MPSI – Colle 8 (17 au 21 novembre 2025) : Méthodes de calcul intégral

Chapitre 8 : Méthodes de calcul intégral

1 - Primitives (généralités)

Définition. Soit f une fonction définie sur un intervalle I et à valeurs réelles. Une primitive de F sur I est une fonction F dérivable sur I telle que F' = f.

Propriété. Soit f une fonction définie sur un intervalle I et à valeurs réelles. Deux primitives de f sur I diffèrent d'une constante. Explicitement, si F et G sont deux primitives de f sur I, alors : $\exists K \in \mathbb{R}, \ \forall x \in I, \ F(x) - G(x) = K$.

Propriété. Soient f et g deux fonctions définies sur un intervalle I et à valeurs réelles. Si F et G désignent des primitives respectives de f et g sur I, alors pour tout couple de réels (λ, μ) , la fonction $\lambda F + \mu G$ est une primitive de $\lambda f + \mu g$ sur I.

Théorème. Toute fonction continue sur un intervalle I admet une primitive sur I (donc une infinité de primitives sur I).

Explicitement, la fonction $x \in I \longmapsto \int_a^x f(t) dt$ est <u>la</u> primitive de f sur I s'annulant en a (avec $a \in I$).

2 - Primitives usuelles Voir formulaire.

Cas particuliers - Primitives et composées

- a) Une primitive de $\frac{u'}{u}$ est $\ln |u|$;
- b) Une primitive de $u'e^u$ est e^u ;
- c) Une primitive de $u'u^{\alpha}$ est $\frac{u^{\alpha+1}}{\alpha+1}$ (avec $\alpha \in \mathbb{R}$, $\alpha \neq -1$).

3 – Intégrale d'une fonction continue sur un segment

Définition. Soit f une fonction continue sur [a;b] et à valeurs réelles. L'**intégrale** de f sur [a,b] est le réel : $\int_a^b f(t)dt = F(b) - F(a)$, où F désigne une primitive de f sur [a,b].

Propriétés des intégrales. Soient f et g deux fonctions continues sur [a;b] et à valeurs réelles.

$$1) \ \forall \ (\lambda,\mu) \in \mathbb{R}^2, \ \int_a^b \left(\lambda f + \mu g\right)(t) \, \mathrm{d}t = \lambda \int_a^b f(t) \mathrm{d}t + \mu \int_a^b g(t) \mathrm{d}t \ \text{(linéarité)}$$

2)
$$\int_a^b f(t) dt = \int_a^c f(t) dt + \mu \int_c^b f(t) dt$$
 (relation de Chasles)

3) [f positive sur
$$[a,b]$$
] $\Longrightarrow \left[\int_a^b f(t) \, \mathrm{d}t \geqslant 0 \right]$ (positivité)

4)
$$[f \leqslant g \text{ sur } [a, b]] \Longrightarrow \left[\int_a^b f(t) \, \mathrm{d}t \leqslant \int_a^b g(t) \, \mathrm{d}t \right]$$
 (croissance)

5)
$$\left| \int_{a}^{b} f(t) dt \right| \leqslant \int_{a}^{b} |f(t)| dt$$

4 – Intégration par parties

Théorème - Intégration par parties. Soient u et v deux fonctions de classe \mathscr{C}^1 sur [a;b]. Alors : $\int_a^b u'v = [uv]_a^b - \int_a^b u'v$.

Pour le calcul des primitives : une primitive de u'v est $uv - \int u'v$.

Exemples d'applications directes : calcul des primitives de ln, arctan, arccos et arcsin.

5 - Changement de variable

Propriété. (changement de variable) : soit f une fonction continue et φ une fonction de classe \mathscr{C}^1 , toutes deux définies sur des intervalles adéquats. Alors : $\int f\left(\varphi(t)\right)\varphi'(t)\;\mathrm{d}t = \int f(x)\;\mathrm{d}x$

La preuve de cette formule repose sur l'intégration terme à terme de la formule donnant la dérivée d'une composée.

$\underline{\text{Applications}}$:

- ightharpoonup une primitive de $\frac{1}{\operatorname{ch}}$ sur \mathbb{R} est $x \longmapsto 2 \arctan\left(\mathrm{e}^{x}\right)$ (poser $u = \mathrm{e}^{x}$);
- ightharpoonup une primitive de $\frac{1}{\sinh}$ sur \mathbb{R}_+^* est $x \longmapsto \ln\left(\frac{\mathrm{e}^x 1}{\mathrm{e}^x + 1}\right)$ (poser $u = \mathrm{e}^x$);
- ightharpoonup soit $a \in \mathbb{R}_+^*$. Une primitive sur \mathbb{R} de $x \longmapsto \frac{1}{x^2 + a^2}$ est

$$x \longmapsto \frac{1}{a} \arctan\left(\frac{x}{a}\right) \pmod{u = \frac{x}{a}}$$

- ➤ intégrale et parité
- \succ intégrale et périodicité

Méthodes de calcul intégral

QUESTIONS DE COURS

- ▶ **Propriété**. Positivité de l'intégrale ET appli : $\int_0^1 t^n (\operatorname{ch}(t) 1) dt \ge 0$
- ▶ Propriété. Croissance de l'intégrale ET appli : (I_n) \(\sqrt{avec } I_n = \int_0^1 (1-t)^n e^{-t} dt
- ▶ Propriété. Formule d'intégration par parties ET appli : calcul de $\int_0^1 (1-t) \, \mathrm{e}^{-t} \, \mathrm{d}t$
- ➤ Propriété. Intégrale et parité.
- ➤ Propriété. Intégrale et périodicité.

APRÈS LA QC: UN EXO EXTRAIT DE LA BANQUE D'EXERCICES

OBJECTIFS DE LA SEMAINE :

- ➤ Maîtriser le formulaire des primitives usuelles.
- Savoir reconnaître les trois formes : $u'e^u$, u'/u et $u'u^\alpha$ (pour trouver, par exemple, des primitives respectives de $x \mapsto xe^{x^2}$, $x \mapsto \tan(x)$ et

$$x \mapsto \ln^{\alpha}(x)/x$$
.

- \blacktriangleright Appliquer la formule d'IPP (exemples : primitive de $x \mapsto xe^x$, Wallis...).
- ▶ Appliquer la formule du changement de variable (exemples : primitive de $x\mapsto 1/\mathrm{ch}(x),\,x\mapsto 1/(x^2+a^2)\ldots)$

Prévisions pour la colle 9 : suite des méthodes de calcul intégral, avec les intégrales de fonctions à valeurs complexes, et un clin d'œil appuyé aux intégrales de Wallis. Le chapitre suivant sera consacré aux équations différentielles linéaires.