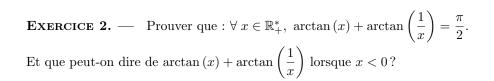
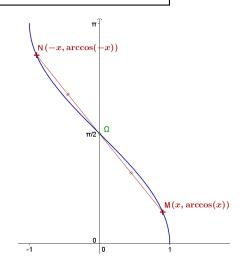
Exercices 7 – Applications & Fonctions circulaires réciproques

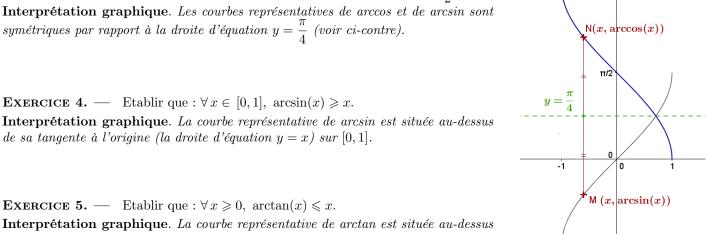
EXERCICE 1. — Montrer que : $\forall x \in [-1;1]$, $\arccos(x) + \arccos(-x) = \pi$ Interprétation graphique. Le point de coordonnées $\left(0,\frac{\pi}{2}\right)$ est le centre de symétrie de la courbe représentative de arccos (voir ci-contre).





-π/2

EXERCICE 3. — Montrer que : $\forall x \in [-1; 1]$, $\arccos(x) + \arcsin(x) = \frac{\pi}{2}$ Interprétation graphique. Les courbes représentatives de arccos et de arcsin sont symétriques par rapport à la droite d'équation $y = \frac{\pi}{4}$ (voir ci-contre).



EXERCICE 5. — Etablir que : $\forall x \ge 0$, $\arctan(x) \le x$.

Interprétation graphique. La courbe représentative de arctan est située au-dessus de sa tangente à l'origine (la droite d'équation y = x) sur \mathbb{R}_+ .

Exercice 6. — Simplifier les expressions suivantes :

EXERCICE 7. — Etablir que :
$$\frac{\pi}{4} = \arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right)$$

EXERCICE 8. — FORMULE DE MACHIN. *

1/ Calculer
$$A = 4 \arctan\left(\frac{1}{5}\right)$$
.

$$2/ \text{ Soient } x \text{ et } y \text{ deux réels tels que } 0 < x < y. \text{ Montrer que :} \arctan\left(\frac{x}{y}\right) + \arctan\left(\frac{y-x}{y+x}\right) = \frac{\pi}{4}.$$

$$3/\ \, \text{Montrer que}: 4\arctan\left(\frac{1}{5}\right)-\arctan\left(\frac{1}{239}\right)=\frac{\pi}{4}.$$

^{*.} John Machin fut un mathématicien anglais du 18ème siècle (1680-1751), notamment connu pour avoir démontré en 1706 la formule que l'on vous demande d'établir dans cet exercice, qui lui a permis d'obtenir une remarquable (pour l'époque) approximation du nombre π (100 décimales).

EXTRAITS DE DS

EXERCICE 9. — (CA-DEAU!). On définit une fonction f sur \mathbb{R} en posant : $\forall x \in \mathbb{R}$, $f(x) = \arctan(x^3)$. Etablique f réalise une bijection de \mathbb{R} vers un intervalle J que l'on précisera.

EXERCICE 10. — (TANGENTE ET ARCTANGENTE).

- 1/ Rappeler la formule de soustraction pour la tangente.
- $2/ \text{ Etablir que pour tout entier naturel } n \text{ on a :} \arctan\left(\frac{1}{n+1}\right) \arctan\left(\frac{1}{n+2}\right) = \arctan\left(\frac{1}{n^2+3n+3}\right)$
- 3/ En déduire la valeur de $S_N = \sum_{n=0}^N \arctan\left(\frac{1}{n^2 + 3n + 3}\right)$ en fonction de N; puis la limite $\lim_{N \to +\infty} S_N$.

EXERCICE 11. — (Cosinus et arccosinus).

- 1/ Rappeler la formule d'addition pour le cosinus.
- 2/ Etablir que pour tout entier naturel non nul n on a :

$$\arccos\left(\frac{1}{n}\right) + \arccos\left(\frac{1}{n+1}\right) = \arccos\left(\frac{1-\sqrt{(n^2-1)n(n+2)}}{n(n+1)}\right)$$

EXERCICE 12. — (ARCSINUS).

- 1/ On pose $A(x) = \cos(\arcsin(x))$. Pour quelles valeurs de x l'expression A(x) est-elle définie? On note D l'ensemble de ces valeurs. Simplifier A(x) pour tout réel x de D.
- 2/ Etablir que:

$$\arcsin\left(\frac{1}{3}\right) + \arcsin\left(\frac{1}{4}\right) = \arcsin\left(\frac{\sqrt{8} + \sqrt{15}}{12}\right)$$

EXERCICE 13. — **UNE FONCTION BIJECTIVE.** On considère la fonction f définie sur $I = \left[0; \frac{\pi}{4}\right]$ en posant pour tout réel x de $I: f(x) = \frac{1}{\cos(x)}$.

- 1/ Démontrer que f réalise une bijection de I dans un intervalle J que l'on précisera. On note f^{-1} sa bijection réciproque.
- 2/ Déterminer le sens de variation de f^{-1} .
- 3/ Justifier que pour tout $x \in J$, $\begin{cases} \cos\left(f^{-1}(x)\right) = \frac{1}{x} \\ \sin\left(f^{-1}(x)\right) = \sqrt{1 \frac{1}{x^2}} \end{cases}$
- 4/ Démontrer que f^{-1} est dérivable sur $J\setminus\{1\}$ et établir que :

$$\forall x \in J \setminus \{1\}, \quad (f^{-1})'(x) = \frac{1}{x\sqrt{x^2 - 1}}$$

EXERCICE 14. — **EQUATION.** Résoudre dans \mathbb{R} l'équation :

(E):
$$1 + \tan(x) + \tan^2(x) + \tan^3(x) = 0$$

Indication: mais quelles sont donc les racines du polynôme $1 + X + X^2 + X^3$?

EXERCICE 15. — (DÉRIVÉES SUCCESSIVES DE ARCTAN, PROBLÈME 1 NOVEMBRE 2023).

1/ Question préliminaire. Résoudre dans $\mathbb C$ l'équation :

$$(x-i)^7 - (x+i)^7 = 0$$

Partie 1 - Une relation de récurrence

2/ Justifier brièvement que :

$$\forall x \in \mathbb{R}, \quad (1+x^2)\arctan'(x) = 1$$

3/ Soit $n \in \mathbb{N}$. A l'aide de la question précédente et de la formule de Leibniz, établir que :

$$\forall x \in \mathbb{R}, (1+x^2)\arctan^{(n+2)}(x) + 2(n+1)x\arctan^{(n+1)}(x) + n(n+1)\arctan^{(n)}(x) = 0$$

Cette relation de récurrence permet de déduire l'expression de $\arctan^{(n+2)}$ à partir de celles de $\arctan^{(n+1)}$ et de $\arctan^{(n)}$. Puisque l'on connaît $\arctan^{(0)}$ et $\arctan^{(1)}$, on peut donc en déduire $\arctan^{(2)}$; puis on peut obtenir $\arctan^{(3)}$ à partir de $\arctan^{(1)}$ et $\arctan^{(2)}$; puis on peut obtenir $\arctan^{(4)}$...

C'est un joli résultat, mais le calcul de $\arctan^{(2023)}$ par cette méthode promet d'être un peu laborieux! L'objectif de la seconde partie est donc d'établir des formules explicites pour les dérivées successives de la fonction arctangente.

Partie 2 - Formules explicites des dérivées successives de arctan

4/ Soit a un nombre réel. On définit une fonction g en posant :

$$\forall x \in \mathbb{R} \setminus \{-a\}, \ g(x) = \frac{1}{x+a}$$

Etablir par récurrence sur n que pour tout réel $x \neq -a$, on a :

$$\forall n \in \mathbb{N}, \qquad g^{(n)}(x) = \frac{(-1)^n n!}{(x+a)^{n+1}}$$

On admettra par la suite que cette formule reste valable pour un nombre complexe a.

On admettra également que pour tout réel x, on a :

$$\frac{1}{1+x^2} = \frac{i}{2} \left(\frac{1}{x+i} - \frac{1}{x-i} \right)$$

5/ A l'aide de ce qui précède, établir que pour tout $(x,n) \in \mathbb{R} \times \mathbb{N}$, on a :

$$\arctan^{(n+1)}(x) = \frac{(-1)^n \, n! \, \mathbf{i}}{2(1+x^2)^{n+1}} \, P_{n+1}(x) \qquad \text{avec} \quad P_{n+1}(x) = (x-\mathbf{i})^{n+1} - (x+\mathbf{i})^{n+1}$$

6/ "Le cas impair" : calcul de $\arctan^{(2n+1)}$. Soit $(x,n) \in \mathbb{R} \times \mathbb{N}$

Avec les notations de la question précédente, on a : $P_{2n+1}(x) = (x-i)^{2n+1} - (x+i)^{2n+1}$

a/ Etablir que :

$$P_{2n+1}(x) = \sum_{k=0}^{2n+1} {2n+1 \choose k} i^k \left((-1)^k - 1 \right) x^{2n+1-k}$$

 $\mathbf{b}/$ Déduire de la question précédente que :

$$P_{2n+1}(x) = -2\sum_{p=0}^{n} {2n+1 \choose 2p+1} i^{2p+1} x^{2(n-p)}$$

c/ En déduire que :

$$\arctan^{(2n+1)}(x) = \frac{(2n)!}{(1+x^2)^{2n+1}} \sum_{p=0}^{n} (-1)^p \binom{2n+1}{2p+1} x^{2(n-p)}$$

d/ Application. En utilisant la formule de la question précédente, vérifier que :

$$\arctan^{(7)}(x) = \frac{6!}{(1+x^2)^7} (7x^6 - 35x^4 + 21x^2 - 1)$$

e/ Justifier que l'équation $7x^6 - 35x^4 + 21x^2 - 1 = 0$ possède exactement 6 solutions dans \mathbb{R} , qui sont les réels $\cot \left(-\frac{k\pi}{7}\right)$ avec $k \in [1, 6]$.

On rappelle que $\cot(x) = \frac{\cos(x)}{\sin(x)}$ (pour tout réel $x \neq 0$ $[\pi]$).

7/ "Le cas pair": calcul de $\arctan^{(2n)}$. Soit $(x,n) \in \mathbb{R} \times \mathbb{N}^*$.

Etablir que:

$$\arctan^{(2n)}(x) = -\frac{(2n-1)!}{(1+x^2)^{2n}} \sum_{p=0}^{n-1} (-1)^p \binom{2n}{2p+1} x^{2(n-p)-1}$$