pas sur \mathbb{R} . Il s'ensuit que la fonction 1/chest continue sur \mathbb{R} ; d'après le théorème fondamental de l'Analyse, elle admet donc des primitives sur \mathbb{R} .

Soit x un nombre réel. On a :

$$\int_0^x \frac{1}{\operatorname{ch}(t)} \, \mathrm{d}t = \int_0^x \frac{2}{\mathrm{e}^t + \mathrm{e}^{-t}} \, \mathrm{d}t \underbrace{=}_{u = 0}^{\infty} \int_1^{\mathrm{e}^x} \frac{2}{u + u^{-1}} \times \frac{1}{u} \, \mathrm{d}u = \int_1^{\mathrm{e}^x} \frac{2}{u^2 + 1} \, \mathrm{d}u = \left[2 \operatorname{arctan}(u) \right]_1^{\mathrm{e}^x} = 2 \operatorname{arctan}(\mathrm{e}^x) - 2 \operatorname{arctan}(1)$$

Conclusion. $\forall x \in \mathbb{R}, \quad \int_0^x \frac{1}{\operatorname{ch}(t)} dt = 2\arctan(e^x) - \frac{\pi}{2}$

En d'autres termes, la fonction $x \in \mathbb{R} \longmapsto 2\arctan(\mathrm{e}^x) - \frac{\pi}{2}$ est la primitive sur \mathbb{R} s'annulant en 0 de la fonction $\frac{1}{\mathrm{ch}}$.