Exercices 18 — DL et équivalents — Corrigé

EXERCICE 1. — Déterminer le développement limité à l'ordre n en a des expressions suivantes : $1/f(x) = xe^{-x}$ (avec a = 0 et n = 4).

On commence par écrire le DL à l'ordre 4 en 0 de la fonction exponentielle (formulaire) :

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + x^4 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$

Puis on effectue le changement de variable X = -x pour obtenir *:

$$e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} + x^4 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$

Pour finir :
$$xe^{-x} = x - x^2 + \frac{x^3}{2!} - \frac{x^4}{3!} + x^4 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$

$$2/f(x) = e^{x^3}$$
 (avec $a = 0$ et $n = 8$).

On commence par écrire le DL à l'ordre 3 en 0 de la fonction exponentielle (formulaire) :

$$\mathrm{e}^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + x^3 \varepsilon(x) \qquad \text{avec } \lim_{x \to 0} \varepsilon(x) = 0$$

Puis on effectue le changement de variable $X = x^3$ pour obtenir \dagger :

$$e^{x^3} = 1 + x^3 + \frac{x^6}{2!} + x^8 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$

$$3/f(x) = (1+x)^{3/2}$$
 (avec $a = 0$ et $n = 2$).

Il suffit d'écrire le DL à l'ordre 2 en 0 de la fonction $x \mapsto (1+x)^{\alpha}$ (formulaire), avec $\alpha = 3/2$:

$$(1+x)^{3/2} = 1 + \frac{3}{2}x + \frac{\frac{3}{2}\left(\frac{3}{2} - 1\right)x^2}{2} + x^2\varepsilon(x) \quad \text{avec } \lim_{x \to 0} \varepsilon(x) = 0$$

Soit:
$$(1+x)^{3/2} = 1 + \frac{3}{2}x + \frac{3}{4}x^2 + x^2\varepsilon(x)$$
 avec $\lim_{x\to 0} \varepsilon(x) = 0$

$$4/f(x) = \ln\left(\frac{1+x^2}{1+x}\right)$$
 (avec $a = 0$ et $n = 3$).

On a :
$$f(x) = \ln(1+x^2) - \ln(1+x)$$
.

Le DL à l'ordre 3 en 0 de ln(1+x) est donné par le formulaire :

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + x^3 \varepsilon(x) \qquad \text{avec } \lim_{x \to 0} \varepsilon(x) = 0$$

Pour obtenir le DL à l'ordre 3 en 0 de $\ln(1+x^2)$, on effectue le changement de variable $X=x^2$ dans le précédent, pour obtenir ‡:

$$ln(1+x^2) = x^2 + x^3 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$

On en déduit que :
$$\ln\left(\frac{1+x^2}{1+x}\right) = -x + \frac{3x^2}{2} - \frac{x^3}{3} + x^3 \varepsilon(x)$$
 avec $\lim_{x\to 0} \varepsilon(x) = 0$

$$5/f(x) = \frac{\ln(1+x)}{1-x}$$
 (avec $a = 0$ et $n = 3$).

On écrit d'abord :
$$f(x) = \ln(1+x) \times \frac{1}{1-x}$$
.

D'après le formulaire, on a :

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + x^3 \varepsilon(x) \qquad \text{avec } \lim_{x \to 0} \varepsilon(x) = 0$$

et

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^3 \varepsilon(x) \qquad \text{avec } \lim_{x \to 0} \varepsilon(x) = 0$$

^{*.} Légitimement car $\lim_{x\to 0} (-x) = 0$.

^{†.} Légitimement car $\lim_{x\to 0} x^3 = 0$. ‡. Légitimement car $\lim_{x\to 0} x^2 = 0$.

Puis on applique la règle permettant d'obtenir le DL d'un produit de fonctions : on effectue le produit des parties régulières, en tronquant à l'ordre 3, càd en ne tenant pas compte des puissances de x supérieures ou égales à 4, ce qui donne la ligne ci-dessous.

$$\ln(1+x) \times \frac{1}{1-x} = \left(1 + x + x^2 + x^3\right) \left(x - \frac{x^2}{2} + \frac{x^3}{3}\right) + x^3 \varepsilon(x) \quad \text{avec } \lim_{x \to 0} \varepsilon(x) = 0$$

D'où:

$$\ln{(1+x)} \times \frac{1}{1-x} = x - \frac{x^2}{2} + \frac{x^3}{3} + x^2 - \frac{x^3}{2} + x^3 + x^3 \varepsilon(x) \qquad \text{avec } \lim_{x \to 0} \varepsilon(x) = 0$$

Soit finalement: $\ln(1+x) \times \frac{1}{1-x} = x + \frac{x^2}{2} + \frac{x^3}{6} + x^3 \varepsilon(x)$ avec $\lim_{x \to 0} \varepsilon(x) = 0$.

 $1/f(x) = e^{1-x^2}$ (avec a = 0 et n = 6).

Attention : on ne peut pas directement poser $X = 1 - x^2$ dans le DL de l'exponentielle, puisque $\lim_{x \to 0} 1 - x^2 \neq 0$.

Pour contourner le problème, on observe que : $e^{1-x^2} = e \times e^{-x^2}$.

Puis on écrit le DL à l'ordre 3 en 0 de la fonction exponentielle (formulaire) :

$$\mathrm{e}^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + x^3 \varepsilon(x) \qquad \text{avec } \lim_{x \to 0} \varepsilon(x) = 0$$

On effectue ensuite le changement de variable $X=-x^2$ pour obtenir \S :

$$e^{-x^2} = 1 - x^2 + \frac{x^4}{2!} - \frac{x^6}{3!} + x^6 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$

Finalement :
$$e^{1-x^2} = e - ex^2 + \frac{ex^4}{2!} - \frac{ex^6}{3!} + x^6 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$

 $7/f(x) = (1-x)e^{2x}$ (avec a = 0 et n = 3).

On écrit le DL à l'ordre 3 en 0 de la fonction exponentielle (formulaire) :

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + x^3 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$

On effectue ensuite le changement de variable X=2x pour obtenir \P :

$$e^{2x} = 1 + 2x + 2x^2 + \frac{4x^3}{3} + x^3 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$

Puis on multiplie la partie régulière de ce DL par (1-x), en ne tenant pas compte des puissances de x supérieures ou égales à 4:

$$(1-x)e^{2x} = 1 + 2x + 2x^2 + \frac{4x^3}{3} - x - 2x^2 - 2x^3 + x^3 \varepsilon(x) \qquad \text{avec } \lim_{x \to 0} \varepsilon(x) = 0$$

Finalement: $(1-x)e^{2x} = 1 + x - \frac{2x^3}{3} + x^3 \varepsilon(x)$ avec $\lim_{x \to 0} \varepsilon(x) = 0$

 $8/f(x) = e^{\sinh x}$ (avec a = 0 et n = 4).

D'après le formulaire :

$$\operatorname{sh}(x) = x + \frac{x^3}{6} + x^4 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$

et

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{24} + x^4 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$

Puis, dans le DL de e^x , on remplace tous les "x" par des " $x + \frac{x^3}{6}$ " (partie régulière du DL de sh (x)). Alors :

$$e^{\sinh(x)} = 1 + \left(x + \frac{x^3}{6}\right) + \frac{\left(x + \frac{x^3}{6}\right)^2}{2} + \frac{\left(x + \frac{x^3}{6}\right)^3}{6} + \frac{\left(x + \frac{x^3}{6}\right)^4}{24} + x^4 \varepsilon(x) \quad \text{avec } \lim_{x \to 0} \varepsilon(x) = 0$$

^{§.} Légitimement cette fois-ci car $\lim_{x\to 0} -x^2 = 0$.

^{¶.} Légitimement car $\lim_{x\to 0} 2x = 0$.

Donc:

$$e^{\sinh(x)} = 1 + x + \frac{x^3}{6} + \frac{x^2}{2} + \frac{x^4}{6} + \frac{x^3}{6} + \frac{x^4}{24} + x^4 \varepsilon(x) \qquad \text{avec } \lim_{x \to 0} \varepsilon(x) = 0$$

$$e^{\sinh(x)} = 1 + x + \frac{x^3}{6} + \frac{x^2}{2} + \frac{x^4}{6} + \frac{x^4}{6} + \frac{x^3}{24} + x^4 \varepsilon(x) \qquad \text{avec } \lim_{x \to 0} \varepsilon(x) = 0$$

 $\text{Finalement}: \mathrm{e}^{\mathrm{sh}\;(x)} = 1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{5x^4}{24} + x^4\varepsilon(x) \qquad \text{avec } \lim_{x\to 0}\varepsilon(x) = 0$

 $9/f(x) = e^{\sqrt{1+x}}$ (avec a = 0 et n = 2).

D'après le formulaire : $\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + x^2 \varepsilon(x)$ avec $\lim_{x \to 0} \varepsilon(x) = 0$.

$$\mathrm{D'où}:\mathrm{e}^{\sqrt{1+x}}=\exp\left(1+\frac{x}{2}-\frac{x^2}{8}+x^2\varepsilon(x)\right)=\mathrm{e}\times\exp\left(\frac{x}{2}-\frac{x^2}{8}+x^2\varepsilon(x)\right)$$

Or:

$$\exp\left(\frac{x}{2} - \frac{x^2}{8} + x^2 \varepsilon(x)\right) = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{\frac{x}{2} - \frac{x^2}{8}}{2} + x^2 \varepsilon(x)$$

D'où:

$$\exp\left(\frac{x}{2} - \frac{x^2}{8} + x^2 \varepsilon(x)\right) = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^2}{8} + x^2 \varepsilon(x)$$

Finalement : $e^{\sqrt{1+x}} = 1 + \frac{x}{2} + x^2 \varepsilon(x)$ avec $\lim_{x \to 0} \varepsilon(x) = 0$

 $10^{**}/f(x) = \sqrt{1 + \sqrt{1 + x}}$ (avec a = 0 et n = 2).

On a (formulaire): $\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + x^2 \varepsilon(x)$ avec $\lim_{x \to 0} \varepsilon(x) = 0$.

 $\begin{array}{ll} \text{Ainsi}: \sqrt{1+\sqrt{1+x}} = \sqrt{2+\frac{x}{2}-\frac{x^2}{8}+x^2\varepsilon(x)} & \text{avec } \lim_{x\to 0}\varepsilon(x) = 0 \\ \text{D'où}: \sqrt{1+\sqrt{1+x}} = \sqrt{2}\sqrt{1+\frac{x}{4}-\frac{x^2}{16}+x^2\varepsilon(x)} & \text{avec } \lim_{x\to 0}\varepsilon(x) = 0 \end{array}$

Arrivé à cet endroit, on effectue un nouveau changement de variable, en posant $X = \frac{x}{4} - \frac{x^2}{16}$.

Puisque : $\sqrt{1+X} = 1 + \frac{X}{2} - \frac{X^2}{8} + X^2 \varepsilon(X)$ et que $\lim_{x \to 0} \frac{x}{4} - \frac{x^2}{16} = 0$, on en déduit :

$$\sqrt{1+\sqrt{1+x}} = \sqrt{2} \left(1 + \frac{\frac{x}{4} - \frac{x^2}{16}}{2} - \frac{\left(\frac{x}{4} - \frac{x^2}{16}\right)^2}{8} + x^2 \varepsilon(x) \right) \quad \text{avec } \lim_{x \to 0} \varepsilon(x) = 0$$

 $\mathrm{Donc}: \sqrt{1+\sqrt{1+x}} = \sqrt{2} \left[1 + \frac{x}{8} - \frac{x^2}{32} - \frac{x^2}{128} \right] + x^2 \varepsilon(x) \qquad \mathrm{avec} \ \lim_{x \to 0} \varepsilon(x) = 0$

Finalement : $\sqrt{1+\sqrt{1+x}} = \sqrt{2}\left[1+\frac{x}{8}-\frac{5x^2}{128}\right] + x^2\varepsilon(x)$ avec $\lim_{x\to 0}\varepsilon(x) = 0$

EXERCICE 2. — (DL, équivalents et limites). On peut lever des indéterminations en effectuant un DL en 0 à un ordre judicieusement choisi.

Exemples: $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$ (DL à l'ordre 1 en 0 de sin); $\lim_{x\to 0} \frac{\sin(x)-x}{x^3} = -\frac{1}{6}$ (DL à l'ordre 3 en 0 de sin)

 $1/\lim_{x\to 0} \frac{\arctan(x)}{3x}$

On a : $\arctan(x) \sim_0 x$. D'où : $\frac{\arctan(x)}{3x} \sim_0 \frac{1}{3}$. Par suite : $\lim_{x \to 0} \frac{\arctan(x)}{3x} = \frac{1}{3}$

$$2/\lim_{x\to 0}\frac{\ln\left(\left(1+x\right)\left(1+2x\right)\right)}{x}$$

Pour tout réel x > 0, on a : $\ln((1+x)(1+2x)) = \ln(1+x) + \ln(1+2x)$.

D'où :
$$\ln\left(\left(1+x\right)\left(1+2x\right)\right) = x + o(x) + 2x + o(x)$$
 soit $\ln\left(\left(1+x\right)\left(1+2x\right)\right) = 3x + o(x)$

En particulier :
$$\ln ((1+x)(1+2x)) \sim_0 3x$$
. D'où : $\frac{\ln ((1+x)(1+2x))}{x} \sim_0 3$.

Par suite :
$$\lim_{x\to 0} \frac{\ln((1+x)(1+2x))}{x} = 3.$$

$$3/\lim_{x\to 0}\frac{\sin(x)}{x^2+2x}$$

D'une part :
$$\sin(x) \sim_0 x$$
, et d'autre part : $x^2 + 2x \sim_0 2x$. D'où : $\frac{\sin(x)}{x^2 + 2x} \sim_0 \frac{1}{2}$. Par suite : $\lim_{x \to 0} \frac{\sin(x)}{x^2 + 2x} = \frac{1}{2}$.

$$4/\lim_{x\to 0}\frac{1}{x^2}-\frac{1}{\tan^2(x)}$$

Ecrivons un DL à l'ordre 4 en 0 de $tan^2(x)$.

D'après le formulaire :
$$\tan(x) = x + \frac{x^3}{3} + o(x^4)$$
. Par suite : $\tan^2(x) = x^2 + \frac{2x^4}{3} + o(x^4)$.

On en déduit que :
$$\frac{1}{x^2} - \frac{1}{\tan^2(x)} = \frac{1}{x^2} - \frac{1}{x^2 + \frac{2x^4}{3} + o(x^4)} = \frac{1}{x^2} \left[1 - \frac{1}{1 + \frac{2x^2}{3} + o(x^2)} \right]$$
 (\$\\ \empty\$)

Par ailleurs, d'après le formulaire encore : $\frac{1}{1+X} = 1 - X + o(X)$.

On en déduit que :
$$\frac{1}{1+\frac{2x^2}{3}+o(x^2)}=1-\frac{2x^2}{3}+o(x^2).$$
 D'où :
$$1-\frac{1}{1+\frac{2x^2}{3}+o(x^2)}=\frac{2x^2}{3}+o(x^2) \quad (\clubsuit).$$

$$\text{D'après } (\spadesuit) \text{ et } (\clubsuit) : \quad \left[\frac{1}{x^2} - \frac{1}{\tan^2(x)}\right] \sim_0 \frac{1}{x^2} \times \frac{2x^2}{3}. \quad \text{Donc } : \lim_{x \to 0} \frac{1}{x^2} - \frac{1}{\tan^2(x)} = \frac{2}{3}$$

$$5/\lim_{x \to +\infty} \left(2x^2 - x + 1\right) \sin\left(\frac{1}{\pi x^2}\right)$$

D'une part, puisque $\sin(X) \sim_0 X$ et $\lim_{x \to +\infty} \frac{1}{\pi x^2} = 0$, on a :

$$\sin\left(\frac{1}{\pi \ x^2}\right) \sim_{x \to +\infty} \frac{1}{\pi \ x^2}$$

D'autre part : $2x^2 - x + 1 \sim_{+\infty} 2x^2$.

On en déduit que :
$$(2x^2 - x + 1) \sin\left(\frac{1}{\pi x^2}\right) \sim_{+\infty} 2x^2 \times \frac{1}{\pi x^2}$$
.

D'où:
$$\lim_{x \to +\infty} (2x^2 - x + 1) \sin(\frac{1}{\pi x^2}) = \frac{2}{\pi}$$
.

6/
$$\lim_{n \to +\infty} \frac{3\sqrt{n} + \sqrt[3]{n + \sqrt{n}}}{2\sqrt{n} + \ln(n+1) + e^{-n}}$$

Puisque
$$\sqrt{n} = o_{+\infty}(n)$$
, on a : $\sqrt[3]{n + \sqrt{n}} \sim_{+\infty} \sqrt[3]{n}$.

Et comme :
$$\sqrt[3]{n} = o_{+\infty}(\sqrt{n})$$
, on a : $3\sqrt{n} + \sqrt[3]{n} + \sqrt{n} \sim_{+\infty} 3\sqrt{n}$ (\spadesuit).

Par ailleurs, puisque :
$$\ln(n+1) + e^{-n} = o_{+\infty}(\sqrt{n})$$
, on a : $2\sqrt{n} + \ln(n+1) + e^{-n} \sim_{+\infty} 2\sqrt{n}$ (\$\.\)

D'après (
$$\spadesuit$$
) et (\clubsuit) :
$$\frac{3\sqrt{n}+\sqrt[3]{n+\sqrt{n}}}{2\sqrt{n}+\ln(n+1)+\mathrm{e}^{-n}}\sim_{+\infty}\frac{3\sqrt{n}}{2\sqrt{n}}$$

Ainsi:
$$\lim_{n \to +\infty} \frac{3\sqrt{n} + \sqrt[3]{n + \sqrt{n}}}{2\sqrt{n} + \ln(n+1) + e^{-n}} = \frac{3}{2}$$
.

$$7/\lim_{x \to a} \frac{\sin(x) - \sin(a)}{\sin(x - a)}$$
 avec $0 < a < \frac{\pi}{2}$.

Le premier réflexe ici est de faire un **retour à l'origine**, càd un changement de variable permettant de se ramener à un calcul de limite en 0. On pose donc :

$$X = x - a$$
 (donc $x = X + a$)

Moyennant ce changement de variable, l'énoncé de l'exo se réécrit :

$$\lim_{x \to a} \frac{\sin(x) - \sin(a)}{\sin(x - a)} = \lim_{X \to 0} \frac{\sin(X + a) - \sin(a)}{\sin(X)}$$

On a déjà :
$$\sin(X) \sim_0 X$$
 (\spadesuit)

Par ailleurs:

$$\sin(X + a) - \sin(a) = \sin(X)\cos(a) + \sin(a)\cos(X) - \sin(a) = \sin(X)\cos(a) + \sin(a)(\cos(X) - 1)$$

On en déduit que : $\sin(X + a) - \sin(a) \sim_0 \sin(X) \cos(a)$.

D'où :
$$\sin(X + a) - \sin(a) \sim_0 X \cos(a)$$

D'après (
$$\spadesuit$$
) et (\clubsuit): $\frac{\sin(X+a)-\sin(a)}{\sin(X)} \sim_0 \cos(a)$. Par suite: $\lim_{x\to a} \frac{\sin(x)-\sin(a)}{\sin(x-a)} = \cos(a)$

$$8/\lim_{x\to a} \frac{x^a - a^x}{\sin(x-a)}$$
 où a est un réel > 0 arbitraire

Comme dans la question précédente, on effectue un **retour à l'origine**, en posant :

$$X = x - a$$
 (donc $x = X + a$)

Moyennant ce changement de variable, l'énoncé de l'exo se réécrit :

$$\lim_{x \to a} \frac{x^a - a^x}{\sin(x - a)} = \lim_{X \to 0} \frac{(X + a)^a - a^{X + a}}{\sin(X)}$$

On a déjà :
$$\sin(X) \sim_0 X$$
 ()

Par ailleurs, en prévoyant quelques aspirines pour la route :

$$\begin{split} (X+a)^a - a^{X+a} &= \mathrm{e}^{a\ln(X+a)} - \mathrm{e}^{(X+a)\ln(a)} \\ &= \mathrm{e}^{a\ln\left(a\left(1+\frac{X}{a}\right)\right)} - \mathrm{e}^{X\ln(a)}\mathrm{e}^{a\ln(a)} \\ &= \mathrm{e}^{a\ln(a)+a\ln\left(1+\frac{X}{a}\right)} - \mathrm{e}^{X\ln(a)}\mathrm{e}^{a\ln(a)} \\ &= \mathrm{e}^{a\ln(a)}\mathrm{e}^{a\ln\left(1+\frac{X}{a}\right)} - \mathrm{e}^{X\ln(a)}\mathrm{e}^{a\ln(a)} \\ &= \mathrm{e}^{a\ln(a)}\left[\mathrm{e}^{a\ln\left(1+\frac{X}{a}\right)} - \mathrm{e}^{X\ln(a)}\mathrm{e}^{a\ln(a)} \right] \\ &= \mathrm{e}^{a\ln(a)}\left[\mathrm{e}^{a\frac{X}{a}+o_0(X)} - \mathrm{e}^{X\ln(a)}\right] \\ &= \mathrm{e}^{a\ln(a)}\left[1+X+o_0(X)-1-X\ln(a)-o_0(x)\right] \\ &= \mathrm{e}^{a\ln(a)}\left[X(1-\ln(a))+o_0(x)\right] \end{split}$$

Ainsi :
$$(X + a)^a - a^{X+a} \sim_0 a^a X (1 - \ln(a))$$
 (4)

D'après (
$$\spadesuit$$
) et (\clubsuit) : $\frac{(X+a)^a - a^{X+a}}{\sin(X)} \sim_0 a^a (1 - \ln(a))$.

Par suite :
$$\lim_{x \to a} \frac{x^a - a^x}{\sin(x - a)} = a^a (1 - \ln(a))$$

EXERCICE 3. — (Tangentes et positions relatives) Soit f une fonction définie au voisinage de 0, ayant comme DL: $f(x) = a_0 + a_1 x + \cdots + a_n x^n + o(x^n)$. Alors \mathscr{C}_f admet une tangente T au point d'abscisse 0 d'équation $y = a_0 + a_1 x$. La position relative de \mathscr{C}_f et de T est donnée au voisinage de 0 par le signe du premier terme non nul de degré ≥ 2 A vous de jouer: dans chacun des cas suivants, déterminer l'équation de la tangente T à \mathscr{C}_f au point d'abscisse 0, et préciser la position relative de \mathscr{C}_f et de T au voisinage de 0:

$$1/ f(x) = (2x+1)e^x$$

Soit *x* un réel. On a :
$$f(x) = (2x+1)\left(1+x+\frac{x^2}{2}+o(x^2)\right)$$

D'où :
$$f(x) = 2x + 1 + 2x^2 + x + \frac{x^2}{2} + o(x^2) = 1 + 3x + \frac{5x^2}{2} + o(x^2)$$
.

On en déduit que la courbe représentative \mathscr{C}_f admet une tangente au point d'abcisse 0 d'équation y = 1 + 3x; au voisinage de 0, \mathscr{C}_f est située au-dessus de cette tangente (signe de $5x^2/2$).

$$2/ f(x) = \frac{\sin(x)}{1+x}$$

Soit x un réel tel que |x| < 1. On a : $f(x) = \sin(x) \times \frac{1}{1+x}$.

Ainsi:
$$f(x) = (x + o(x^2)) \times (1 - x + x^2 + o(x^2))$$
. Donc: $f(x) = x - x^2 + o(x^2)$.

On en déduit que la courbe représentative \mathscr{C}_f admet une tangente au point d'abcisse 0 d'équation y=x; au voisinage de 0, \mathscr{C}_f est située en-dessous de cette tangente (signe de $-x^2$).

$$3/ f(x) = \ln(1 + x + x^2)\sqrt{1 + 2x}$$

Soit x un réel tel que |x| < 1/2.

D'une part :
$$\sqrt{1+2x} = (1+2x)^{1/2} = 1 + x - \frac{x^2}{2} + o(x^2)$$

D'autre part :
$$\ln(1+x+x^2) = (x+x^2) - \frac{(x+x^2)^2}{2} + o(x^2) = x + \frac{x^2}{2} + o(x^2)$$

Donc:
$$f(x) = \left(1 + x - \frac{x^2}{2}\right) \left(x + \frac{x^2}{2}\right) + o(x^2) = x + \frac{x^2}{2} + x^2 + o(x^2)$$

Soit:
$$f(x) = x + \frac{3x^2}{2} + o(x^2)$$

On en déduit que la courbe représentative \mathscr{C}_f admet une tangente au point d'abcisse 0 d'équation y=x; au voisinage de 0, \mathscr{C}_f est située au-dessus de cette tangente (signe de $3x^2/2$).

EXERCICE 4. — **(DL et asymptotes)** Par le biais du changement de variable "X = 1/x" dans les DL usuels, on peut obtenir des "DL en $+\infty$ ", appelés développements asymptotiques, permettant d'obtenir entre autres des équations d'asymptotes et des positions relatives au voisinage de $+\infty$.

Par exemple : $\forall x \in \mathbb{R}_+^*$, $\sqrt{x^2 + x + 1} = x + \frac{1}{2} + \frac{3}{8x} + o\left(\frac{1}{x}\right)$. On en déduit que la courbe représentant $x \mapsto \sqrt{x^2 + x + 1}$ admet en $+\infty$ une asymptote d'équation y = x + 1/2, et que \mathscr{C}_f est au-dessus de celle-ci **au voisinage de** $+\infty$.

A vous de jouer; dans chacun des cas suivants, déterminer l'équation de l'asymptote à \mathcal{C}_f en $+\infty$, et préciser la position relative de \mathcal{C}_f et de son asymptote :

$$1/ f(x) = x^2 \ln \left(1 + \frac{1}{x}\right)$$

Soit x un réel strictement positif.

On a:
$$\ln\left(1+\frac{1}{x}\right) = \frac{1}{x} - \frac{1}{2x^2} + \frac{1}{3x^3} + o_{+\infty}\left(\frac{1}{x^3}\right)$$

D'où:
$$x^2 \ln \left(1 + \frac{1}{x}\right) = x - \frac{1}{2} + \frac{1}{3x} + o_{+\infty} \left(\frac{1}{x}\right)$$

On en déduit que la courbe représentative \mathscr{C}_f admet une asymptote en $+\infty$ d'équation $y=x-\frac{1}{2}$; au voisinage de $+\infty$, \mathscr{C}_f est située au-dessus de cette asymptote (signe de $\frac{1}{3x}$).

$$2/f(x) = \sqrt{x^2 + 2x + 2}$$

Soit x un réel strictement positif.

On a:
$$\sqrt{x^2 + 2x + 2} = x\sqrt{1 + \frac{2}{x} + \frac{2}{x^2}}$$
.

Or:
$$\sqrt{1 + \frac{2}{x} + \frac{2}{x^2}} = 1 + \frac{\frac{2}{x} + \frac{2}{x^2}}{2} - \frac{\left(\frac{2}{x} + \frac{2}{x^2}\right)^2}{8} + o_{+\infty}\left(\frac{1}{x^2}\right)$$

$$\Longrightarrow \sqrt{1 + \frac{2}{x} + \frac{2}{x^2}} = 1 + \frac{1}{x} + \frac{1}{x^2} - \frac{1}{2x^2} + o_{+\infty} \left(\frac{1}{x^2}\right)$$

$$\implies \sqrt{1 + \frac{2}{x} + \frac{2}{x^2}} = 1 + \frac{1}{x} + \frac{1}{2x^2} + o_{+\infty} \left(\frac{1}{x^2}\right)$$

On en déduit que :

$$\sqrt{x^2 + 2x + 2} = x + 1 + \frac{1}{2x} + o_{+\infty} \left(\frac{1}{2x}\right)$$

Subséquemment, la courbe représentative \mathscr{C}_f admet une asymptote en $+\infty$ d'équation y=x+1; au voisinage de $+\infty$, \mathscr{C}_f est située au-dessus de cette asymptote (signe de $\frac{1}{2x}$).

EXERCICE 5. — 1/ Soit a un réel > 0. Justifier que : $a^{1/n} = 1 + \frac{1}{n} \ln(a) + o\left(\frac{1}{n}\right)$

Pour tout entier naturel n non nul, on $a: a^{1/n} = e^{\frac{1}{n}\ln(a)}$.

Puisque $\lim_{n \to +\infty} \frac{1}{n} \ln(a)$, on en déduit que : $a^{1/n} = 1 + \frac{1}{n} \ln(a) + o\left(\frac{1}{n}\right)$.

2/ (*) Etablir que : $\lim_{n \to +\infty} \left(3\sqrt[n]{2} - 2\sqrt[n]{3} \right)^n = \frac{8}{9}$

Soit n un entier naturel non nul.

On a : $(3\sqrt[n]{2} - 2\sqrt[n]{3})^n = e^{n\ln(u_n)}$ en ayant posé : $u_n = 3\sqrt[n]{2} - 2\sqrt[n]{3}$.

D'après la question précédente :

$$u_n = 3\left(1 + \frac{1}{n}\ln(2) + o\left(\frac{1}{n}\right)\right) - 2\left(1 + \frac{1}{n}\ln(3) + o\left(\frac{1}{n}\right)\right)$$

soit :
$$u_n = 1 + \frac{1}{n} (3 \ln(2) - 2 \ln(3)) + o\left(\frac{1}{n}\right) = 1 + \frac{1}{n} \ln\left(\frac{8}{9}\right) + o\left(\frac{1}{n}\right)$$

On en déduit que : $\ln(u_n) = \ln\left(1 + \frac{1}{n}\ln\left(\frac{8}{9}\right) + o\left(\frac{1}{n}\right)\right)$

Par suite : $\ln(u_n) = \frac{1}{n} \ln\left(\frac{8}{9}\right) + o\left(\frac{1}{n}\right)$.

Donc: $\ln(u_n) \sim_{+\infty} \frac{1}{n} \ln\left(\frac{8}{9}\right)$.

 $\operatorname{Donc}: n \ln(u_n) \sim_{+\infty} \ln\left(\frac{8}{9}\right). \qquad \operatorname{En particulier}: \lim_{n \to +\infty} n \ln(u_n) = \ln\left(\frac{8}{9}\right). \text{ D'où}: \lim_{n \to +\infty} \operatorname{e}^{n \ln(u_n)} = \operatorname{e}^{\ln\left(\frac{8}{9}\right)}$

Finalement : $\lim_{n \to +\infty} \left(3\sqrt[n]{2} - 2\sqrt[n]{3} \right)^n = \frac{8}{9}$

EXERCICE 6. — (*) Soit n un entier naturel quelconque, et f la fonction définie sur]-1;1[par :

$$f: x \longmapsto \ln\left(\sqrt{\frac{1+x}{1-x}}\right)$$

Déterminer le développement limité à l'ordre 2n+2 en 0 de f. Soit n un entier naturel quelconque, et x un réel de]-1;1[.

On a :
$$\ln\left(\sqrt{\frac{1+x}{1-x}}\right) = \frac{1}{2} (\ln(1+x) - \ln(1-x)).$$

D'après le formulaire : $\ln(1+x) = \sum_{k=1}^{2n+2} (-1)^{k+1} \frac{x^k}{k} + o\left(x^{2n+2}\right)$ et $\ln(1-x) = -\sum_{k=1}^{2n+2} \frac{x^k}{k} + o\left(x^{2n+2}\right)$.

On en déduit que : $\ln\left(\sqrt{\frac{1+x}{1-x}}\right) = \frac{1}{2}\left(\sum_{k=1}^{2n+2}(-1)^{k+1}\frac{x^k}{k} + \sum_{k=1}^{2n+2}\frac{x^k}{k}\right) + o\left(x^{2n+2}\right)$

D'où: $\ln\left(\sqrt{\frac{1+x}{1-x}}\right) = \frac{1}{2} \sum_{k=1}^{2n+2} \left((-1)^{k+1} + 1 \right) \frac{x^k}{k} + o\left(x^{2n+2}\right)$

Donc: $\ln\left(\sqrt{\frac{1+x}{1-x}}\right) = \sum_{k=0}^{n} \frac{x^{2k+1}}{2k+1} + o\left(x^{2n+2}\right)$

Exercice 7. —

1)
$$f(x) = x - x^2 + \frac{x^3}{2} - \frac{x^4}{6} + o(x^4)$$

2)
$$f(x) = 4x - \frac{32}{3}x^3 + o(x^4)$$

3)
$$f(x) = x - \frac{2}{3}x^3 + o(x^3)$$

4)
$$f(x) = 3x - 9x^3 + o(x^4)$$

5)
$$f(x) = x^2 + \frac{x^3}{2} - \frac{x^4}{8} + o(x^4)$$

6)
$$f(x) = 1 + x^3 + \frac{x^6}{2} + o(x^8)$$

7)
$$f(x) = \frac{\sqrt{3}}{3} + \frac{\sqrt{3}}{9} x - \frac{\sqrt{3}}{18} x^2 + o(x^2)$$

8)
$$f(x) = 1 + \frac{3}{2}x + \frac{3}{8}x^2 + o(x^2)$$

9)
$$f(x) = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \frac{17}{315}x^7 + o(x^7)$$

10)
$$f(x) = 2 + \frac{1}{12} x - \frac{1}{288} x^2 + o(x^2)$$

11)
$$f(x) = -x + \frac{3}{2} x^2 - \frac{1}{3} x^3 + o(x^3)$$

12)
$$f(x) = x + \frac{1}{2}x^2 + \frac{5}{6}x^3 + o(x^3)$$

13)
$$f(x) = e - e x^2 + \frac{e}{2} x^4 - \frac{e}{6} x^6 + o(x^6)$$

14)
$$f(x) = 1 + x - \frac{2}{3}x^3 + o(x^3)$$

15)
$$f(x) = e^2 + e^2 x - \frac{e^2}{3} x^3 - \frac{e^2}{6} x^4 + o(x^4)$$

16)
$$f(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{5}{24}x^4 + o(x^4)$$

17)
$$f(x) = e + \frac{e}{2} x + o(x^2)$$

18)
$$f(x) = \ln 2 + \frac{\alpha + \beta}{2} x + \frac{(\alpha - \beta)^2}{8} x^2 + o(x^2)$$

19)
$$f(x) = \sqrt{2} + \frac{\sqrt{2}}{8} x - \frac{5\sqrt{2}}{128} x^2 + o(x^2)$$

20)
$$f(x) = \frac{1}{3} + \frac{1}{36} x^2 + o(x^2)$$

21)
$$f(x) = -2x^2 - 7x^3 + o(x^3)$$

22)
$$f(x) = x - \frac{1}{2}x^2 + \frac{1}{6}x^3 + o(x^3)$$

23)
$$f(x) = -\frac{1}{2} x + \frac{5}{24} x^2 + o(x^3)$$

24)
$$f(x) = \frac{1}{3} + \frac{1}{15} x^2 + o(x^3)$$

25)
$$f(x) = -\frac{1}{6} x^2 + o(x^3)$$

26)
$$f(x) = \frac{\pi}{4} + \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{12}x^3 + o(x^3)$$

27)
$$f(x) = 2x + \frac{2}{3}x^3 + o(x^4)$$

28)
$$f(x) = \ln 2 + \frac{1}{2} x + \frac{1}{8} x^2 + o(x^3)$$

29)
$$f(x) = -\frac{1}{2} x - \frac{1}{12} x^3 + o(x^4)$$

30)
$$f(x) = x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + o(x^4)$$

31)
$$f(x) = \frac{\sqrt{3}}{2} + \frac{x}{2} - \frac{\sqrt{3}}{4}x^2 - \frac{1}{12}x^3 + o(x^3)$$

32)
$$f(x) = \frac{\sqrt{2}}{2} \left(1 + x - \frac{1}{2} x^2 - \frac{1}{6} x^3 + \frac{1}{24} x^4 \right) + o(x^4)$$

33)
$$f(x) = 1 + \frac{1}{2} x^4 + o(x^7)$$

34)
$$f(x) = 1 - \frac{1}{2}x^2 + \frac{5}{24}x^4 + o(x^5)$$

35)
$$f(x) = 1 + \frac{4}{3}x + \frac{11}{9}x^2 + \frac{104}{81}x^3 + o(x^3)$$

36)
$$f(x) = 1 + \frac{1}{6}x^2 + \frac{7}{360}x^4 + o(x^5)$$

37)
$$f(x) = 1 + x^2 + x^3 + x^4 + 2x^5 + 2x^6 + 3x^7 + o(x^7)$$

38)
$$f(x) = \sqrt{e} \left(1 - \frac{1}{12} x^2 \right) + o(x^3)$$

39)
$$f(x) = 1 - \frac{3}{2} x^2 + \frac{7}{8} x^4 - \frac{61}{240} x^6 + o(x^7)$$

40)
$$f(x) = x^2 - \frac{5}{6}x^4 + \frac{32}{45}x^6 - \frac{173}{252}x^8 + o(x^9)$$

41)
$$f(x) = 1 + \frac{1}{8} x^4 + o(x^5)$$

42)
$$f(x) = e\left(1 - \frac{1}{2}x + \frac{11}{24}x^2\right) + o(x^2)$$

43)
$$f(x) = e\left(1 + (x - 1) + \frac{1}{2}(x - 1)^2\right) + o\left((x - 1)^2\right)$$

44)
$$f(x) = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 + o((x-1)^3)$$

45)
$$f(x) = 1 + \frac{1}{2} (x - 1) - \frac{1}{8} (x - 1)^2 + o((x - 1)^2)$$

46)
$$f(x) = 2 + \frac{1}{4}(x-4) - \frac{1}{64}(x-4)^2 + o((x-4)^2)$$

47)
$$f(x) = -(x-\pi) + \frac{1}{6} (x-\pi)^3 + o((x-\pi)^4)$$

48)
$$f(x) = 1 - \frac{1}{2} (x - \pi/2)^2 + o((x - \pi/2)^3)$$

49)
$$f(x) = -(x - \pi/2) - \frac{1}{6} (x - \pi/2)^3 + o((x - \pi/2)^4)$$

50)
$$f(x) = \frac{1}{2} - \frac{\sqrt{3}}{2} (x - \pi/3) - \frac{1}{4} (x - \pi/3)^2 + o((x - \pi/3)^2)$$

51)
$$f(x) = \frac{1}{x} - \frac{1}{6} \frac{1}{x^3} + \frac{1}{120} \frac{1}{x^5} + o\left(\frac{1}{x^6}\right)$$

52)
$$f(x) = \frac{1}{3} \frac{1}{x^2} + \frac{7}{90} \frac{1}{x^4} + o\left(\frac{1}{x^5}\right)$$

53)
$$f(x) = \frac{\pi}{3} + \frac{1}{4} (x - \pi/3) - \frac{3\sqrt{3}}{16} (x - \pi/3)^2 + \frac{3}{16} (x - \pi/3)^3 + o((x - \pi/3)^3)$$

54)
$$f(x) = 1 + 2(x - \pi/4) + 2(x - \pi/4)^2 + \frac{8}{3}(x - \pi/4)^3 + o((x - \pi/4)^3)$$

55)
$$f(x) = 1 + (x - \pi/4) + \frac{1}{2}(x - \pi/4)^2 + o((x - \pi/4)^2)$$

56)
$$f(x) = \frac{1}{2} - \frac{1}{4}(x-2) + \frac{1}{8}(x-2)^2 - \frac{1}{16}(x-2)^3 + \frac{1}{32}(x-2)^4 + o((x-2)^4)$$

57)
$$f(x) = x - x^3 + x^5 + o(x^6)$$