Exercices 8 – Méthodes de calcul intégral

Intégrales et primitives usuelles

EXERCICE 1. — Déterminer une (puis toutes) primitive de la fonction f dans chacun des cas suivants :

1) $f: x \longmapsto x^4$

1)
$$f: x \longmapsto x^{2}$$

2) $f: x \longmapsto \frac{1}{x^{n}}$ avec $n \in \mathbb{N}$
3) $f: x \longmapsto \sqrt{x}$
4) $f: x \longmapsto \frac{1}{\sqrt{x}}$
5) $f: x \longmapsto x\sqrt{x}$
6) $f: x \longmapsto \sum_{k=0}^{n} a_{k}x^{k}$

3)
$$f: x \longmapsto \sqrt{x}$$

4)
$$f: x \longmapsto \frac{1}{\sqrt{x}}$$

5)
$$f: x \longmapsto x\sqrt{x}$$

6)
$$f: x \longmapsto \sum_{k=0}^{n} a_k x^k$$

7)
$$f: x \longmapsto \sin(x)\cos(x)$$

$$8) \ f: x \longmapsto \frac{1}{\sqrt{4 - 4x^2}}$$

$$f: x \longmapsto \tan^2(x)$$

Exercice 2. — Zoom sur les primitives de fonctions "de la forme u'f'(u)"

1) Une primitive de $\frac{u'}{u}$ est $\ln |u|$;

2) Une primitive de $u'e^u$ est e^u ;

3) Une primitive de $u'u^{\alpha}$ est $\frac{u^{\alpha+1}}{\alpha+1}$.

Applications : déterminer une primitive de f dans chacun des cas suivants :

2)
$$f: x \longmapsto \cos(x) \sin^{2023}(x)$$

Trois cas particuliers remarquables:

5)
$$f: x \longmapsto \frac{x}{x^2+1}$$

$$6) \ f: x \longmapsto \frac{\ln x}{x}$$

Exercice 3. — Déterminer une primitive de f dans chacun des cas suivants :

1) $f: x \longmapsto \cos^2(x)$

3)
$$f: x \longmapsto \cos^3(x)$$

5)
$$f: x \longmapsto \sin^4(x)$$

2)
$$f: x \longmapsto \tan^2(x)$$

4)
$$f: x \longmapsto \cos^4(x)$$

3)
$$f: x \longmapsto \cos^3(x)$$
 5) $f: x \longmapsto \sin^4(x)$
4) $f: x \longmapsto \cos^4(x)$ 6) $f: x \longmapsto \cos^2(x) \sin^2(x)$

EXERCICE 4. — (Primitives de fractions rationnelles 1). Soit f définie sur $I =]-1, +\infty[$ par $f(x) = \frac{x^2}{x+1}$.

1) Déterminer trois réels a, b et c tels que : $\forall x \in \mathbb{R}, x \neq -1, f(x) = ax + b + \frac{c}{x+1}$.

2) Déduire de ce qui précède une primitive de f sur I.

EXERCICE 5. — (Primitives de fractions rationnelles 2). Soit f définie sur $I =]1, +\infty[$ par $f(x) = \frac{1}{(x-1)(x+2)}$.

Déterminer deux réels a et b tels que : $\forall x \in \mathbb{R}, x \neq 1 \land x \neq -2, f(x) = \frac{a}{x-1} + \frac{b}{x+2}$. En déduire une primitive de fsur I.

Exercice 6. — (Primitives de fractions rationnelles 3). Déterminer une primitive de f sur I, dans chacun des cas suivants (I étant un intervalle à préciser).

1)
$$f(x) = \frac{1}{x^2 - 7x + 6}$$

2)
$$f(x) = \frac{1}{x^2 - 1}$$

3)
$$f(x) = \frac{1}{x^2 - a} \ (a \in \mathbb{R}_+^*)$$

Exercice 7. — Calculer les intégrales suivantes :

$$(2) I_2 = \int_0^{1/2} \frac{\mathrm{d}x}{\sqrt{1 - x^2}}$$

4)
$$I_4 = \int_0^1 \frac{1}{x-4} \, \mathrm{d}x$$

5)
$$I_5 = \int_0^8 x \sqrt[3]{x} \, \mathrm{d}x$$

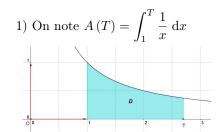
6)
$$I_6 = \int_0^{\pi/4} \frac{1}{\cos^2(x)} \, \mathrm{d}x$$

1)
$$I_1 = \int_0^1 x^n dx$$
 3) $I_3 = \int_1^4 \sqrt{x} dx$ 6) $I_6 = \int_0^{\pi/4} \frac{1}{\cos^2(x)} dx$ 8) I_8
2) $I_2 = \int_0^{1/2} \frac{dx}{\sqrt{1 - x^2}}$ 5) $I_5 = \int_0^8 x \sqrt[3]{x} dx$ 5) $I_6 = \int_0^{\pi/4} \frac{1}{\cos^2(x)} dx$ 7) $I_7 = \int_0^{\pi/4} \tan^2(x) dx$

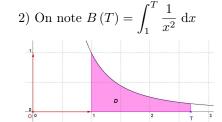
8)
$$I_8 = \int_0^{\pi/6} \cos^3(x) \, \mathrm{d}x$$

EXERCICE 8. — Fini ou pas?

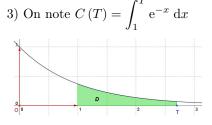
Dans les trois questions ci-dessous, T désigne un réel supérieur ou égal à 1.



Calculer A(T), puis $\lim_{T \to +\infty} A(T)$



Calculer B(T), puis $\lim_{T \to +\infty} B(T)$



Calculer C(T), puis $\lim_{T \to +\infty} C(T)$

INTÉGRATION PAR PARTIES

Exercice 9. — Applications directes – Déterminer une primitive de la fonction f dans chacun des cas suivants :

1)
$$f: x \longmapsto (1-x)e^{2x}$$
 2) $f: x \longmapsto xe^{-x}$

2)
$$f: x \longmapsto xe^{-x}$$

3)
$$f: x \longmapsto x \sin(x)$$

3)
$$f: x \longmapsto x \sin(x)$$
 4) $f: x \longmapsto x^2 \cos(x)$

EXERCICE 10. — Primitive(s) de ln

- 1) A l'aide d'une intégration par parties, déterminer une primitive de la fonction ln (sur un intervalle de R que l'on précisera).
- 2) Application : déterminer une primitive de la fonction $f: x \longmapsto \ln{(\sqrt{x})}$

EXERCICE 11. — A l'aide d'une (ou plusieurs) IPP, calculer chacune des intégrales suivantes.

1)
$$\int_{-\pi}^{\pi} (1-x)\cos(x) dx$$

$$\int_{1}^{e} \ln^{2}(x) dx$$

3)
$$\int_0^1 (x^2 + 1) \operatorname{sh}(x) dx$$

Changement de variable

Exercice 12. — A l'aide d'un changement de variable, déterminer une primitive de f dans chacun des cas suivants :

$$1) \ f: x \longmapsto \frac{1}{\mathrm{e}^x + 1}$$

$$2) \ f: x \longmapsto \frac{1}{\sqrt{x} + \sqrt{x^3}}$$

3)
$$f: x \longmapsto \frac{1}{x\sqrt{1+\ln(x)}}$$

4) $f: x \longmapsto \frac{1}{\operatorname{ch}(x)}$

4)
$$f: x \longmapsto \frac{1}{\operatorname{ch}(x)}$$

5)
$$f: x \longmapsto \frac{1}{\operatorname{sh}(x)}$$

$$6) \ f: x \longmapsto \frac{1}{\cos(x)}$$

EXERCICE 13. — A l'aide d'un changement de variable, calculer les intégrales suivantes :

1)
$$\int_0^1 \frac{e^{2x}}{e^x + 1} dx$$

3)
$$\int_{1}^{e} \frac{1}{x + x (\ln x)^{2}} dx$$

4) $\int_{1}^{4} \frac{1}{t + \sqrt{t}} dt$

$$\begin{array}{c|c}
5) \int_{\pi/4}^{\pi/2} \frac{\mathrm{d}x}{\sin(x)} \\
6) \int_{0}^{\pi/4} \frac{\mathrm{d}x}{\cos(x)}
\end{array}$$

2)
$$\int_0^{\ln 2} \frac{1}{1+e^t} dt$$

$$4) \int_1^4 \frac{1}{t + \sqrt{t}} \, \mathrm{d}t$$

$$6) \int_0^{\pi/4} \frac{\mathrm{d}x}{\cos(x)}$$

EXERCICE 14. — Soient a un réel strictement positif, et f la fonction définie par $f(x) = \frac{1}{x^2 + a}$. Déterminer une primitive de f sur I, où I est un intervalle à préciser.

EXERCICE 15. — Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{x^2 + x + 1}$. Déterminer une primitive de f sur \mathbb{R} .

Intégrales classiques en Physique

EXERCICE 16. — (Valeur efficace). Soit f une fonction T-périodique (définie sur \mathbb{R}). On appelle valeur efficace de f le réel positif : $\sqrt{\frac{1}{T} \int_a^{a+T} f^2(t) dt}$ (où a désigne un réel quelconque).*

Calculer les valeurs efficaces des fonctions cos et sin.

EXERCICE 17. — (Primitives "complexes" 1). Soit $\alpha \in \mathbb{C}^*$. Déterminer une primitive sur \mathbb{R} de $x \mapsto e^{\alpha x}$.

^{*.} La valeur efficace est (heureusement!) indépendante du choix du réel a.

EXERCICE 18. — (Primitives "complexes" 2). Déterminer une primitive sur \mathbb{R} de f dans chacun des cas suivants :

$$1/f: x \longmapsto e^x \cos(x)$$

$$3/f: x \longmapsto e^{kx} \cos(\mu x) \text{ avec } (k, \mu) \in \mathbb{R}^2$$

$$2/f: x \longmapsto e^x \sin(nx)$$
 avec $n \in \mathbb{N}$

$$4/g: x \longmapsto e^{kx} \sin(\mu x) \text{ avec } (k, \mu) \in \mathbb{R}^2$$

Pour vous tester! Exercice de synthèse sur les intégrales

EXERCICE 19. — Déterminer une (puis toutes) primitive de la fonction f dans chacun des cas suivants, à l'aide d'une IPP et/ou d'un changement de variable et/ou en reconnaissant une primitive usuelle :

1)
$$f: x \longmapsto \frac{x^2 - x - 1}{x - 1}$$

5)
$$f: x \longmapsto e^x \sin(\lambda x + \varphi) (\lambda, \varphi)$$
 réels)

9)
$$f: x \longmapsto \frac{x}{\sqrt{x+1}}$$

$$2) \ f: x \longmapsto \frac{1}{2x(x-1)}$$

$$6) \ f: x \longmapsto \ln\left(x-1\right)$$

10)
$$f: x \longmapsto x^2 \arctan(x)$$

3)
$$f: x \longmapsto \frac{3}{(x-2)(x^2-4x)}$$

7)
$$f: x \longmapsto \frac{x}{\cos^2(x)}$$

11)
$$f: x \longmapsto \arcsin^2(x)$$

1)
$$f: x \longmapsto \frac{x^2 - x - 1}{x - 1}$$
 | 5) $f: x \longmapsto e^x \sin(\lambda x + \varphi)$ (λ , φ | 9) $f: x \longmapsto \frac{x}{\sqrt{x + 1}}$ | 2) $f: x \longmapsto \frac{1}{2x(x - 1)}$ | 6) $f: x \longmapsto \ln(x - 1)$ | 10) $f: x \longmapsto x^2 \arctan(x + \varphi)$ ($x \mapsto \frac{3}{(x - 2)(x^2 - 4x)}$ | 7) $f: x \mapsto \frac{x}{\cos^2(x)}$ | 11) $f: x \mapsto \arcsin^2(x + \varphi)$ ($x \mapsto \frac{x}{(x - 1)(x - 2)(x - 3)}$ | 8) $f: x \mapsto \frac{\ln(x)}{x^2}$ | 12) $f: x \mapsto \frac{\sin(x)}{2 + \cos^2(x)}$

8)
$$f: x \longmapsto \frac{\ln(x)}{x^2}$$

12)
$$f: x \longmapsto \frac{\sin(x)}{2 + \cos^2(x)}$$

Extraits de problèmes sur les intégrales

EXERCICE 20. — MINES SUP Pour tout entier naturel n non-nul on pose : $I_n = \frac{1}{2^{n+1}n!} \int_0^1 (1-t)^n e^{t/2} dt$.

- 2) Montrer que pour tout $n \in \mathbb{N}^*$ on a : $I_{n+1} = I_n \frac{1}{2^{n+1}(n+1)!}$ 1) Calculer I_1 .
- 3) Déduire de la question précédente que : $\forall n \in \mathbb{N}^*, \sqrt{e} = I_n + \sum_{k=0}^{n} \frac{1}{2^k k!}$.
- 4) Déterminer un réel A tel que : $\forall n \in \mathbb{N}^*$ on $a : 0 \leq I_n \leq \frac{A}{2^n n!}$. En déduire $\lim_{n \to +\infty} \sum_{k=0}^n \frac{1}{2^k k!}$.

EXERCICE 21. — MINES SUP, ENCORE UNE FOIS On définit, pour tout entier naturel n, la fonction g_n par :

$$\forall x \in [0; 1], \ g_n(x) = x^n \sqrt{1-x}$$
 et on pose : $I_n = \int_0^1 g_n(x) \, dx = \int_0^1 x^n \sqrt{1-x} \, dx$

- 1/ Calculer I_0 .
- 2/ Pour tout entier naturel n, étudier le signe de $I_{n+1} I_n$. En déduire le sens de variation de la suite (I_n) .
- 3/ Montrer que pour tout entier naturel non-nul n on a : $I_n = \frac{2n}{2n+3} I_{n-1}$ (on pourra intégrer par parties I_n).
- 4/ En déduire les valeurs de I_1 , I_2 et I_3 .
- 5/ Montrer par récurrence sur n que : $\forall n \in \mathbb{N}$, $I_n = \frac{2^{2n+3}(n+2)!!}{(2n+4)!}$

Exercice 22. — (Intégrales à Paramètres). Pour tout couple (p,q) d'entiers naturels on pose :

$$I_{p,q} = \int_{0}^{1} x^{p} (1-x)^{q} dx$$

- 1) Calculer $I_{p,0}$, puis calculer $I_{0,q}$.
- 2) Etablir que $\forall (p,q) \in \mathbb{N}^2, \ 0 \leqslant I_{q,p} \leqslant 1.$
- 3) Etablir que $\forall (p,q) \in \mathbb{N}^2$, $I_{q,p} = I_{p,q}$ (on pourra utiliser un changement de variable).
- 4) Etablir que : $\forall (p,q) \in \mathbb{N}^2$, $I_{p+1,q} = \frac{p+1}{q+1} I_{p,q+1}$.
- 5) Donner l'expression de $I_{p,q}$ en fonction de p et q.

EXERCICE 23. — Pour tout réel x raisonnable, on pose $u = \tan\left(\frac{x}{2}\right)$.

1) Etablir que:

$$cos(x) = \frac{1 - u^2}{1 + u^2}$$
 et $sin(x) = \frac{2u}{1 + u^2}$

- 2) Calculer l'intégrale : $I = \int_0^{\pi/3} \frac{1}{\cos(x)} \, \mathrm{d}x$
- 3) Déterminer une primitive sur $]0,\pi[$ de la fonction $f:x\longmapsto \frac{1}{\sin(x)}$.

EXERCICE 24. — On considère la fonction $\varphi: x \longrightarrow \int_x^{x^2} \frac{1}{\ln(t)} dt$.

- 1) Déterminer l'ensemble de définition de φ .
- 2) Calculer la dérivée de φ .
- 3) Dresser le tableau de variation de φ .

QUESTIONS CLASSIQUES SUR LES INTÉGRALES DE WALLIS

Définition. On appelle **intégrales de Wallis** les intégrales définies en posant pour tout $n \in \mathbb{N}$:

$$I_n = \int_0^{\pi/2} \cos^n(t) dt \quad \text{et} \quad J_n = \int_0^{\pi/2} \sin^n(t) dt$$

Exo-W 1. — Premières valeurs. Calculer I_0 , I_1 et I_2 .

Exo-W 2. — Montrer que : $\forall n \in \mathbb{N}, I_n = J_n$

Exo-W 3. — Montrer que : $\forall n \in \mathbb{N}, I_n \geqslant 0$

Exo-W 4. — Montrer que la suite (I_n) est décroissante.

Exo-W 5. — Montrer que la suite (I_n) est convergente.

Exo-W 6. — Montrer que : $\forall n \in \mathbb{N}, I_{n+2} = \frac{n+1}{n+2}I_n$

Exo-W 7. — Montrer que pour tout entier naturel p on a :

$$I_{2p} = \frac{(2p)!}{2^{2p} (p!)^2} \frac{\pi}{2}$$

Exo-W 8. — Montrer que pour tout entier naturel p on a :

$$I_{2p+1} = \frac{2^{2p} (p!)^2}{(2p+1)!}$$

Exo-W 9. — Montrer que : $\forall n \in \mathbb{N}, (n+1) I_{n+1} I_n = \frac{\pi}{2}$

Exo-W 10. — Etablir que : $\lim_{n\to+\infty} I_n = 0$

Exo-W 11. — Etablir que : $\lim_{n\to+\infty} \frac{I_{n+1}}{I_n} = 1$

Exo-W 12. — Etablir que : $\lim_{p \to +\infty} \frac{2(2p+1)}{\pi} I_{2p}^2 = 1$

