MPSI - Colle 6 (3 au 7 novembre 2025) : Applications

Chapitre 6: Applications

1 – Définitions et premiers exemples

Définition ("naïve"). Soient E et F deux ensembles. Une **application** de E dans F est un procédé qui permet d'associer à tout élément x de l'ensemble E un unique élément noté f(x) de l'ensemble F, appelé **image** de x par f.

Définition ("la vraie"). Soient E et F deux ensembles. Une **application** de E dans F est une partie Γ_f de $E \times F$ telle que : $\forall x \in E, \exists! y \in F, (x,y) \in \Gamma_f$. Ainsi, pour tout $x \in E$, l'unique élément y de F tel que le couple (x,y) appartienne à Γ_f est noté f(x) et est appelé **image** de x par f.

Exemples :; la conjugaison complexe $(z \mapsto \bar{z})$ est une application (de \mathbb{C} dans \mathbb{C}); les fonctions usuelles sont des applications (en général d'un intervalle I de \mathbb{R} , vers $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}); le fait d'associer à une fonction $f \in \mathscr{C}^1(I,\mathbb{R})$ sa dérivée $f' \in \mathscr{C}^0(I,\mathbb{R})$ est une application etc...

Remarque : le point-clef est qu'une application n'est pas "qu'une formule". C'est la donnée d'un <u>nom</u>, d'un <u>ensemble de définition</u> (ou domaine), d'un <u>ensemble d'arrivée</u> (ou codomaine), et de la description du procédé qui à un élément de l'ensemble de définition associe son image. Une des notations ci-dessous doit donc être respectée lorsque l'on se réfère à une application :

$$f: E \longrightarrow F$$
 ou $f: x \in E \longmapsto f(x) \in F$
 $x \longmapsto f(x)$

Notation. On note F^E l'ensemble des applications de E dans F.

Définition. Soit E un ensemble. L'identité de E est l'application qui à tout élément x de E associe x. Elle est notée id_E .

Définition. Soient E, F et G trois ensembles; $f: E \longrightarrow F$ et $g: F \longrightarrow G$ deux applications. On définit la **composée de** f **et** g et on note $g \circ f$ l'application de E dans G qui à tout élément x de E associe g(f(x)), ce que l'on écrit :

$$g \circ f : E \longrightarrow G$$

 $x \longmapsto g(f(x))$

Remarque : on a déjà observé (dans le cadre des fonctions) que la composition des applications n'est pas commutative. En revanche, la composition est associative :

Propriété. Soient E, F, G et H quatre ensembles, et $f \in F^E$, $g \in G^F$, $h \in H^G$ trois applications. On a : $h \circ (g \circ f) = (h \circ g) \circ f$.

Propriété. Pour toute application $f: E \longrightarrow F$, on a $f \circ id_E = f$ et $id_F \circ f = f$ (l'identité est l'élément neutre pour la composition des applications).

2 – Applications injectives, surjectives, bijectives

Définition. Soient E et F deux ensembles, f une application de E dans F. On dit que f est **injective** (resp. surjective, bijective) si tout élément de F admet au plus un (resp. au moins un, resp. exactement un) antécédent par f dans E.

Traduction à l'aide de quantificateurs : soit $f: E \longrightarrow F$ une application.

[f injective]
$$\iff$$
 [$\forall (x, x') \in E^2, \ f(x) = f(x') \implies x = x'$]

[f surjective] \iff [$\forall y \in F, \ \exists \ x \in E, \ y = f(x)$]

[f bijective] \iff [$\forall y \in F, \ \exists ! \ x \in E, \ y = f(x)$]

Propriété. Soient E, F et G trois ensembles; $f: E \longrightarrow F$ et $g: F \longrightarrow G$ deux applications. Si f et g sont injectives (resp. surjectives), alors la composée $g \circ f$ est injective (resp. surjective).

Corollaire. Soient E, F et G trois ensembles; $f: E \longrightarrow F$ et $g: F \longrightarrow G$ deux applications. Si f et g sont bijectives, alors la composée $g \circ f$ est bijective.

3 – Bijections réciproques

Théorème. Soient E et F deux ensembles, et $f: E \longrightarrow F$ une application. f est bijective SSI il existe une application $g: F \longrightarrow E$ telle que

$$f \circ g = \mathrm{id}_F \ \underline{\mathbf{et}} \ g \circ f = \mathrm{id}_E.$$

Propriété, définition et notation. Lorsque f est bijective, l'application g du théorème ci-dessus est unique, appelée bijection réciproque de f, notée f^{-1} .

Propriétés des bijections réciproques. Soient $f \in F^E$ et $g \in G^F$.

- ➤ Si f est bijective, alors f^{-1} est bijective et $(f^{-1})^{-1} = f$.
- ➤ Si f et g sont bijectives, alors $(g \circ f)$ est bijective et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Applications 2

Définition. Soit E un ensemble. Une **involution** de E est une application f de E dans E telle que : $f \circ f = \mathrm{id}_E$.

Propriété. Soit E un ensemble. Toute involution de E est bijective, et est sa propre bijection réciproque.

4 – Ensembles équipotents et dénombrables

Définition. Deux ensembles E et F sont **équipotents** lorsqu'il existe une bijec-

tion entre E et F. On le note $E \sim F$.

Exemples: \mathbb{R} et \mathbb{R}_+^* sont équipotents puisque la fonction exponentielle induit une bijection du premier ensemble vers le second.

Propriété. La relation d'équipotence est une relation d'équivalence.

Définition. Un ensemble E est **dénombrable** si E et \mathbb{N} sont équipotents.

Exemples: \mathbb{N}^* , \mathbb{Z} et \mathbb{Q} sont dénombrables; \mathbb{R} ne l'est pas.

QUESTIONS DE COURS

- ➤ Propriété. La composée de deux applications injectives est injective.
- ➤ Propriété. La composée de deux applications surjectives est surjective.
- ▶ Théorème (implication 1). Soient E et F deux ensembles, et $f: E \longrightarrow F$ une application.

Si f est bijective alors il existe une application $g: F \longrightarrow E$ telle que : $f \circ g = \mathrm{id}_F$ et $g \circ f = \mathrm{id}_E$.

Théorème (implication 2). Soient E et F deux ensembles, et $f: E \longrightarrow F$ une application.

S'il existe une application $g: F \longrightarrow E$ telle que : $f \circ g = \mathrm{id}_F \ \underline{\underline{\mathbf{et}}} \ g \circ f = \mathrm{id}_E$, alors f est bijective.

- ▶ Propriété ("unicité de la réciproque"). Si $f \in F^E$ est bijective, alors il existe une unique application $g \in E^F$ telle que $f \circ g = \mathrm{id}_F$ et $g \circ f = \mathrm{id}_E$.
- ▶ **Propriété**. Soit E un ensemble. Notons Bij (E) l'ensemble des bijections de E dans E. Avec ces notations, $(\text{Bij}(E), \circ)$ est un groupe.

OBJECTIFS DE LA SEMAINE :

➤ Connaître son cours, et en particulier les **définitions "d'inj-surj-bijective"** (avec des phrases et avec des quantificateurs) pour établir qu'une application possède (ou non) l'une de ces propriétés.

- ➤ Se souvenir que pour montrer la non-injectivité ou la non-surjectivité, un "contre-exemple" suffit (voir par exemple exercices 1, 2 et 11 de la feuille 6 de TD).
- Savoir traiter l'exercice "in-ra-ta-ble" suivant : montrer que l'application $f:(x,y)\in\mathbb{R}^2\longmapsto (4x-3y,2x+y)\in\mathbb{R}^2$ est bijective, et donner l'expression de sa bijection réciproque f^{-1} (cf banque d'exercices).