Colle 7 – Questions de cours

QUESTION DE COURS N⁰1 — **Pur cours** : tout sur arccos, arcsin ou arctan : définition, sens de variation, dérivabilité, dérivée, DL1 en 0, tableau de variation, valeurs aux bornes de l'ensemble de définition, allure de la courbe.

QUESTION DE COURS N⁰2 — **Propriété** : si $f: I \longrightarrow f(I)$ est strictement croissante (resp. décroissante) et bijective, alors f^{-1} est strictement croissante (resp. décroissante).

On suppose que $f:I\longrightarrow f(I)$ est une fonction définie sur un intervalle I et à valeurs réelles, bijective et strictement croissante. Montrons que f^{-1} est strictement croissante.

Soient a et b deux réels de f(I) tels que a < b.

Supposons $f^{-1}(a) \geqslant f^{-1}(b)$ (\spadesuit).

Alors, f étant croissante, on en déduit que : $f(f^{-1}(a)) \ge f(f^{-1}(b))$, soit $a \ge b$, ce qui est en contradiction avec l'hypothèse initiale (a < b). Ceci implique que l'assertion (\spadesuit) est fausse.

Par suite $f^{-1}(a) < f^{-1}(b)$. En résumé, on a établi l'implication : $\forall (a,b) \in (f(I))^2$, $(a < b) \Longrightarrow (f^{-1}(a) < f^{-1}(b))$.

<u>Conclusion</u>: sous les hypothèses de l'énoncé, si f est strictement croissante, alors f^{-1} est strictement croissante.

La propriété "si f est bijective et strictement décroissante, alors f^{-1} est strictement décroissante" se déduit du raisonnement précédent, en modifiant un seul signe...

QUESTION DE COURS N⁰3 — **Propriété**. Soit $f: I \longrightarrow f(I)$ une fonction bijective définie sur un intervalle non vide de \mathbb{R} , et soit $a \in I$. Si f est dérivable en a et $f'(a) \neq 0$, alors f^{-1} est dérivable en f(a) et : $(f^{-1})'(f(a)) = \frac{1}{f'(a)}$ **ET Application**: formule donnant la dérivée de arctan sur \mathbb{R} .

Prouvons la propriété. Soient f, I et a comme dans l'énoncé. La fonction $f^{-1} \circ f$ est dérivable sur I, puisque pour tout réel $x \in I$ on a : $(f^{-1} \circ f)(x) = x$. Il s'ensuit en particulier que : $(f^{-1} \circ f)'(a) = 1$.

Par ailleurs, en <u>admettant</u> la dérivablité de f^{-1} en f(a), on a : $(f^{-1} \circ f)'(a) = (f^{-1})'(f(a)) \times f'(a)$, en vertu de la propriété donnant la dérivée d'une composée de fonctions dérivables.

On déduit des deux identités précédentes que : $\left(f^{-1}\right)'(f(a)) \times f'(a) = 1$, d'où : $\left(f^{-1}\right)'(f(a)) = \frac{1}{f'(a)} \left(\operatorname{car} f'(a) \neq 0\right)$.

Application. La fonction tangente réalise une bijection de $]-\pi/2;\pi/2[$ dans \mathbb{R} , et sa réciproque est la fonction arctan.

Soit x un réel quelconque. Il existe un unique réel $y \in]-\pi/2$; $\pi/2$ [tel que $\tan(y)=x$. Puisque la fonction tangente est dérivable sur $]-\pi/2$; $\pi/2$ [, et que sa dérivée ne s'annule pas sur cet intervalle *, on déduit de la propriété précédente que la fonction arctangente est dérivable en $\tan(y)$ et :

$$\arctan'(\tan(y)) = \frac{1}{\tan'(y)} \quad \text{soit}: \quad \arctan'(\tan(y)) = \frac{1}{1 + \tan^2(y)} \quad \text{soit encore}: \quad \arctan'(x) = \frac{1}{1 + x^2}$$

Le raisonnemment précédent étant valide pour un réel x arbitraire, on a : $\forall x \in \mathbb{R}$, $\arctan'(x) = \frac{1}{1+x^2}$

^{*.} Pour mémoire, elle est strictement positive puisque $\tan' = 1 + \tan^2 = \frac{1}{\cos^2}$

QUESTION DE COURS N⁰4 — **Propriété.** Si $f: I \longrightarrow f(I)$ est impaire et bijective, alors f^{-1} est impaire.

On suppose que $f: I \longrightarrow f(I)$ est une bijection impaire (en particulier, I est symétrique par rapport à zéro).

 \triangleright Pour établir l'imparité de f^{-1} , on commence par établir que f(I) est symétrique par rapport à zéro (ou centré en zéro).

Si y est dans f(I), alors il existe un élément x de I tel que : y = f(x). D'où -y = -f(x) = f(-x) (f étant impaire). Or $(-x) \in I$, puisque $x \in I$ et I est supposé symétrique par rapport à zéro. Donc $-y \in f(I)$.

En résumé, on a établi l'implication : $(y \in f(I)) \Longrightarrow (-y \in f(I))$. D'où f(I) est symétrique par rapport à zéro .

➤ Ceci fait, il ne reste plus qu'à vérifier que : $\forall y \in f(I), f^{-1}(-y) = -f^{-1}(y)$.

Soit $y \in f(I)$. D'une part : $f(f^{-1}(-y)) = -y$ (\spadesuit) puisque $f \circ f^{-1} = \mathrm{id}_{f(I)}$.

D'autre part : $f\left(-f^{-1}(y)\right) = -f\left(f^{-1}(y)\right)$ (f étant impaire). D'où : $f\left(-f^{-1}(y)\right) = -y$ (\clubsuit).

D'après (\spadesuit) et (\clubsuit) : $f(-f^{-1}(y)) = f(f^{-1}(-y))$.

Puisque f est injective (car bijective), on en déduit que : $-f^{-1}(y) = f^{-1}(-y)$.

Conclusion. Sous les hypothèses de l'énoncé, si f est impaire, alors f^{-1} est impaire.

QUESTION DE COURS N⁰5 — **Exercice classique**. Etablir que $\forall x \in [-1, 1], \arccos(x) + \arcsin(x) = \frac{\pi}{2}$.

Posons: $\forall x \in [-1, 1], f(x) = \arccos(x) + \arcsin(x).$

Selon le cours, la fonction f est dérivable sur]-1,1[, et $: \forall x \in [-1,1], f'(x) = 0.$

Il s'ensuit que f est constante sur]-1,1[, égale (par exemple) à $f(0)=\arccos(0)+\arcsin(0)=\frac{\pi}{2}$.

On a donc établi que : $\forall x \in]-1,1[, \arccos(x) + \arcsin(x) = \frac{\pi}{2}$.

Il ne reste plus qu'à fermer les crochets. Pour ce faire, il suffit de calculer f(1) et f(-1)...

Finalement, on en déduit que : $\forall x \in [-1,1], \arccos(x) + \arcsin(x) = \frac{\pi}{2}$.

BANQUE D'EXERCICES

EXERCICE 1. — Montrer que : $\forall x \in [-1;1]$, $\arccos(x) + \arccos(-x) = \pi$

EXERCICE 2. — Montrer que :
$$\forall x \in \mathbb{R}_+^*$$
, $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$

EXERCICE 3. — Etablir que : $\forall x \in [0,1]$, $\cos(\arcsin(x)) = \sqrt{1-x^2}$

EXERCICE 4. — Etablir que :
$$\forall x \in \mathbb{R}$$
, $\cos(2\arctan(x)) = \frac{1-x^2}{1+x^2}$

EXERCICE 5. — Soit α un réel. Déterminer en fonction de α la limite :

$$\lim_{n \to +\infty} n^{\alpha} \arctan\left(\frac{1}{n}\right)$$

EXERCICE 6. — Etablir que :
$$\forall n \in \mathbb{N}$$
, $\arctan\left(\frac{1}{n+1}\right) - \arctan\left(\frac{1}{n+2}\right) = \arctan\left(\frac{1}{n^2+3n+3}\right)$

EXERCICE 7. — (Extrait de CCINP, sur le principe du volontariat).

1/ Justifier brièvement que :

$$\forall x \in \mathbb{R}, \quad (1+x^2)\arctan'(x) = 1$$

2/ Soit $n \in \mathbb{N}$. Etablir que :

$$\forall x \in \mathbb{R}, \quad (1+x^2)\arctan^{(n+2)}(x) + 2(n+1)\arctan^{(n+1)}(x) + n(n+1)\arctan^{(n)}(x) = 0$$

Banque d'exercices — Corrigés

EXERCICE 1. — Montrer que : $\forall x \in [-1; 1]$, $\arccos(x) + \arccos(-x) = \pi$

Posons pour tout réel $x \in [-1; 1]$, $f(x) = \arccos(x) + \arccos(-x)$.

Selon le cours, la fonction f est dérivable sur]-1,1[, et pour tout réel $x \in]-1,1[$ on a :

$$f'(x) = \frac{-1}{\sqrt{1-x^2}} + \frac{-(-1)}{\sqrt{1-(-x)^2}} = \frac{-1}{\sqrt{1-x^2}} + \frac{1}{\sqrt{1-x^2}} = 0$$

On en déduit que f est constante sur]-1,1[, égale à $f(0)=\arccos(0)+\arccos(0)=\pi$.

En résumé : $\forall x \in]-1,1[, f(x)=\pi.$

Pour fermer les crochets, on peut observer que : $f(1) = \arccos(1) + \arccos(-1) = 0 + \pi = \pi$ et f(-1) = f(1) puisque f est paire.

Conclusion. $\forall x \in [-1; 1], \quad \arccos(x) + \arccos(-x) = \pi$

EXERCICE 2. — Montrer que : $\forall x \in \mathbb{R}_+^*$, $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$

Pour tout réel x strictement positif, posons : $f(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$.

Selon les TG, la fonction f est dérivable sur \mathbb{R}_+^* et pour tout réel x > 0:

$$f'(x) = \frac{1}{1+x^2} + \frac{-\frac{1}{x^2}}{1+\frac{1}{x^2}} = \frac{1}{1+x^2} + \frac{-\frac{1}{x^2}}{\frac{1+x^2}{x^2}} = \frac{1}{1+x^2} - \frac{1}{1+x^2} = 0$$

On en déduit que f est constante sur \mathbb{R}_+^* , égale à $f(1) = 2\arctan(1) = \frac{\pi}{2}$.

Conclusion. $\forall x \in \mathbb{R}_+^*$, $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$.

EXERCICE 3. — Etablir que : $\forall x \in [0,1]$, $\cos(\arcsin(x)) = \sqrt{1-x^2}$

Soit x un réel dans [-1,1]. On a : $\cos^2(\arcsin(x)) + \sin^2(\arcsin(x)) = 1$.

D'où : $\cos^2(\arcsin(x)) = 1 - x^2$. D'où : $|\cos(\arcsin(x))| = \sqrt{1 - x^2}$.

En outre, $\cos\left(\arcsin(x)\right)$ est positif puisque $\arcsin(x)$ appartient à $[-\pi/2,\pi/2]$.

Par suite : $\cos(\arcsin(x)) = \sqrt{1 - x^2}$.

Conclusion. $\forall x \in [-1, 1], \cos(\arcsin(x)) = \sqrt{1 - x^2}$

EXERCICE 4. — Etablir que : $\forall x \in \mathbb{R}$, $\cos(2\arctan(x)) = \frac{1-x^2}{1+x^2}$

Soit x un réel. On a :

$$\cos(2\arctan(x)) = 2\cos^2(\arctan(x)) - 1 = \frac{2}{1 + \tan^2(\arctan(x))} - 1 = \frac{2}{1 + x^2} - 1$$

Conclusion. $\forall x \in \mathbb{R}, \cos(2\arctan(x)) = \frac{1-x^2}{1+x^2}$

EXERCICE 5. — Etablir que : $\forall n \in \mathbb{N}$, $\arctan\left(\frac{1}{n+1}\right) - \arctan\left(\frac{1}{n+2}\right) = \arctan\left(\frac{1}{n^2+3n+3}\right)$

Soit n un entier naturel. On a d'une part :

$$\tan\left(\arctan\left(\frac{1}{n^2+3n+3}\right)\right) = \frac{1}{n^2+3n+3}$$

D'autre part:

$$\tan\left(\arctan\left(\frac{1}{n+1}\right) - \arctan\left(\frac{1}{n+2}\right)\right) = \frac{\frac{1}{n+1} - \frac{1}{n+2}}{1 + \frac{1}{n+1} \times \frac{1}{n+2}} = \frac{\frac{1}{n^2 + 3n + 2}}{\frac{n^2 + 3n + 3}{n^2 + 3n + 2}} = \frac{1}{n^2 + 3n + 3}$$

On en déduit que :

$$\tan\left(\arctan\left(\frac{1}{n+1}\right) - \arctan\left(\frac{1}{n+2}\right)\right) = \tan\left(\arctan\left(\frac{1}{n^2 + 3n + 3}\right)\right) \tag{\clubsuit}$$

En outre:

$$\mid \ 0 \leqslant \frac{1}{n^2+3n+3} \leqslant 1 \ \operatorname{donc} : 0 \leqslant \arctan\left(\frac{1}{n^2+3n+3}\right) \leqslant \frac{\pi}{4} \ (\operatorname{croissance de arctan})$$

$$\text{En particulier}: \left(\arctan\left(\frac{1}{n+1}\right) - \arctan\left(\frac{1}{n+2}\right)\right) \text{ et } \arctan\left(\frac{1}{n^2+3n+3}\right) \text{ sont dans }] - \pi/2; \pi/2[\quad (\clubsuit)]$$

La conclusion provient de (\spadesuit), (\clubsuit) et de l'identité : $\arctan \circ \tan = \mathrm{id}_{]-\pi/2;\pi/2[}$

Conclusion.
$$\forall n \in \mathbb{N}, \arctan\left(\frac{1}{n+1}\right) - \arctan\left(\frac{1}{n+2}\right) = \arctan\left(\frac{1}{n^2 + 3n + 3}\right)$$

EXERCICE 6. — Soit α un réel. Déterminer en fonction de α la limite :

$$\lim_{n \to +\infty} n^{\alpha} \arctan\left(\frac{1}{n}\right)$$

Soit n un entier naturel ≥ 2 . On a selon le cours :

$$\arctan\left(\frac{1}{n}\right) = \frac{1}{n} + \frac{1}{n}\varepsilon\left(\frac{1}{n}\right) \quad \text{avec} \quad \lim_{n \to +\infty} \varepsilon\left(\frac{1}{n}\right) = 0$$

Il s'ensuit que :

$$n^{\alpha}\arctan\left(\frac{1}{n}\right) = n^{\alpha-1} + n^{\alpha-1}\varepsilon\left(\frac{1}{n}\right) = n^{\alpha-1}\left(1 + \varepsilon\left(\frac{1}{n}\right)\right) \quad \text{avec} \quad \lim_{n \to +\infty}\varepsilon\left(\frac{1}{n}\right) = 0$$

Après avoir judicieusement observé que $\lim_{n\to+\infty}\left(1+\varepsilon\left(\frac{1}{n}\right)\right)=1$, on peut conclure.

Conclusion. Soit
$$\alpha$$
 un réel. On a : $\lim_{n \to +\infty} n^{\alpha} \arctan\left(\frac{1}{n}\right) = \left\{ \begin{array}{ll} +\infty & \text{si } \alpha > 1 \\ 1 & \text{si } \alpha = 1 \\ 0 & \text{si } \alpha < 1 \end{array} \right.$

EXERCICE 7. — (Extrait de CCINP).

1/ Justifier brièvement que :

$$\forall x \in \mathbb{R}, \quad (1+x^2)\arctan'(x) = 1$$

D'après le cours, arctan est dérivable sur \mathbb{R} et : $\forall x \in \mathbb{R}$, $\arctan'(x) = \frac{1}{1+x^2}$.

Conclusion. $\forall x \in \mathbb{R}, (1+x^2)\arctan'(x) = 1$

2/ Soit $n \in \mathbb{N}$. Etablir que :

$$\forall x \in \mathbb{R}, \quad (1+x^2)\arctan^{(n+2)}(x) + 2(n+1)\arctan^{(n+1)}(x) + n(n+1)\arctan^{(n)}(x) = 0$$

Soit n un entier naturel. Pour tout réel x, notons :

$$g(x) = 1 + x^2$$
 et $h(x) = g(x)\arctan'(x)$

D'après la question précédente, on a : $\forall x \in \mathbb{R}$, h(x) = 1.

Il s'ensuit que : $\forall x \in \mathbb{R}, \quad h^{(n+1)}(x) = 0$ (\$\infty\$)

Or, selon la formule de Leibniz, on a :
$$\forall x \in \mathbb{R}$$
, $h^{(n+1)}(x) = \sum_{k=0}^{n+1} \binom{n+1}{k} g^{(k)}(x) (\arctan')^{(n+1-k)}(x)$.

Puisqu'il est clair que $g^{(k)}$ est identiquement nulle pour tout entier $k\geqslant 3$, on en déduit que :

$$\forall x \in \mathbb{R}, \ h^{(n+1)}(x) = \sum_{k=0}^{2} {n+1 \choose k} g^{(k)}(x) (\arctan')^{(n+1-k)}(x)$$

Par suite:

$$\forall \, x \in \, \mathbb{R}, \, \, h^{(n+1)}(x) = (1+x^2)\arctan^{(n+2)}(x) + 2\,(n+1)\,\arctan^{(n+1)}(x) + n\,(n+1)\arctan^{(n)}(x) \quad (\clubsuit)$$

Conclusion. D'après (♠) et (♣), on a :

$$\forall \, x \in \, \mathbb{R}, \quad (1+x^2)\arctan^{(n+2)}(x) + 2\,(n+1)\,\arctan^{(n+1)}(x) + n\,(n+1)\arctan^{(n)}(x) = 0$$